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Abstract

This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an

optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF net-

work and a BP network of cascade, where the number of RBF hidden nodes is adjusted

adaptively according to the distribution of sample space, the adaptive RBF network is used

for nonlinear kernel mapping and the BP network is used for nonlinear classification. The

optimized learning strategy is as follows: firstly, a potential function is introduced into train-

ing sample space to adaptively determine the number of initial RBF hidden nodes and node

parameters, and a form of heterogeneous samples repulsive force is designed to further

optimize each generated RBF hidden node parameters, the optimized structure-adaptive

RBF network is used for adaptively nonlinear mapping the sample space; then, according

to the number of adaptively generated RBF hidden nodes, the number of subsequent BP

input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, dif-

ferent training sample sets are used to train the BP network parameters in SAHRBF-BP.

Compared with other algorithms applied to different data sets, experiments show the supe-

riority of SAHRBF-BP. Especially on most low dimensional and large number of data sets,

the classification performance of SAHRBF-BP outperforms other training SLFNs

algorithms.

Introduction

In the field of pattern recognition and data mining, as typical single-layer feed-forward net-
works (SLFNs), radial basis function networks (RBF) have been intensively studied over the
past several decades.When used for classifying problems, there are three important factors for
evaluating network performance: 1) classifying accuracy, 2) network size, and 3) training time.
To achieve good network performance, different optimization algorithms are used to train the
RBF hidden layer, such as K-means clustering [1, 2], fuzzy C-means clustering [3, 4], fuzzy K-
nearest neighbors [5], differential evolution [6, 7], and other optimization algorithms [8–12].
However, in most of these methods, the number of RBF hidden nodes is assigned a priori,
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whichmay lead to poor adaptability for different sample sets. The selection of network size is
also a critical issue. If there are too few hidden nodes the network may not be able to approxi-
mate the given function, and if there are too many, the network may exhibit poor generaliza-
tion performance because of over fitting. Several sequential learning algorithms have been
proposed to find a proper network size [13–16]. In [17], a minimal resource allocation network
(MRAN) is proposed, which is allowed to delete the previous center. The deletion strategy is
based on the overall contribution of each hidden unit to the network output. A sequential
learning algorithm for growing and pruning the RBF (GAP-RBF) and a generalized growing
and pruning RBF (GGAP-RBF) algorithm are proposed in [18, 19], which use the significance
of nodes as the learning strategy. Because the GGAP-RBF algorithm could not handle problems
with high-dimensional probability density distribution, this problem is overcome in [20],
which uses a Gaussian mixture model (GMM) to approximate the GGAP (GGAP-GMM) eval-
uation formula. In [21], an error correction (ErrCor) algorithm is used for function approxi-
mation. In each iteration of the algorithm, one RBF unit is added to fit and then eliminate the
highest peak in the error surface, which can reach a desired error level with fewer RBF units.
Other methods have also been established to identify a proper structure while maintaining the
desired level of accuracy [22–27].

For online training algorithms, the training time is very important. This parameter directly
determines how efficiently an algorithm runs. This problem is well overcome by extreme learn-
ing machines (ELMs) [28], which are also effective algorithms for training SLFNs; ELMs
choose random hidden node parameters and calculate the output weights with the least squares
algorithm. This method can achieve a fast training speed, as well as good classifying accuracy.
In ELMs, the number of hidden nodes is assigned a priori, and many non-optimal nodes may
exist; ELM tends to require more hidden nodes than conventional tuning-based algorithms
[29]. Thus, in [30–33], several types of growing and pruning techniques based on ELMs are
proposed to effectively estimate the number of hidden nodes. In [34], an evolutionary ELM
(E-ELM) based on differential evolution and ELM is proposed; the algorithm uses the differen-
tial evolution method to optimize the network input parameters and an ELM algorithm to cal-
culate the network output weights. Because the trial vector generation strategies and the
control parameters have to be manually chosen in E-ELM, in [35], a self-adaptive evolutionary
extreme learningmachine (SaE-ELM) is proposed; its network hidden node parameters are
optimized by the self-adaptive differential evolution algorithm, which further improves the
network performance.

This paper mainly focuses on how to obtain higher classifying accuracy as well as a suitable
network size for the RBF hidden layer. A structure-adaptive hybrid RBF-BP (SAHRBF-BP)
classifier with an optimized learning strategy is presented. SAHRBF-BP is composed of a struc-
ture-adaptive RBF network and a BP network of cascade, where the number of RBF hidden
nodes is adjusted adaptively according to the distribution of sample space, and a suitable net-
work size for RBF hidden layer that matches the complexity of the sample space can be built
up. Thus, SAHRBF-BP solves the problem of dimension change from sample space mapping
to feature space. In SAHRBF-BP, the nodes in the RBF network are used for nonlinear kernel
mapping, the complexity of sample space is mapped onto the dimension of the BP input layer,
and the BP network is then used for nonlinear classification. The nonlinear kernel mapping
can improve the separability of sample spaces, and a nonlinear BP classifier can then supply a
better classification surface. In this manner, SAHRBF-BP combines the local response charac-
teristics of the RBF network with the global response characteristics of the BP network, which
simplifies the selection of parameters in the BP hidden layer while reducing the dependence on
space mapping in the RBF hidden layer; thus, the classification accuracy is improved while the
generalization performance is guaranteed.

SAHRBF-BP with an Optimized Learning Strategy
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An optimized learning strategy is presented to construct SAHRBF-BP classifier. The opti-
mized learning strategy uses global information of training sample space and generates RBF
hidden nodes incrementally. On the one hand, many optimization algorithms, such as K-
means clustering, fuzzy C-means clustering, differential evolution, also use global information
of training sample space to optimize RBF hidden nodes, however, the number of hidden nodes
in these optimization algorithms needs to be manually determined,which may lead to poor
adaptivity for different sample sets. On the other hand, the sequential learning algorithms,
such as MRAN, GAP-RBF, can achieve the estimation of RBF hidden nodes for different sam-
ple sets, however, the loss of global information may lead to a reduction in classification perfor-
mance. In addition, unlike GAP-RBF, the presented method does not require an assumption
that the input samples obey a unified distribution. Unlike GGAP-GMM, it does not need to fit
the input sample distribution. By using a potential function clustering approach to measure the
density in each class of training sample space, the corresponding RBF hidden nodes that cover
different sample regions can be established. It reduces the restrictions on the sample sets and is
adaptable to more complex sample sets. Once an initial RBF hidden node is generated, a form
of heterogeneous samples repulsive force is designed to further optimize the hidden node
parameters. For each initial hidden node, in a certain region, we assume the heterogeneous
samples can affect the center; that is, there is an repulsive force that makes the current center
move away from the heterogeneous samples. When the center reaches a suitable position, the
repulsive force will disappear. Then, a suitable width parameter can be determined accordingly.
A mechanism for eliminating the potentials of the original samples is then presented. This
mechanism is ready for the next learning step. Thus, the RBF centers and the width and num-
ber of RBF hidden nodes can be effectively estimated.

Once the number of RBF hidden nodes is generated adaptively and the node parameters are
optimized, the number of subsequent BP input nodes can be determined, and the overall
SAHRBF-BP classifier is built up; then different training sample sets are used to train the BP
network parameters in SAHRBF-BP, where the BP network parameters are optimized by the
existing BP algorithm.

In this paper, the performance of SAHRBF-BP is compared with that of other well-known
training SLFNs algorithms, such as back propagation based on stochastic gradient descent
(SGBP) [36], MRAN, SVM, ELM, and SaE-ELM on 108 benchmark data sets. To measure the
unique features of SAHRBF-BP, the RBF nerwork based on k-means clustering (KMRBF) [2],
GAP-RBF and the k-means clustering learning algorithm based on the hybrid RBF-BP network
(KMRBF-BP) are added to compare with SAHRBF-BP on two artificial data sets. Experiments
show that the superiority of SAHRBF-BP. Especially on most low dimensional and large num-
ber of data sets, the classification performance of SAHRBF-BP outperforms other training
SLFNs algorithms.

Methods

SAHRBF-BP classifier

SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade,
where the number of RBF hidden nodes are adjusted adaptively according to the distribution
of sample space, the complexity of sample space is mapped onto the dimension of the BP input
layer, and the BP network is then used for nonlinear classification. The nonlinear kernel map-
ping can improve the separability of sample space, and a nonlinear BP classifier can then sup-
ply a better classification surface. To clarify the situation, Fig 1(A) and 1(B) show an illustrative
diagram of sample space mapping onto feature space for different classification problems. Note
that in Fig 1(A), the samples in the red box far away from the center of each kernel function
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will be mapped near the origin of the coordinate plane, this problem will be overcome by the
optimized learning strategy presented in the next section. In Fig 1(B), with the increase in sam-
ple space complexity, the dimension of the feature space is increased accordingly, which is clas-
sified by a BP network.

SAHRBF-BP is shown in Fig 2, which consists of four components:

1. The input layer, which consists of t source neurons, where t is the dimensionality of the
input vector.

2. The RBF hidden layer, which consists of a group of Gaussian kernel functions:

φkðxÞ ¼ exp �
1

2s2
k
jjx � mkjj

2

� �

; k ¼ 1; 2; :::K ð1Þ

where μk and σk are the center and width of the hidden node, respectively, and K is the num-
ber of hidden neurons.

3. The BP hidden layer, which consists of the neurons between the RBF hidden layer and out-
put layer. The induced local field vðlÞj for node j in layer l of the BP is

vðlÞj ¼
X

i

o
ðlÞ
ji y
ðl� 1Þ

i ð2Þ

where yðl� 1Þ
i is the output signal of the neuron i in the previous layer l − 1 of the BP net-

work and o
ðlÞ
ji is the synaptic weight of neuron j in layer l that is fed from neuron i in layer l

− 1. Assuming the use of a sigmoid function, the output signal of neuron j in layer l is

yðlÞj ¼ φjðvjÞ ¼ a tanh ðbvjÞ ð3Þ

where a and b are constants.
If neuron j is in the first BP network hidden layer, i.e., l − 1, set

yð0Þj ¼ gjðxÞ ð4Þ

Fig 1. Illustrative diagram of the sample space mapping onto feature space for different sample sets. (A) The mapping dimension is 3 (B) The

mapping dimension is 6.

doi:10.1371/journal.pone.0164719.g001
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where gj(x) is the double polar output of φj(x) and can be denoted as

gjðxÞ ¼ 2 � φjðxÞ � 1 ð5Þ

4. The output layer. Set L is the depth of the BP network, note the depth of the BP network is
equal to the sum of the BP network input layer, the hidden layer, and the output layer, i.e., if
l = 1, then L = 3, and the output can be given as

oj ¼ yðLÞj ð6Þ

In Fig 2, the double polar processing can ensure the validity of the BP network input. In
addition, the combination of the structure-adaptive adjustment of the RBF hidden layer with
the BP network can provide a good complementary effect. On the one hand, the RBF network
has good stability, where the activation response in the RBF hidden nodes has local characteris-
tics and maps the output to a value between 0 and 1. Thus, the original samples, including out-
liers, will be limited to a finite space, and the adaptive adjustment of RBF hidden nodes can
ensure the validity of the space mapping. Processing the results of mapping the RBF hidden

Fig 2. SAHRBF-BP classifier.

doi:10.1371/journal.pone.0164719.g002
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nodes and using them for the input of the BP network can reduce the dependence on the selec-
tion of BP network parameters; furthermore, the convergence rate of the BP network can be
increased and local minima can be avoided. On the other hand, in a BP network, the activation
response in hidden nodes has global characteristics, especially those regions not fully displayed
in the training set. In SAHRBF-BP, the BP network is used for nonlinear classification, which
can reduce the dependence on the original sample space mapping. Even if there are errors in
the original sample space mapping, the nonlinear BP network can be compensated for to a cer-
tain extent. Therefore, SAHRBF-BP combines the stability of the RBF network with the gener-
alization ability of the BP network and improves the classification performance further.

