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Abstract: The effectiveness of control measures against the diffusion of the COVID-19
pandemic is grounded on the assumption that people are prepared and disposed to cooperate.
From a strategic decision point of view, cooperation is the unreachable strategy of the prisoner’s
dilemma game, where the temptation to exploit the others and the fear to be betrayed by them
drives the people behavior, which eventually results fully defective. In this work, we integrate the
SIRS epidemic model with the replicator equation of evolutionary games in order to study the
interplay between the infection spreading and the propensity of people to become cooperative
under the pressure of the epidemic. We find that the developed model possesses several steady
states, including fully or partially cooperative ones and that the presence of such states allows
to take the disease under control. Moreover, assuming a seasonal variation of the infection rate,
the system presents rich dynamics, including chaotic behavior and epidemic extinction.
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1. INTRODUCTION

The recent world coronavirus pandemic enforced the ap-
plication of control measures for restraining the virus dif-
fusion. Although the most effective measure is recognized
to be vaccinating people, additional behavioral measures
have been shown to be successful for weakening and re-
ducing the infection, such as social distancing, movement
reduction, mask wearing, and so on (Funk (2010)). The
application of control measures requires the organization
of suitable information campaigns aimed at inducing peo-
ple to adopt correct behaviors against the pandemic. To
make these campaigns effective, people must behave coop-
eratively with respect to the limitations imposed by the
governments. Unfortunately, more often, when taking de-
cisions under strong pressure, such as in the