A single hidden layer multilayer perceptron neural network with input-output mapping can
provide an approximate realization of any continuous mapping [37]. In light of the foregoing
discussion, in SAHRBF-BP, we set the number of BP hidden layers to l = 1, and the number of
hidden nodes of BP should be appropriately increasedwith the increase in the complexity of
the sample space.

When SAHRBF-BP classifier is built up, however, new problems may arise because the
number of RBF hidden nodes and their parameters are unknown, and inappropriate kernel
mapping will deteriorate the network performance. This process can be overcome by the opti-
mized learning strategy presented in the next section.

The optimized learning strategy

Main objective. To obtain good classifying performance for a given training sample set, it
is necessary to fully use training sample information. Fig 3 demonstrates such a scenario,
where the generated RBF hidden nodes are used to cover samples of class 2. However, these
RBF hidden nodesmay cover samples of classes 1 and 3, which leads to a reduction in classifi-
cation performance. Ourmain objective is to design a method that can optimize the coverage
of each class of training samples, where each coverage generates a RBF hidden node and

Fig 3. Example of the current RBF hidden nodes covering other classes of samples.

doi:10.1371/journal.pone.0164719.g003
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ultimately estimates the center, the width and the number of RBF hidden nodes. For that pur-
pose, the following issues should be considered:

1) To optimize the coverage of the training sample space, a suitable initial RBF hidden node
must be established each time.

2) The adjustments of the center and width should meet certain criteria such that each gen-
erated RBF hidden node can cover the samples of the current class as much as possible,
while covering the samples of other classes as little as possible.

To address issue 1), we consider that for each class of training samples, in different regions,
their densities are different. To cover the training sample space effectively, the sample in the most
intensive region can be selected as the initial center. Therefore, it is necessary to quantify each
class of samples and establish a standard for measuring the density of the input sample space. In
this paper, a potential function is introduced into training sample space. By calculating the sam-
ple potentials in each class, the densities of different regions can bemeasured, where the sample
with the maximum potential value can be used as the initial center. To address issue 2), we con-
sider that the information of other classes of samples can be used to adjust the center and width
such that an optimizationmodel is established, where a form of heterogeneous samples repulsive
force is designed to adjust the center and the width adaptively.

To complete the main objective, the following steps can be followed.

Step 1: Compute the potential value of each sample in the current class.

Step 2: Set the sample with the maximum potential value as the initial center.

Step 3: Consider the distance between the heterogeneous samples and the center; in a certain
region, the center and width should be adjusted adaptively by a form of heterogeneous
samples repulsive force.

Step 4: Eliminate the potential value of each sample in the current class.

Step 5: Iterate Steps 2-4 until the stop condition is met, then turn to learn other classes
of samples.

Algorithm principle. In the field of pattern recognition, potential functions can be used
for density clustering and image segmentation (IS). Severalmethods of constructing potential
function are proposed in [38]; here, we choose the potential function

gðx1; x2Þ ¼
1

1þ T � d2
ðx1; x2Þ

ð7Þ

where γ(x1, x2) represents the interaction potential of two points x1, x2 in the input sample
space, d(x1, x2) represents the distance measure, and T is a constant, which can be regarded as
the distance weighting factor.

Given a training sample set S, where a specific label yi, yi 2 {yi; i = 1, 2, . . . h} is attached to
each sample vector x in S, h is the number of pattern class. Let Si denote the set of feature vec-
tors that are labeled yi, Si ¼ fxi1; x

i
2
; :::; xiNi

g, whereNi is the number of training samples in the
ith pattern class. Thus S ¼ [hi¼1

Si, Si \ Sj = ;, 8i 6¼ j. For a pair of samples ðxiu; x
i
vÞ in Si, its inter-

action potential can be denoted as

gðxiu; x
i
vÞ ¼

1

1þ T � d2
ðxiu; xivÞ

ð8Þ
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Let xiv be the baseline sample; therefore, the interaction potential of all other samples to x
i
v

can be denoted as

rðxivÞ ¼
XNi

u¼1;u6¼v

gðxiu; x
i
vÞ ð9Þ

Once the potentials of each sample in Si are given, the sample with the maximum potential
can be selected, where it is assumed the sample is xip, that is,

rðxipÞ ¼ maxfrðxi
1
Þ; rðxi

2
Þ; :::; rðxiNi

Þg ð10Þ

To generate valid Gaussian kernel functions, we find the densest region in the sample space
and then establish a Gaussian kernel to cover the region. To that end, the sample with the max-
imum potential is chosen as the initial center of the Gauss kernel function, which is expressed
as follows:

mk ¼ xip ð11Þ

where k refers to the number of RBF hidden neurons generated.
Once the width is given, an initial RBF hidden node is established, which can be used to

cover samples of the current class. However, the generated RBF node takes into account sample
information about the current class only, which may cause the current RBF hidden node to
cover samples of other classes. To achieve the optimization coverage of each class of training
samples, here, heterogeneous samples are taken into account to optimize the initial hidden
node parameters. A form of heterogeneous samples repulsive force is used to adjust the center
and the width adaptively. To make the center adjustment, first, the direction of each heteroge-
neous sample repulsive force should be in line with the centerline, which can make the center
far away from the heterogeneous sample directly. Second, when a heterogeneous sample is
close to the center, the magnitude of the center should be adjusted by a large margin, whereas
when a heterogeneous sample is relatively far from the center, the magnitude of the center
should be adjusted slightly. According to the foregoing description, the heterogeneous sample
repulsive force is defined as follows:

Definition: Given two vectors, where one is the center and the other is a heterogeneous
sample, there is a repulsive force that makes the heterogeneous sample point to the center. The
magnitude of the force is inversely proportional to the square of the distance between the two
vectors, and the direction of the repulsive force is in line with the centerline.

To adjust the center by the form of heterogeneous sample repulsive force, two hypothetical
conditions should be met:

1) When the initial center is determined, given the initial width, only in the current coverage
region, the heterogeneous sample repulsive force exists.

2) When the center is adjusted to a suitable position, the heterogeneous sample repulsive
force will disappear.

Condition 1) demonstrates the case when the distance between the center and the heteroge-
neous samples is outside a certain range, the heterogeneous sample repulsive force can be
ignored; this condition simplifies the study of the problem. For condition 2), the key is to estab-
lish criteria to make the center converge toward a suitable position.

According to the definition of the heterogeneous sample repulsive force and condition 1),
the optimization model can be given as follows.

SAHRBF-BP with an Optimized Learning Strategy
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Given the initial width σ, when the initial center μk is generated, where mk ¼ xip 2 Si. For a
heterogeneous sample xjq, x

j
q =2 Si, if jjx

j
q � mkjj < l � s, where λ is a width covering factor, there

is a repulsive force from xjq to μk, which can be denoted as

Fxjq
/

1

dðxjq; mkÞ
�
xjq � mk

jjxjq � mkjj
ð12Þ

Here, a negative exponential function is chosen to express the relationship between the het-
erogeneous sample repulsive force and the distance:

Fxjq
¼ exp ð� a � dðxjq; mkÞÞ �

xjq � mk

jjxjq � mkjj
ð13Þ

where α is a positive constant and can be seen as the heterogeneous sample repulsive force con-
trol factor. Assume the number of heterogeneous samples in the current covered region isMj.
Adding all the heterogeneous samples repulsive force, the center can be adjusted as follows:

m0k ¼ mk þ
XMj

q¼1

Fxjq
ð14Þ

Note that for a sample x, when x =2 Si, if |x − μk||< λ � σ,Mj counts plus 1. Similarly, setMi

denotes the number of samples in the current class in the current covered region, when x 2 Si,
if ||x − μk||< λ � σ,Mi counts plus 1.

Fig 4 provides a geometrical description of the heterogeneous sample repulsive force model,
where the black and red boxes denote the covered region before and after the center adjust-
ment, respectively. In Fig 4, there is a repulsive force makes samples 1 and 2 point to the initial
center. The resultant force adjusts the initial center to a new position that is far away from sam-
ples 1 and 2.

For condition 2), to make the center reach a suitable position, it is necessary to carry out
multiple iterations. SetM is the iteration step variable, at the initial stage, the magnitude of the
center adjustment is relatively large; with the increase in the iteration step, the magnitude of
the center adjustment will gradually decrease and eventually converge to a suitable position. To
ensure validity of the center adjustment, setM0

i andM
0
j represent the number of current class

of samples and heterogeneous samples covered in the updated region, respectively, for each
center adjustment, Eq (14) can be corrected as follows:

m0k ¼ mk þ
1

M

XMj

q¼1

Fxjq

s:t: M0
i � Mi and M0

j � Mj

ð15Þ

In practice, because of the complexity of different training sample sets, even if the center is
adjusted to a suitable position, the generated RBF hidden nodes may also cover heterogeneous
samples under the given initial width parameters. Decreasing the width may be one way of
reducing the coverage of heterogeneous samples; however, if the width is too small, the general-
ization performance will be greatly reduced. To further complete the optimization coverage of
different regions of the each class of training samples, and guarantee good generalization
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performance, the width adjustment is set as follows:

sk ¼

( maxfmin ðdðm0m; x
j
qÞ=bÞ; smin g; if M0

j > 0:

s; if M0
j ¼ 0:

ð16Þ

where σmin is the minimumwidth, β is a fixed value and can be seen as the width constraint fac-
tor. In practice, to ensure validity of the width adjustment, the selection of β should be a little
less than the width covering factor λ and the adjusted width should be in the range between
σmin and σ. For different RBF hidden nodes, this adjustment can ensure the relative difference
of the widths to better fit the training sample space. Note that the adjustment of the width is
carried out only once, after the center adjustment.

When a hidden node is established, it is necessary to eliminate the potentials of the region
to find the next initial center in the remaining samples. This process can be accomplished as
follows:

r0ðxinÞ ¼ rðxinÞ � rðxipÞ � exp �
1

2s2
k
jjxin � xipjj

2

� �

; n ¼ 1; 2; :::Ni ð17Þ

where xip is the initial center of the current hidden neuron. For the potential value update pro-
cess, Eq (17) shows when a sample xin is close to the initial center x

i
p, the potential value of x

i
n is

attenuated fast, whereas when a sample xin is far away from the center, the potential value of xin

Fig 4. Model of heterogeneous sample repulsive force.

doi:10.1371/journal.pone.0164719.g004
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is attenuated slowly. When meeting the inequality

maxfr0ðxi
1
Þ; r0ðxi

2
Þ; :::; r0ðxiNi

Þg > d ð18Þ

the learning process goes on and is ready to search the next initial center. Otherwise, the algo-
rithm of constructingRBF hidden nodes in the current pattern class is terminated and turns to
learn other pattern classes, where δ is a threshold.

Fig 5 shows the illustrative diagram of adaptively generating RBF hidden nodes and opti-
mizing node parameters, where the number of RBF hidden nodes is increased incrementally,
and each initial RBF hidden node is determined by a potential function clustering approach,
then a form of heterogeneous sample repulsive force is used to further optimize each RBF hid-
den node parameters. In Fig 5, the black line box represents regions covered by the initial cen-
ter and the width, the red line box represents the final coverage regions.

Combining SAHRBF-BP classifier, the optimized learning strategy is summarized in Algo-
rithm 1.

Fig 5. Illustrative diagram of adaptively generating RBF hidden nodes and optimizing node parameters.

doi:10.1371/journal.pone.0164719.g005
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Algorithm 1 The optimized learning strategy

Initialization;
for i = 1: c % for each class of trainingsamples
Computethe potentialvalue of each sampleaccordingto Eq (9).
while maxfrðxi

1
Þ;rðxi

2
Þ; :::; rðxiNi

Þg > d

Determinethe maximumpotentialvalue of each sampleaccordingto Eq
(10).
The numberof RBF hiddennodes countsplus 1, allocatean initialcenter
using Eq (11).
DetermineMi, Mj.
Use Eqs (13) and (14) to updatethe initialcenter,determineM0

i,M
0
j.

while M0
j 6¼ 0 && M � num Epoch

if M0
i � Mi && M0

j � Mj

Mi  M0
i,Mj  M0

j.
Use Eq (15) to updatethe center,updateM0

i,M
0
j.

M M + 1.
else
Use Eq (16) to updatethe width.
Break;

end if
end while
Eliminatethe samplepotentialvalue of the regionaccordingto
Eq (17).

end while
end for
Use Eqs (1) and (5) to computegj(x), let g(x) be the input of the BP network,

where g(x) = (g1(x), g2(x), . . ., gK(x)).
while ||e|| > mse_thres&& m� num_Epoch
Use Eqs (2)–(4)and Eq (6) to computethe error signalej = dj − oj, where dj
is the jth elementof the desiredresponsevectord.
Computethe local gradientsof the networkas follow

d
ðlÞ
j ¼

( eðLÞj �
0

jðv
ðLÞ
j Þ for neuron j in output layer L

�
0

jðv
ðlÞ
j Þ
X

k

d
ðlþ1Þ

k o
ðlþ1Þ

kj for neuron j in the BP hidden layer l

where �0jð�Þ is the differentiation with respect to the argument.
Adjustthe synapticweightsof the networkin layer l of BP as below.

o
ðlÞ
ji ðmþ 1Þ ¼ o

ðlÞ
ji ðmÞ þ t½o

ðlÞ
ji ðm � 1Þ� þ Zd

ðlÞ
j ðmÞy

ðl� 1Þ

i ðmÞ

where τ is the momentum constant, η is the learning rate.
m m + 1.

end while

Adjustment of the output label values

The SAHRBF-BP algorithm can handle binary class problems and multi-class problems. For
multi-class classification problems, suppose that the observation dataset is given as fxn; yng

N
n¼1
,

where xn 2 Rt is an t–dimentional observation features and yn 2 Rh is its coded class label.
Here, h is the total number of classes, which is equal to the number of output hidden neurons.
If the observation data xn is assigned to the class label c, then the cth element of yn = [y1, . . .,
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yc, . . . yh]T is 1 and other elements are -1, which can be denoted as follows:

yj ¼

(
1 if j ¼ c

� 1 otherwise
j ¼ 1; 2; :::; h ð19Þ

The output tags of SAHRBF-BP are ŷ ¼ ½ŷ1; :::; ŷc; :::ŷh�
T , where

ŷ j ¼ sgnðojÞ; j ¼ 1; 2; :::h ð20Þ

According to the coding rules, only one output tag value is 1, and the other value is -1. If
this condition is not met, the output tag is saturated and must be adjusted. Therefore, we set an
effectiveway to correct the saturation problem in the learning process, which can be denoted
as the pseudo code in Algorithm 2.

Algorithm 2 The method of adjusting the output saturation problem

Given observationdataset fxn; yng
N
n¼1
, for every input vectorxn,

while j� h
if the numberof ŷ j ¼¼ � 1 is equal to h
Set max(oj) = 1 and and hold other outputvaluesfixed.

end if
if the numberof ŷ j ¼¼ 1 is more than 1
Set max(oj) = 1 and the other outputvaluesare -1.

end if
end while

Results

In this section, we evaluate the performance of SAHRBF-BP using two artificial data sets and
108 benchmark data sets, where Double moon data set are taken from [39], 101 benchmark
data sets are taken from the UCI machine learning repository [40]. In addition, seven bench-
mark data sets including cod_rna,DNA, fourclass, ijcnn1, splice, svmguide1 and svmguide3
are taken from [41]. Tables 1–3 provide descriptions of the benchmark data sets. The bench-
mark data sets are grouped into three categories: binary class, multi-class and large number of
samples. All benchmark binary class and multi-class benchmark data sets are grouped into low
dimensional and high dimensional sets. For all benchmark data sets, the inputs to each algo-
rithm are scaled appropriately to fall between -1 and +1. In each data set, the training set, vali-
dation set and testing set are independent. For balanced data sets, the number of training
samples in each class is identical, which is also applicable to the validation set and testing set.
For imbalance data sets, when the number of training samples is given, the number of each
class of training samples is determined according to the proportion of each class in the whole
data set. This method is also applicable to the validation set and testing set.

The performance of SAHRBF-BP is compared with other well-known training and optimi-
zation SLFNs algorithms, such as SGBP, MRAN, SVM, ELM, and SaE-ELM on different data
sets. To measure the unique features of SAHRBF-BP, other optimization algorithms such as
KMRBF, GAP-RBF and KMRBF-BP are also compared to SAHRBF-BP on two artificial data
sets, namely Double moon and Concentric circle. For SGBP, the momentum constant is set to
τ = 0.1. For SVM, the RBF is used as the kernel function, the cost C is selected from the set [212,
211, . . ., 1] and kernel parameter is selected from the set [2−3, 2−2, . . ., 24]. For GAP-RBF and
MRAN, the common parameters are fixed to εmax = 0.5, εmin = 0.01, k = 0.8 and γ = 0.09.
Other parameters for GAP-RBF are set to emin = 0.01; for MRAN, the parameters are set to
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Table 1. Descriptions of binary class data sets.

Index Data sets # Classes # Features # Training # Validation # Testing

B01 Australian 2 14 345 172 173

B02 Banknote 2 4 686 343 343

B03 Blood 2 4 374 187 187

B04 Breast cancer 2 9 138 70 69

B05 Breast(original) 2 9 350 174 175

B06 Cleve 2 13 148 74 74

B07 Diabetes 2 8 576 100 92

B08 Fertility 2 9 50 30 20

B09 Fourclass 2 2 432 116 115

B10 Haberman 2 3 153 76 77

B11 Heart disease 2 13 151 76 76

B12 Liver 2 6 172 87 86

B13 Mammographic 2 5 480 241 240

B14 Monk1 2 6 124 100 332

B15 Monk2 2 6 169 100 332

B16 Monk3 2 6 122 100 332

B17 Planning 2 12 91 46 45

B18 Svmguide1 2 4 3089 1500 2500

B19 Vertebral 2 6 105 52 53

B20 Wholesale 2 7 220 110 110

B21 Wilt 2 6 3000 1339 500

B22 Breast(diagnostic) 2 30 284 143 142

B23 Breast(prognostic) 2 33 100 49 49

B24 Chronic 2 24 200 100 100

B25 Climate 2 18 270 135 135

B26 Congressional 2 16 210 100 125

B27 First order 2 51 3059 800 730

B28 Hill 2 100 606 303 303

B29 Hill(with noise) 2 100 606 303 303

B30 German 2 24 500 250 250

B31 Ionosphere 2 34 175 88 88

B32 LSVT 2 310 63 32 31

B33 Mushrooms 2 21 3000 1500 3624

B34 Musk1 2 167 238 119 119

B35 Musk2 2 167 3200 1600 1598

B36 Parkinsons 2 20 97 49 49

B37 QSAR 2 41 527 264 264

B38 Retinopathy 2 19 575 288 288

B39 Secom 2 591 783 392 392

B40 Seismic bumps 2 18 1292 646 646

B41 Sonar 2 60 104 52 52

B42 Spambase 2 57 2300 1151 1150

B43 Spect heart 2 22 80 47 140

B44 Splice 2 60 1000 500 1675

B45 Svmguide3 2 22 1000 243 41

B46 Vote 2 16 217 109 109

doi:10.1371/journal.pone.0164719.t001
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emin = 0.5, e0min ¼ 0:3, the sliding windowM is selected from the set [30, 50, 100, 200, 400]. For
SaE-ELM, the number of populationsNP is selected from the set [20, 50, 100, 200, 500]. For
SAHRBF-BP, the common parameters of the distance weighting factor, width covering factor,
width constraint factor, potential value learning threshold are set to T = 1, λ = 1.5, β = 1.3, δ =
0.001, respectively. The heterogeneous sample repulsive force control factor α is selected from
the set [2, 5, 10, 15, 20]. The initial width σ is selected from the set [0.4, 0.5, . . ., 1.6]. Note the
number of hidden nodes in KMRBF, KMRBF-BP and SaE-ELM is selectedmanually. When
gradually increasing the number of hidden nodes, the one with the lowest overall validation
error is selected as the number of hidden nodes. For benchmark data sets with the number of
training samples is less than 2000 and artificial data sets, simulations in each algorithm are

Table 2. Descriptions of multi-class data sets.

Index Data sets # Classes # Features # Training # Validation # Testing

M01 Balance 3 4 300 150 175

M02 Breast tissue 6 9 53 27 26

M03 Car 4 6 864 432 432

M04 Cardiotocography 10 9 1063 532 531

M05 Contraceptive 3 9 736 369 368

M06 Ecoli 8 7 168 84 84

M07 Glass 6 9 109 53 52

M08 Hayes-Roth 3 5 100 32 28

M09 Iris 3 4 75 36 39

M10 Knowledge 4 5 130 128 145

M11 Page 5 10 2737 1368 1368

M12 Seeds 3 7 105 53 52

M13 Teaching 3 5 75 38 38

M14 Vowel 11 10 264 132 132

M15 Wine 3 13 90 43 45

M16 Wine quality(red) 6 12 800 400 399

M17 Wine quality(white) 7 12 2450 1000 3448

M18 Yeast 8 10 742 371 371

M19 Air 3 64 178 81 100

M20 Dermatology 6 34 183 92 91

M21 DNA 3 180 2000 593 593

M22 Firm 4 16 5400 2700 2700

M23 Forest 4 27 198 100 225

M24 Gas(2012) 6 128 2919 1000 1000

M25 Image segmentation 7 19 210 420 1680

M26 Landsat 6 36 4435 1000 1000

M27 Libras 15 90 300 30 30

M28 Optical digits 10 64 3823 900 897

M29 Semeion 10 256 796 400 397

M30 Steel 7 20 971 385 385

M31 Turkiye 3 32 2910 1455 1455

M32 Vehicle silhouettes 4 18 424 211 211

M33 Waveform1 3 21 2500 1250 1250

M34 Waveform2 3 40 2500 1250 1250

M35 Zoo 16 101 51 25 25

doi:10.1371/journal.pone.0164719.t002
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performed 20 times and are conducted in the MATLAB 2013a environment on an Intel(R)
Core(TM) i5 with a 3.2GHZCPU and 4G of RAM. For other data sets, simulations in each
algorithm are performed 3*15 times and are conducted in the MATLAB 2013a environment
on an Intel(R) Xeon(R) CPU E5-2687w @3.40GHZ(dual processor) and 128G of RAM. For
each algorithm, the one with the lowest validation error is used to determine the parameters in
the training models. The simulations for the SVM are carried out using the popular LIBSVM
package in C [41].

Performance measures

In this paper, the overall and average per-class classification accuracies are used to measure
performance. Class-level performance is measured by the percentage classification (ηi), which
is defined as

Zi ¼
qii
NT

i
ð21Þ

where qii is the number of correctly classified samples and NT
i is the number of samples for the

class yi in the training/testing data set. The overall classification accuracy(ηo) and the average

Table 3. Descriptions of large number of samples data sets.

Index Data sets # Classes # Features # Training # Validation # Testing

L01 A1a(adult) 2 14 1605 957 30000

L02 A6a(adult) 2 14 11221 5000 16342

L03 Action1(normal) 10 8 20000 10000 68886

L04 Action2(normal) 10 8 15000 10000 74930

L05 Action3(normal) 10 8 15000 10000 74872

L06 Action4(normal) 10 8 15000 10000 74069

L07 Action1(aggressive) 10 8 15000 10000 73172

L08 Action2(aggressive) 10 8 15000 10000 74690

L09 Action3(aggressive) 10 8 10000 5000 89543

L10 Action4(aggressive) 10 8 10000 5000 82764

L11 Action1(abnormal detection) 2 8 15000 5000 177058

L12 Action2(abnormal detection) 2 8 20000 10000 169620

L13 Action3(abnormal detection) 2 8 20000 15000 179415

L14 Action4(abnormal detection) 2 8 20000 10000 166833

L15 Cod_rna 2 8 15220 10000 20000

L16 Credit 2 23 10000 5000 15000

L17 Eye 2 14 7490 3745 3745

L18 Gas(2013) 6 128 6910 3500 3500

L19 Ijcnn1 2 13 15000 5000 15000

L20 Letter 26 16 10000 5000 5000

L21 Occupancy 2 5 8143 2665 9752

L22 Pendigits 10 16 7495 2000 1498

L23 Record 2 7 20000 10000 94913

L24 Sensorless 11 48 11000 7700 39809

L25 Skin 2 3 25000 10957 210000

L26 Shuttle 5 9 33500 10000 14500

L27 Telescope 2 10 9510 5000 4510

doi:10.1371/journal.pone.0164719.t003
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per-class classification accuracy(ηa) are defined as

Zo ¼ 100�
1

NT

Xh

i¼1

qii ð22Þ

Za ¼ 100�
1

h

Xh

i¼1

Zi ð23Þ

where h is the number of classes,NT is the number of training/testing samples. Thus, for bal-
anced classification problems, the overall testing ηo is used to measure the performance of each
algorithm. For imbalanced classification problems, the overall testing ηo and the average testing
ηa are used to measure the performance of each algorithm.

Performance comparison

Artificial binary class data set: The Double moon classificationproblem. The Double
moon data set and the classifying results of SAHRBF-BP are shown in Fig 6(A) and 6(B),
respectively. The classification results illustrate that SAHRBF-BP can provide a superior classi-
fication surface. Fig 7(A)–7(C) show when the initial width takes different values, the adaptive
coverage of the training sample space can be completed effectively. Each cover generates a RBF
hidden node and the number of RBF hidden nodes is increased incrementally, the bold lines

Fig 6. Double moon classification problem. (A) Double moon data set (B) Classifying result of

SAHRBF-BP.

doi:10.1371/journal.pone.0164719.g006
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represent the first coverage region in each pattern class, which can be seen as the densest region
learned by the potential function clustering approach. With the change of the initial width, the
number of RBF hidden nodes and node parameters are changed accordingly. Based on the
potential function clustering to generate initial RBF hidden nodes, the form of heterogeneous
sample repulsive force can further ensure that each initial RBF hidden node adjusted to a suit-
able position. In this way, the optimal coverage of the training sample space can be completed
and the RBF centers and the width and number of RBF hidden nodes can be effectively
estimated.

In Fig 8, when the number of training samples has changed, KMRBF-BP needs less number
of RBF hidden neurons than KM-RBF and can get a higher classifying accuracy. This results
demonstrate the hybrid RBF-BP network structure is effective, which can improve the classify-
ing accuracy and reduce the dependence on the original sample space mapping. Note the num-
ber of KM-RBF and KMRBF-BP is selectedmanually, when changing the number of hidden
neurons several times, the one with the highest overall validation accuracy is selected as the
suitable number of hidden neurons. The classifying accuracy of SAHRBF-BP is comparable

Fig 7. Using different width parameters to cover the training sample space for Double moon classification problem. (A) σ = 2 (B) σ
= 3 (C) σ = 4.

doi:10.1371/journal.pone.0164719.g007
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with KMRBF-BP, however, the number of RBF hidden nodes in SAHRBF-BP is generated
adaptively. The classifying accuracy of SAHRBF-BP outperforms SGBP apparently, which fur-
ther shows the effectiveness of SAHRBF-BP, the reason is that the structure-adaptive RBF net-
work can improve the separability of sample spaces. Compared to GAP-RBF, SAHRBF-BP can
better adapt to the change of sample space. The classifying accuracy of SAHRBF-BP outper-
forms GAP-RBF and needs less RBF hidden nodes. The classifying accuracy of SAHRBF-BP is
comparable with SVM, however, the number of RBF hidden nodes in SAHRBF-BP is less than
SVM apparently. Thus, SAHRBF-BP can adapt training sample space well, which can get a
high classifying accuracy, as well as a compact network size for the RBF hidden layer.

Artificial binary class data set: The Concentric circle classificationproblem. The Con-
centric circle data set and the classifying results of SAHRBF-BP are shown in Fig 9(A) and 9
(B), respectively. Compared to the Double moon classification problem, the Concentric circle
classification problem is more complex and can thus be used to measure the unique features of
SAHRBF-BP. The classification results illustrate SAHRBF-BP can still provide a superior clas-
sification surface for Concentric circle classification problem.

Fig 10(A)–10(C) show when the initial width takes different values, the adaptive coverage of
the training sample space can be completed effectively. Each cover generates a RBF hidden
node and the number of RBF hidden nodes is increased incrementally, the bold lines represent
the first coverage region in each pattern class. With the change of the initial width, the number
of RBF hidden nodes and node parameters change accordingly. For each generated initial RBF
hidden node, the form of heterogeneous sample repulsive force can further ensure each initial
RBF hidden node adjusted to a suitable position. Thus, the optimal coverage of the training

Fig 8. Performance comparisons between SAHRBF-BP and other algorithms on Double moon data set. (A) Number of training samples- Number of

RBF hidden neurons/ support vectors (B) Number of training samples- Overall classifying accuracy.

doi:10.1371/journal.pone.0164719.g008
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sample space can be completed and the RBF centers and the width and number of RBF hidden
nodes can be effectively estimated.

Fig 11(A) and 11(B) demonstrate when the number of training samples changes,
KMRBF-BP needs less number of RBF hidden neurons than KM-RBF and can get a higher
classifying accuracy. Thus the hybrid RBF-BP network architecture improves the classifying
accuracy and reduces the dependence on the original sample space mapping. Note in KM-RBF
and KMRBF-BP, when the number of training samples changes, the number of RBF hidden
neurons has to be adjusted manually, otherwise it will lead to a poor classification accuracy.
Compared with KM-RBF and KMRBF-BP, SAHRBF-BP can adapt the training sample space
well, when the number of training samples changes, the number of RBF hidden neurons in
SAHRBF-BP changes accordingly, and can get a higher classifying accuracy. Compared to
GAP-RBF, SAHRBF-BP can better adapt to the change of sample space. The classifying accu-
racy of SAHRBF-BP outperforms GAP-RBF and ELM apparently. When the number of train-
ing samples is more than 500, the classifying accuracy of SAHRBF-BP outperforms SVM. In
this way, the effectiveness of SAHRBF-BP is further verified.

Fig 9. Concentric circle classification problem. (A) Concentric circle data set (B) Classifying result of SAHRBF-BP.

doi:10.1371/journal.pone.0164719.g009
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For the Concentric circle classification problem, SAHRBF-BP can get a higher classifying
accuracy than other training SLFNs algorithms, however, there are still a certain number of
incorrect predictions in SAHRBF-BP. In Fig 9(B), we can see the samples of incorrect predic-
tions generally appear in the boundary region. A main reason is that, due to the complexity of
the sample set, it is often difficult to achieve an ideal coverage of the sample space. As shown in
Fig 10(A)–10(C), if the current class of RBF hidden nodes cover heterogeneous samples, it may
lead to a reduction in classification performance. From this point of view, to get a higher classi-
fication performance, it is necessary to optimize each generated RBF hidden node. In
SAHRBF-BP, the combination of potential function clustering and heterogeneous samples
repulsive force can adaptively determine the number of RBF hidden nodes and optimize node
parameters, which ensures each generated RBF hidden node covers the samples of the current
class as much as possible, while covering heterogeneous samples as little as possible.

In Fig 11(B), when the number of training samples is reduced, it will lead to a reduction in
classification performance. Especially when the number of training samples is 200, the overall
classifying accuracy of SAHRBF-BP is a little lower than SVM. Fig 12 further shows inadequate
training samples lead to the reduction of the classification accuracy. For complex data sets,

Fig 10. Using different width parameters to cover the training sample space for Concentric circle classification problem. (A) σ = 0.1 (B) σ = 0.2 (C)

σ = 0.3.

doi:10.1371/journal.pone.0164719.g010
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when the number of training samples is reduced, the randomness of training samples in the
sample space is enhanced, which can not effectively reflect the actual distribution of the entire
data set, and may lead to some extent of failure by the methods of potential function clustering
and heterogeneous samples repulsive force.

Benchmark binary class classificationproblems. In this section, 21 benchmark binary
class low dimensional data sets and 25 benchmark binary class high dimensional data sets are
used to evaluate the performance of SAHRBF-BP. Fig 13 shows the overall testing accuracy
comparisons between SAHRBF-BP and other learning algorithms. For binary class low dimen-
sional data sets, the overall testing accuracy of SAHRBF-BP is higher than other learning algo-
rithms on most data sets, except for Fertility(B08), Haberman(B10) and Planning(B17) data
sets. For binary class high dimensional data sets, the overall testing accuracy of SAHRBF-BP is
higher than other learning algorithms on Breast(diagnostic)(B22),Chronic(B24), Climate
(B25), Congressional(B26), First order(B27), German(B30), Ionosphere(B31), Retinopathy
(B38), Spambase(B42) and Vote(B46) data sets. The overall testing accuracy of SAHRBF-BP is
comparable with SVM onMushrooms(B33), Musk2(B35), Seismic bumps(B40), Splice(B44)
and Svmguide3(B45) data sets, however, the overall testing accuracy of SAHRBF-BP is lower
than SVM onMusk1(B34), Parkinsons(B36), QSAR(B37), Secom(B39) and Sonar(B41) data
sets, lower than ELM and SaE-ELM on Hill(with noise)(B29) data set, lower than SVM, ELM
and SaE-ELM on Hill(B28) data set, and lower than SGBP and SVM on Breast(prognostic)
(B23) and Spect heart(B43) data sets.

Fig 11. Performance comparisons between SAHRBF-BP and other algorithms on Concentric circle data set. (A) Number of training samples-

Number of RBF hidden neurons/ support vectors (B) Number of training samples- Overall classifying accuracy.

doi:10.1371/journal.pone.0164719.g011
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Tables 4–6 give performance comparisons between SAHRBF-BP and other learning algo-
rithms, where a few cases of success and failures are given a more detail description. In Tables
4 and 5, the overall and average testing accuracies of SAHRBF-BP are clearly higher than
SGBP. For Blood data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.8%, and SaE-ELM, ELM,MRAN by approximately 1.5%-3.3%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 2.2%, and SaE-ELM,
ELM,MRAN by approximately 1.4%-4.5%.

For Diabetes data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.7%, and SaE-ELM, ELM,MRAN by approximately 2.2%-7%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 5.2%, and SaE-ELM,
ELM,MRAN by approximately 2.9%-7.9%.

For Heart disease data set, the overall and average testing accuracies of SAHRBF-BP outper-
forms SaE-ELM, ELM,MRAN by approximately 0.6%-5.7%. The average testing accuracy of
SAHRBF-BP is approximately 2.2% lower than that of SVM, however, the overall testing accu-
racy is higher than that of SVM by approximately 1.4%.

Fig 12. The learning effect of training and testing sample space when the number of training samples is 200. (A) Covering effect of

training sample space (B) Classifying result of SAHRBF-BP.

doi:10.1371/journal.pone.0164719.g012
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For Mammographic data set, the overall testing accuracy of SAHRBF-BP outperforms SVM
by approximately 1.9%, and SaE-ELM, ELM,MRAN by approximately 3.2%-7%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1.5%, and SaE-ELM,
ELM,MRAN by approximately 3.3%-8.5%.

For Monk1 data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.1%, and SaE-ELM, ELM,MRAN by approximately 6.1%-10.1%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1.6%, and SaE-ELM,
ELM,MRAN by approximately 6.5%-10.4%.

For Monk2 data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.3%, and SaE-ELM, ELM,MRAN by approximately 9%-11.3%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 0.5%, and SaE-ELM,
ELM,MRAN by approximately 9.1%-13%.

For Svmguide1 data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.6%, and SaE-ELM, ELM,MRAN by approximately 2.1%-6%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1.5%, and SaE-ELM,
ELM,MRAN by approximately 1.4%-7.1%.

For Vertebral data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 2.3%, and SaE-ELM, ELM,MRAN by approximately 2.7%-6%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1.4%, and SaE-ELM,
ELM,MRAN by approximately 2%-6.7%.

Fig 13. Overall testing accuracy comparisons between SAHRBF-BP and other algorithms on benchmark binary class data sets. (A) Binary class

low dimensional data sets (B) Binary class high dimensional data sets.

doi:10.1371/journal.pone.0164719.g013
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Table 4. A few cases of success in SAHRBF-BP compared with other learning algorithms on benchmark binary class data sets.

Index Data sets Methods Testing ηo Testing ηa NH nodes

B03 Blood SGBP 43.29 48.74 7

MRAN 75.83 73.21 177

ELM 76.48 75.32 80

SaE-ELM 77.64 76.28 40

SVM 77.27 75.53 265a

SAHRBF-BP 79.12 77.69 113&7b

B07 Diabetes SGBP 38.62 52.58 7

MRAN 75.39 74.73 41

ELM 78.64 78.36 50

SaE-ELM 80.13 79.72 22

SVM 80.63 77.41 301a

SAHRBF-BP 82.37 82.65 19&4b

B11 Heart disease SGBP 48.37 48.76 8

MRAN 78.16 77.94 29

ELM 79.56 78.62 30

SaE-ELM 82.52 82.42 20

SVM 81.70 85.85 42a

SAHRBF-BP 83.13 83.64 12&4b

B13 Mammographic SGBP 45.65 53.81 8

MRAN 77.49 75.28 86

ELM 80.54 79.15 50

SaE-ELM 81.32 80.42 30

SVM 82.64 82.28 196
a

SAHRBF-BP 84.52 83.74 26&6b

B14 Monk1 SGBP 49.77 48.31 8

MRAN 78.51 77.42 32

ELM 79.40 77.84 30

SaE-ELM 82.52 81.28 20

SVM 87.50 86.21 56a

SAHRBF-BP 88.64 87.83 23&8b

B15 Monk2 SGBP 33.35 37.73 7

MRAN 72.86 70.66 58

ELM 73.12 72.58 50

SaE-ELM 75.15 74.57 30

SVM 82.87 83.14 72a

SAHRBF-BP 84.21 83.65 34&6b

B18 Svmguide1 SGBP 49.98 62.63 20

MRAN 86.56 85.16 621

ELM 90.52 90.36 200

SaE-ELM 91.49 90.82 160

SVM 91.15 90.74 2096a

SAHRBF-BP 92.62 92.28 442&9b

B19 Vertebral SGBP 70.74 76.42 6

MRAN 80.43 78.51 34

ELM 82.25 81.46 40

SaE-ELM 83.72 83.19 30

SVM 84.12 83.80 71a

SAHRBF-BP 86.41 85.23 45&6b

aSupport vectors.
bRBF&BP hidden nodes.

doi:10.1371/journal.pone.0164719.t004
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Table 5. A few cases of success in SAHRBF-BP compared with other learning algorithms on benchmark binary class data sets.

Index Data sets Methods Testing ηo Testing ηa NH nodes

B20 Wholesale SGBP 76.27 74.58 8

MRAN 87.55 85.21 41

ELM 88.92 87.31 60

SaE-ELM 90.41 89.45 30

SVM 90.84 90.42 55a

SAHRBF-BP 92.17 91.54 36&5b

B25 Climate SGBP 91.48 90.62 7

MRAN 88.26 86.68 27

ELM 91.85 91.53 50

SaE-ELM 92.51 91.94 30

SVM 92.32 92.64 49a

SAHRBF-BP 93.47 92.41 13&5b

B26 Congressional SGBP 48.53 52.79 7

MRAN 92.59 90.31 47

ELM 95.26 94.72 50

SaE-ELM 95.81 95.27 40

SVM 94.75 94.16 97a

SAHRBF-BP 96.82 96.58 26&4b

B30 German SGBP 22.92 39.16 8

MRAN 68.45 66.29 137

ELM 75.54 70.50 120

SaE-ELM 77.51 72.63 80

SVM 77.38 76.39 234
a

SAHRBF-BP 82.62 81.54 262 &9b

B31 Ionosphere SGBP 73.30 56.86 8

MRAN 84.34 82.29 86

ELM 89.77 85.93 100

SaE-ELM 90.75 88.14 60

SVM 91.26 91.82 50a

SAHRBF-BP 93.52 94.04 54&6b

B38 Retinopathy SGBP 41.49 53.82 7

MRAN 70.54 72.28 152

ELM 73.16 72.75 100

SaE-ELM 74.62 74.56 50

SVM 74.31 76.87 339a

SAHRBF-BP 77.25 78.51 107&7b

B42 Spambase SGBP 57.02 60.32 9

MRAN 85.28 86.56 421

ELM 90.32 91.54 100

SaE-ELM 91.82 91.60 70

SVM 91.67 91.21 862a

SAHRBF-BP 93.21 92.79 284&9b

B46 Vote SGBP 73.26 75.82 6

MRAN 90.15 89.21 26

ELM 93.72 93.27 40

SaE-ELM 94.36 94.13 20

SVM 93.58 94.28 31a

SAHRBF-BP 95.12 95.34 15&4b

aSupport vectors.
bRBF&BP hidden nodes.

doi:10.1371/journal.pone.0164719.t005
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Table 6. A few cases of failures in SAHRBF-BP compared with other learning algorithms on benchmark binary class data sets.

Index Data sets Methods Testing ηo Testing ηa NH nodes

B08 Fertility SGBP 89.50 86.52 7

MRAN 79.00 77.36 25

ELM 82.50 81.28 40

SaE-ELM 83.00 81.85 20

SVM 84.00 82.94 18a

SAHRBF-BP 80.50 78.42 11&4b

B17 Planning SGBP 71.39 70.21 6

MRAN 67.24 65.86 24

ELM 65.47 66.23 30

SaE-ELM 66.52 66.58 20

SVM 71.43 70.52 69a

SAHRBF-BP 68.76 67.34 24&5b

B28 Hill SGBP 51.65 50.52 10

MRAN 52.38 51.61 226

ELM 55.91 54.32 120

SaE-ELM 56.53 55.83 80

SVM 55.94 54.76 551a

SAHRBF-BP 53.65 52.67 243&8b

B32 LSVT SGBP 33.33 46.51 7

MRAN 71.58 69.42 38

ELM 73.14 72.41 50

SaE-ELM 74.55 72.87 20

SVM 85.79 86.61 53
a

SAHRBF-BP 72.52 71.86 12&4b

B34 Musk1 SGBP 43.28 43.79 9

MRAN 75.57 74.87 93

ELM 74.79 74.52 60

SaE-ELM 75.81 75.25 30

SVM 88.03 88.26 147a

SAHRBF-BP 79.26 78.82 117&7b

B37 QSAR SGBP 46.71 44.53 8

MRAN 82.27 80.72 107

ELM 84.62 85.28 80

SaE-ELM 85.64 85.80 60

SVM 87.16 86.52 192a

SAHRBF-BP 85.71 84.85 43&5b

B41 Sonar SGBP 46.09 47.17 8

MRAN 67.26 65.29 74

ELM 70.37 70.06 50

SaE-ELM 70.24 69.62 30

SVM 80.85 84.97 46a

SAHRBF-BP 77.74 76.59 49&5b

B43 Spect heart SGBP 91.98 90.21 8

MRAN 66.72 65.63 32

ELM 66.24 65.56 50

SaE-ELM 68.03 67.83 20

SVM 70.05 72.52 78a

SAHRBF-BP 67.58 65.84 14&4b

aSupport vectors.
bRBF&BP hidden nodes.

doi:10.1371/journal.pone.0164719.t006
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For Wholesale data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.3%, and SaE-ELM, ELM,MRAN by approximately 1.8%-4.6%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1.1%, and SaE-ELM,
ELM,MRAN by approximately 2.1%-6.3%.

For Climate data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.1%, and SaE-ELM, ELM,MRAN by approximately 1%-5.2%. The average
testing accuracy of SAHRBF-BP is comparable with SVM, and outperforms SaE-ELM, ELM,
MRAN by approximately 0.5%-5.7%.

For Congressional data set, the overall testing accuracy of SAHRBF-BP outperforms SVM
by approximately 2.1%, and SaE-ELM, ELM,MRAN by approximately 1%-4.2%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 2.4%, and SaE-ELM,
ELM,MRAN by approximately 1.3%-6.3%.

For German data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 5.2%, and SaE-ELM, ELM,MRAN by approximately 5.1%-14.2%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 5.1%, and SaE-ELM,
ELM,MRAN by approximately 8.9%-15.2%.

For Ionosphere data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 2.2%, and SaE-ELM, ELM,MRAN by approximately 2.8%-9.2%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 2.2%, and SaE-ELM,
ELM,MRAN by approximately 5.9%-11.7%.

For Retinopathy data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 2.9%, and SaE-ELM, ELM,MRAN by approximately 2.6%-6.7%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1.6%, and SaE-ELM,
ELM,MRAN by approximately 4%-6.2%.

For Spambase data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.5%, and SaE-ELM, ELM,MRAN by approximately 1.4%-8%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1.6%, and SaE-ELM,
ELM,MRAN by approximately 1.2%-6.2%.

For Vote data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by approx-
imately 1.5%, and SaE-ELM, ELM,MRAN by approximately 0.8%-5%. The average testing
accuracy of SAHRBF-BP outperforms SVM by approximately 1%, and SaE-ELM, ELM,
MRAN by approximately 1.2%-6.1%.

In Table 6, for Fertility data set, the overall testing accuracy of SAHRBF-BP is lower than
SGBP about 9%, lower than SVM about about 3.5%, SaE-ELM about 2.5%, and ELM about 2%.
The average testing accuracy of SAHRBF-BP is lower than SGBP about 8.1%, and SVM,
SaE-ELM, ELM about 4.5%, 3.4%, 2.8%, respectively. For Planning data set, the overall and
average testing accuracies are lower than SGBP and SVM about 2.6%-3.2%. For Hill data set,
the overall testing accuracy is lower than ELM, SVM and SaE-ELM about 2.3%-2.9%, and the
average testing accuracy of SAHRBF-BP is lower than ELM, SVM, SaE-ELM about 1.7%-3.1%.
For LSVT data set, the overall testing accuracy is lower than ELM about 0.6%, SaE-ELM about
2%, and SVM about 13.3%. The average testing accuracy of SAHRBF-BP is lower than ELM,
SaE-ELM and SVM about 0.7%, 1%, 14.8%, respectively. For Musk1 data set, the overall and
average testing accuracies are lower than SVM about 8.8% and 9.4%, respectively. For QSAR
data set, the overall and average testing accuracies are lower than SVM about 1.4% and 1.7%,
respectively. For Sonar data set, the overall testing accuracy of SAHRBF-BP is lower than SVM
about 3.1%, and the average testing accuracy of SAHRBF-BP is lower than SVM about 8.4%.
For Spect heart data set, the overall and average testing accuracies are lower than SGBP clearly.
The overall testing accuracy of SAHRBF-BP is lower than SaE-ELM, SVM about 0.5%, 2.5%,
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respectively. The average testing accuracy of SAHRBF-BP is lower than SaE-ELM and SVM
about 2%, 6.7%, respectively.

From Fig 13 and Tables 4–6 we can see that for most binary class low dimensional data sets,
the classification accuracy of SAHRBF-BP is higher than other learning algorithms. However,
for binary class high dimensional data sets, the classification accuracy of SAHRBF-BP is
decreased clearly on a number of data sets, such as LSVT(B32),Musk1(B34), QSAR(B37),
Secom(B39), Sonar(B41) data sets. The main reasons are that, with the increase of dimension,
spatial distribution of the samples is relatively sparse, especially for small number of training
samples data sets, the randomness of training samples in the sample space is greatly enhanced,
which can not effectively reflect the actual distribution of entire data sets, and leads to a certain
degree of failure by the methods of potential function clustering and heterogeneous samples
repulsive force. Thus, the classification performance of SAHRBF-BP will be reduced to varying
degrees.

Benchmarkmulti-class classificationproblems. In this section, 18 multi-class low
dimensional data sets and 17 multi-class high dimensional data sets are used to evaluate the
performance of SAHRBF-BP. Fig 14 shows the overall testing accuracy comparisons between
SAHRBF-BP and other learning algorithms. For multi-class low dimensional data sets, the
overall testing accuracy of SAHRBF-BP is comparable with SVM on Teaching(M13) data set,
and is lower than SVM on Breast tissue(M02), Hayes-Roth(M08) data sets, lower than
SaE-ELM, ELM on Glass(M07) data set, lower than SaE-ELM, SVM, ELM on Iris(M09) data
set, however, the overall testing accuracy of SAHRBF-BP is higher than other learning algo-
rithms on the rest 13 data sets.

Fig 14. Overall testing accuracy comparisons between SAHRBF-BP and other algorithms on benchmark multi-class data sets. (A) Multi-class low

dimensional data sets (B) Multi-class high dimensional data sets.

doi:10.1371/journal.pone.0164719.g014
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For multi-class high dimensional data sets, the overall testing accuracy of SAHRBF-BP is
higher than other learning algorithms on Firm(M22), Image segmentation(M25), Landsat
(M26), Steel(M30), Turkiye(M31), Vehicle silhouettes(M32),Waveform1(M33) andWave-
form2(M34) data sets. The overall testing accuracy of SAHRBF-BP is comparable with SVM
on Gas(2012)(M24) data set, and SVM, ELM, SaE-ELM on Optical digits(M28) and Semeion
(M29) data sets, however, the overall testing accuracy of SAHRBF-BP is lower than SVM on
Air(M19), DNA(M21), Forest(M23) and Libras(M27) data sets, and ELM, SaE-ELM, SVM on
Dermatology(M20) and Zoo(M35) data sets.

Tables 7–9 give performance comparisons between SAHRBF-BP and other learning algo-
rithms on partial multi-class data sets, where the overall and average testing accuracies of
SAHRBF-BP are clearly higher than SGBP. In Tables 7 and 8, for Balance data set, the overall
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1.5%, and SaE-ELM,
ELM,MRAN by approximately 1%-6%. The average testing accuracy of SAHRBF-BP outper-
forms SVM by approximately 1.3%, and SaE-ELM, ELM,MRAN by approximately 1.5%-7.5%.

For Cardiotocography data set, the overall testing accuracy of SAHRBF-BP outperforms
SVM by approximately 1.3%, and SaE-ELM, ELM,MRAN by approximately 2%-9.8%. The
average testing accuracy of SAHRBF-BP outperforms SVM by approximately 0.8%, and
SaE-ELM, ELM,MRAN by approximately 4%-9.7%.

For Knowledge data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 2.5%, and SaE-ELM, ELM,MRAN by approximately 2.9%-4.9%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1%, and SaE-ELM, ELM,
MRAN by approximately 3%-6.1%.

For Seeds data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.6%, and SaE-ELM, ELM,MRAN by approximately 8.8%-11.7%.

For Wine data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.2%, and SaE-ELM, ELM,MRAN by approximately 0.4%-8.4%.

For Yeast data set, the overall and average testing accuracies of SAHRBF-BP outperform
SVM by approximately 2.5%, and SaE-ELM, ELM,MRAN by approximately 4.3%-6.3%.

For Image segmentation data set, the overall testing accuracy of SAHRBF-BP outperforms
SVM by approximately 1.7%, and SaE-ELM, ELM,MRAN by approximately 1.1%-6.7%.

For Landsat data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 0.7%, and SaE-ELM, ELM,MRAN by approximately 1.1%-4.7%. The average
testing accuracy of SAHRBF-BP outperforms SVM by approximately 1%, and SaE-ELM, ELM,
MRAN by approximately 1.4%-6.4%.

For Steel data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by approxi-
mately 2.2%, and SaE-ELM, ELM,MRAN by approximately 0.9%-9.1%. The average testing
accuracy of SAHRBF-BP outperforms SVM by approximately 2%, and SaE-ELM, ELM,
MRAN by approximately 1.2%-10%.

For Turkie data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.4%, and SaE-ELM, ELM,MRAN by approximately 2%-11%. The average test-
ing accuracy of SAHRBF-BP outperforms SVM by approximately 1.4%, and SaE-ELM, ELM,
MRAN by approximately 1.9%-10.9%.

For Vehicle silhouettes data set, the overall and average testing accuracies of SAHRBF-BP
are clearly higher than MRAN. The overall testing accuracy outperforms SVM by approxi-
mately 4.4%, and SaE-ELM, ELM by approximately 0.5%-1.6%. The average testing accuracy of
SAHRBF-BP outperforms SVM by approximately 8.9%, and SaE-ELM, ELM by approximately
0.4%-1.5%.

For Waveform1 data set, the overall testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.2%, and SaE-ELM, ELM,MRAN by approximately 0.8%-4.2%. The average
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Table 7. A few cases of success in SAHRBF-BP compared with other learning algorithms on benchmark multi-class data sets.

Index Data sets Methods Testing ηo Testing ηa NH nodes

M01 Balance SGBP 71.23 68.51 7

MRAN 85.61 83.29 47

ELM 88.72 86.64 50

SaE-ELM 90.64 89.33 40

SVM 90.13 89.52 65a

SAHRBF-BP 91.67 90.85 29&4b

M04 Cardiotocography SGBP 42.57 46.73 11

MRAN 51.74 52.84 387

ELM 58.66 56.51 300

SaE-ELM 59.57 58.52 200

SVM 60.21 61.75 1378a

SAHRBF-BP 61.52 62.58 281&9b

M10 Knowledge SGBP 68.52 65.40 7

MRAN 78.25 76.13 65

ELM 79.07 78.61 50

SaE-ELM 80.24 79.25 30

SVM 80.65 81.23 184a

SAHRBF-BP 83.16 82.24 56&5b

M12 Seeds SGBP 70.58 – 7

MRAN 62.42 – 26

ELM 64.76 – 30

SaE-ELM 65.29 – 20

SVM 72.47 – 47
a

SAHRBF-BP 74.12 – 13&4b

M15 Wine SGBP 86.13 – 8

MRAN 89.16 – 46

ELM 96.12 – 30

SaE-ELM 97.18 – 22

SVM 96.36 – 32a

SAHRBF-BP 97.54 – 16&5b

M18 Yeast SGBP 42.26 40.53 9

MRAN 55.52 54.72 323

ELM 56.41 55.65 200

SaE-ELM 57.53 56.33 120

SVM 59.27 58.34 852a

SAHRBF-BP 61.84 60.82 216&8b

M25 Image segmentation SGBP 90.16 – 8

MRAN 85.49 – 81

ELM 90.31 – 100

SaE-ELM 91.17 – 50

SVM 90.56 – 96a

SAHRBF-BP 92.23 – 32&6b

M26 Landsat SGBP 74.83 78.84 12

MRAN 87.26 85.42 462

ELM 90.34 90.13 600

SaE-ELM 90.82 90.38 350

SVM 91.21 90.87 1618a

SAHRBF-BP 91.94 91.82 312&9b

aSupport vectors.
bRBF&BP hidden nodes.

doi:10.1371/journal.pone.0164719.t007
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testing accuracy of SAHRBF-BP outperforms SVM by approximately 0.9%, and SaE-ELM,
ELM,MRAN by approximately 0.9%-4.9%.

In Table 9, for Breast tissue data set, the overall and average testing accuracies of
SAHRBF-BP are lower than SVM about 1.3% and 1.4%, respectively. For Glass data set, the
overall testing accuracy of SAHRBF-BP is lower than ELM about 1.9%, SaE-ELM about 2.4%,
and SVM about 0.3%. The average testing accuracy of SAHRBF-BP is lower than ELM,
SaE-ELM and SVM about 3%, 3.6%, 1.6%, respectively. For Hayes-Roth data set, the overall
and average testing accuracies of SAHRBF-BP are lower than SVM about 1.4% and 3.2%,
respectively. For Air data set, the overall testing accuracy of SAHRBF-BP is lower than SVM
about 1.2%. The average testing accuracy of SAHRBF-BP is lower than SVM about 1.7%, and
SaE-ELM about 0.8%. For Forest data set, the overall and average testing accuracies of
SAHRBF-BP are lower than SVM about 2.3% and 5.2%, respectively. For Libras data set, the
overall testing accuracy of SAHRBF-BP is lower than SVM about 1.6%.

Similar to benchmark binary class data sets, the overall classification accuracy of
SAHRBF-BP is higher than other learning algorithms on most multi-class low dimensional
data sets, and the overall classification accuracy of SAHRBF-BP is decreased on a number of
multi-class high dimensional data sets. However, for multi-class high dimensional data sets,

Table 8. A few cases of success in SAHRBF-BP compared with other learning algorithms on benchmark multi-class data sets.

Index Data sets Methods Testing ηo Testing ηa NH nodes

M30 Steel SGBP 68.57 66.79 9

MRAN 64.56 62.82 372

ELM 72.38 71.53 200

SaE-ELM 72.85 71.61 130

SVM 71.51 70.87 263a

SAHRBF-BP 73.72 72.86 274&9b

M31 Turkie SGBP 45.84 42.12 14

MRAN 53.25 52.87 534

ELM 61.50 60.64 200

SaE-ELM 62.27 61.89 100

SVM 62.82 62.58 3237a

SAHRBF-BP 64.26 63.80 415&10b

M32 Vehicle silhouettes SGBP 72.64 73.82 9

MRAN 59.36 59.78 102

ELM 76.84 77.08 150

SaE-ELM 77.73 78.23 120

SVM 73.79 69.74 247a

SAHRBF-BP 78.21 78.65 93&7b

M33 Waveform1 SGBP 53.26 60.39 11

MRAN 83.36 82.28 371

ELM 85.92 84.86 200

SaE-ELM 86.71 86.24 100

SVM 86.37 86.22 1854a

SAHRBF-BP 87.53 87.13 326&9b

aSupport vectors.
bRBF&BP hidden nodes.

doi:10.1371/journal.pone.0164719.t008
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when the number of training samples is sufficient, a relatively high classification accuracy of
SAHRBF-BP can be obtained. The main reason is that enough training samples can offset the
random distribution of sample space to a great extent. Under these circumstances, the methods
of potential function clustering and heterogeneous samples repulsive force are still valid.

Benchmark large number of samples classificationproblems. In this section, 27 large
number of samples data sets are used to evaluate the performance of SAHRBF-BP. Fig 15
shows the overall testing accuracy comparisons between SAHRBF-BP and other learning

Table 9. A few cases of failures in SAHRBF-BP compared with other learning algorithms on benchmark multi-class data sets.

Index Data sets Methods Testing ηo Testing ηa NH nodes

M02 Breast tissue SGBP 54.21 53.49 6

MRAN 54.51 53.25 12

ELM 57.60 57.28 30

SaE-ELM 58.33 57.76 20

SVM 59.52 58.84 31a

SAHRBF-BP 58.26 57.42 15&6b

M07 Glass SGBP 58.43 57.87 7

MRAN 63.79 62.61 31

ELM 66.72 66.24 40

SaE-ELM 67.26 66.82 20

SVM 65.14 64.83 94a

SAHRBF-BP 64.84 63.20 13&7b

M08 Hayes-Roth SGBP 68.73 66.53 7

MRAN 70.76 69.32 27

ELM 71.43 70.27 40

SaE-ELM 72.26 71.80 30

SVM 74.12 74.58 68a

SAHRBF-BP 72.68 71.42 12&5b

M19 Air SGBP 72.14 74.63 8

MRAN 85.59 84.51 42

ELM 86.26 85.64 50

SaE-ELM 87.03 87.23 30

SVM 88.42 88.16 92a

SAHRBF-BP 87.27 86.45 38&6b

M23 Forest SGBP 45.26 44.52 8

MRAN 66.25 64.71 73

ELM 68.56 67.63 60

SaE-ELM 68.84 68.38 40

SVM 72.19 74.53 125a

SAHRBF-BP 69.93 69.37 51&5b

M27 Libras SGBP 42.69 – 9

MRAN 50.53 – 96

ELM 52.78 – 120

SaE-ELM 52.26 – 80

SVM 56.24 – 243a

SAHRBF-BP 54.67 – 82&7b

aSupport vectors.
bRBF&BP hidden nodes.

doi:10.1371/journal.pone.0164719.t009
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algorithms. For large number of samples data sets, the overall testing accuracy of SAHRBF-BP
is comparable with other learning algorithms on A1a(adult)(L01), A6a(adult)(L02) data sets,
and SVM, SaE-ELM, ELM on Cod_rna(L15),Credit(L16), Gas(2013)(L18), Record(L23), Sen-
sorless(L24), Skin(L25), Shuttle(L26) data sets. The overall testing accuracy of SAHRBF-BP is
slightly lower than SaE-ELM, ELM on Letter(L20) data set. For other data sets, the overall test-
ing accuracy of SAHRBF-BP is higher than other learning algorithms to varying degrees.

Table 10 gives performance comparisons between SAHRBF-BP and other learning algo-
rithms on partial large number of samples data sets. The overall and average testing accuracies
of SAHRBF-BP are clearly higher than SGBP on each large number of samples data set, except
for A1a(adult) and A6a(adult) data sets. For Action2(normal)(L04) data set, the overall testing
accuracy of SAHRBF-BP outperforms SVM by approximately 0.7%, and SaE-ELM, ELM,
MRAN by approximately 1.1%-9.6%. For Action1(aggressive) data set, the overall testing accu-
racy of SAHRBF-BP outperforms SVM by approximately 0.8%, and SaE-ELM, ELM,MRAN
by approximately 1.7%-2.1%. The average testing accuracy of SAHRBF-BP outperforms SVM
by approximately 1.2%, and SaE-ELM, ELM,MRAN by approximately 1.8%-2.5%. For
Action2(abnormal detection) data set, the overall testing accuracy of SAHRBF-BP outperforms
SVM by approximately 1.2%, and SaE-ELM, ELM,MRAN by approximately 1%-8.7%. For
Action3(abnormal detection) data set, the overall testing accuracy of SAHRBF-BP outperforms
SVM by approximately 1.4%, and SaE-ELM, ELM,MRAN by approximately 1.2%-8.2%. The
average testing accuracy of SAHRBF-BP outperforms SVM by approximately 0.9%, and
SaE-ELM, ELM,MRAN by approximately 1%-8.2%. For Ijcnn1 data set, the overall testing
accuracy of SAHRBF-BP outperforms SVM by approximately 0.7%, and SaE-ELM, ELM,

Fig 15. Overall testing accuracy comparisons between SAHRBF-BP and other algorithms on large number of samples data sets.

doi:10.1371/journal.pone.0164719.g015
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Table 10. Performance comparisons between SAHRBF-BP and other learning algorithms on partial large number of samples data sets.

Index Data sets Methods Testing ηo Testing ηa NH nodes

L01 A1a(adult) SGBP 100 100 8

MRAN 100 100 76

ELM 100 100 100

SaE-ELM 100 100 50

SVM 100 100 386a

SAHRBF-BP 100 100 58&5b

L04 Action2(normal) SGBP 38.52 – 40

MRAN 43.29 – 2441

ELM 51.36 – 4000

SaE-ELM 51.74 – 3500

SVM 52.12 – 5838a

SAHRBF-BP 52.87 – 2123&20b

L07 Action1(aggressive) SGBP 37.06 36.64 40

MRAN 42.48 42.21 2549

ELM 42.58 42.36 3500

SaE-ELM 42.86 42.91 3000

SVM 43.77 43.54 6256a

SAHRBF-BP 44.61 44.73 2258&22b

L12 Action2(abnormal detection) SGBP 28.17 – 40

MRAN 75.12 – 3225

ELM 81.72 – 4000

SaE-ELM 82.83 – 3200

SVM 82.56 – 5515
a

SAHRBF-BP 83.81 – 2432&24b

L13 Action3(abnormal detection) SGBP 27.21 28.62 40

MRAN 75.67 75.39 3173

ELM 81.98 81.82 4000

SaE-ELM 82.72 82.68 3200

SVM 82.54 82.76 5584a

SAHRBF-BP 83.92 83.64 2471&24b

L19 Ijcnn1 SGBP 35.28 47.62 40

MRAN 83.57 82.25 1832

ELM 92.93 90.82 3000

SaE-ELM 93.26 91.78 2000

SVM 93.81 92.61 3974a

SAHRBF-BP 94.56 93.74 1657&18b

L20 Letter SGBP 62.72 62.24 30

MRAN 82.65 82.31 2630

ELM 92.83 92.67 3000

SaE-ELM 92.61 92.57 2000

SVM 91.74 91.58 3668a

SAHRBF-BP 92.26 92.12 2146&20b

L21 Occupancy SGBP 42.26 40.83 30

MRAN 72.14 71.62 1263

ELM 76.52 75.18 1400

SaE-ELM 78.30 77.38 1000

SVM 79.24 78.66 1863a

SAHRBF-BP 80.67 80.21 862&13b

aSupport vectors.
bRBF&BP hidden nodes.

doi:10.1371/journal.pone.0164719.t010
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MRAN by approximately 1.3%-11%. The average testing accuracy of SAHRBF-BP outperforms
SVM by approximately 1.1%, and SaE-ELM, ELM,MRAN by approximately 2%-11.5%. For
letter data set, the overall and average testing accuracies of SAHRBF-BP outperform SVM by
approximately 0.5%, and MRAN by approximately 9.6% and 9.8%, respectively. However, the
overall and average testing accuracy of SAHRBF-BP is lower than SaE-ELM about 0.4%, and
ELM about 0.6% and 0.5%, respectively. For Occupancy data set, the overall testing accuracy of
SAHRBF-BP outperforms SVM by approximately 1.2%, and SaE-ELM, ELM,MRAN by
approximately 1%-8.7%. For Action3(abnormal detection) data set, the overall testing accuracy
of SAHRBF-BP outperforms SVM by approximately 1.4%, and SaE-ELM, ELM,MRAN by
approximately 2.2%-8.5%. The average testing accuracy of SAHRBF-BP outperforms SVM by
approximately 1.5%, and SaE-ELM, ELM,MRAN by approximately 2.7%-8.6%.

From Fig 15 and Table 10, we can see that for large number of samples data sets, the classifi-
cation accuracy of SAHRBF-BP is higher than other learning algorithms in general. Enough
training samples can effectively reflect the actual distribution of entire data sets, and the superi-
ority of potential function clustering and heterogeneous samples repulsive force can be fully
demonstrated.

Discussion

Selectionof the initial width parameters for SAHRBF-BP. The width parameters can be
used to control the classification accuracy and generalization performance. To optimize the
coverage of each class of samples, the center adjustment and the width adjustment strategy are
combined together. When an initial width is given, for each generated RBF hidden node, the
center is iteratively adjusted to a suitable position, and the width is then adjusted only once. To
reduce the range of initial width values, we execute a preprocessing step for the sample space.
For all benchmark classification problems, the inputs to each algorithm are scaled appropri-
ately to fall between -1 and +1.

In addition, the initial width σ and the minimumwidth σmin are related to each other.
According to Eq (16), the adjusted width is in the range between σmin and σ; that is,
sm 2 ½smin ; s�, where σmin 2 {σmin|σ − ϑ� σmin< σ, σmin> 0}. To guarantee the generaliza-
tion performance, here we set ϑ = 0.2. Thus, when the initial width σ is given, the minimum
width σmin can be determined accordingly. For example, if σ = 0.5, σmin can be selected in the
set {σmin|σ − 0.2� σmin< σ}. To simplify this case, σmin can be selected in the set {0.3, 0.4}, and
the one with the lowest validation error is selected as the suitable minimumwidth.

Effect of the initial width parameters on SAHRBF-BP. When the initial width changes,
the number of generated RBF hidden nodes and node parameters will change accordingly.
Here Diabetes, Heart disease, Ionosphere, Image segmentation and Vehicle silhouettes data
sets are used to evaluate the effect of the initial width parameters on SAHRBF-BP. In Fig 16,
when the initial width value is too small, the overall classification accuracy is poor and the net-
work size for the RBF hidden layer is large, e.g., for Heart disease data set, when σ = 0.2, the
number of generated RBF hidden neurons is 151 and is equal to the number of training
samples.

This result demonstrates the corresponding RBF hidden nodes will be established at each
training sample, and the generated RBF hidden neurons will not cover other samples, thus the
methods of potential function clustering and heterogeneous sample repulsive force are invalid
and the overall classifying accuracy is poor in this case.

Thus, in SAHRBF-BP, to complete the effective coverage of the training sample space, an
effective initial width parameter should be provided, which can generate proper RBF hidden
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neurons to cover the sample space. Note that the number of generated RBF hidden neurons
should not be close to the number of the training samples, otherwise, SAHRBF-BP is invalid.

When the value of the initial width falls within a suitable range, the number of generated
RBF hidden nodes will change, but a relatively stable classification accuracy can be achieved.
For instance, for Image segmentation data set, when the range of initial widths is between 0.5
and 0.9, the overall testing accuracy ranges from 91.54% to 92.23%. Once initial width parame-
ters are given, SAHRBF-BP can learn the sample space automatically and generate different
RBF hidden nodes to adapt the sample space. Thus, SAHRBF-BP can counteract the effect of
the initial width parameters to some extent.

Effect of the number of BP hidden nodes on SAHRBF-BP. In SAHRBF-BP, the nonlin-
ear SGBP algorithm is used to adjust the weights of the BP network component, which further
improves the classification result. However, this method results in an increase in the number of
parameters to be selected, particularly the selection of the number of BP hidden nodes. For this
problem, we conduct experiments on five UCI data sets and discuss the results.

Fig 17 shows the effect of the number of BP hidden nodes on SAHRBF-BP. The results
show that for binary class classification problems, such as Diabetes, Heart disease and Iono-
sphere data sets, when the number of BP hidden nodes ranges from 1 to 10, a relatively stable
classification accuracy can be achieved.

For multi-class classification problems, such as Image segmentation and Vehicle silhouettes
data sets, when the number of BP hidden nodes is greater than 4, the overall classification accu-
racy also does not change considerably. Thus, the dependence on the number of BP hidden
nodes is reduced.

Fig 16. Effect of initial width parameters on SAHRBF-BP. (A) σ- Overall testing accuracy (B) σ- Number of RBF hidden nodes.

doi:10.1371/journal.pone.0164719.g016
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For the SAHRBF-BP classifier, the adaptively mapping results for the RBF hidden nodes are
processed and used for the input of BP network component, which improves the stability of
the BP network component and effectively avoids falling into local minima for the BP algo-
rithm.When the sample set is more complex, the momentum term can be used to improve the
BP algorithm further.

Limitations for SAHRBF-BP. Compared with other training SLFNs algorithms,
SAHRBF-BP shows excellent classification performance on artificial and most benchmark data
sets. However, there are still some limitations for SAHRBF-BP.

For complex classification problems, to achieve good classification results, the number of
training samples should not be too small. Otherwise, the randomness of training samples in
the sample space is enhanced, which can not effectively reflect the actual distribution of entire
data sets, especially for high dimensional data sets, and will lead to the methods of potential
function clustering and heterogeneous sample repulsive force some extent of failure.

In addition, to ensure the effectiveness of learning, the initial kernel width should not be too
small, which is another limitation for SAHRBF-BP. Otherwise, the generalization performance
of the classifier will be greatly reduced, and each generated RBF hidden node does not cover
the heterogeneous samples, which leads to the failure of heterogeneous sample repulsive force.

Conclusion

In this paper, a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized
learning strategy is presented. SAHRBF-BP is composed of a structure-adaptive RBF network
and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively

Fig 17. Effect of the number of BP hidden nodes on SAHRBF-BP.

doi:10.1371/journal.pone.0164719.g017
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according to the distribution of sample space. SAHRBF-BP makes use the global information
of each class of training samples to generate the initial RBF hidden nodes, and then makes full
use of the neighborhood information of each hidden node to optimize the hidden node param-
eters. Thus, SAHRBF-BP solves the problem of dimension change from sample space mapping
onto feature space. In addition, it also effectively combines the stability of a RBF network and
the generalization ability of a BP network to improve the classification performance. In this
way, SAHRBF-BP simplifies the selection of the number of nodes in the BP hidden layer while
further reducing the dependence on space mapping in the RBF hidden layer. The optimized
learning strategy can generate RBF hidden nodes incrementally, as well as adjust the centers
and width adaptively. The combination of the potential function clustering with heterogeneous
sample repulsive force improves the classification accuracy of each hidden node; at the same
time, it ensures a compact network size for the RBF hidden layer.

The performance of SAHRBF-BP is compared with that of other training SLFNs algorithms,
namely SGBP, KMRBF, KMRBF-BP, MRAN, GAP-RBF, SVM, ELM, and SaE-ELM on differ-
ent data sets. In each training SLFNs algorithm, SVM is still the most stable classifier. Com-
pared to other algorithms, the classification performance of SVM is maintained at a relatively
high level on each data set in general. Overall, for high dimensional with too small training
samples data sets, the classification performance of SVM outperforms SAHRBF-BP clearly.
However, with the increase of the number of samples in data sets, the randomness of training
samples in the sample space is gradually being eliminated. On the basis of effective learning of
sample space, SAHRBF-BP shows its unique advantages. On most low dimensional and large
number of data sets, the results show the classification performance of SAHRBF-BP outper-
forms other training SLFNs algorithms.

In the future, we will focus on imbalanced data classification problems. For imbalanced data
classification problems, the samples of minority classes and the samples in boundary regions
should be emphasized more, which contain more classification information, thus how to mea-
sure and select these samples is particularly important. Further studies are needed to address
these concerns.
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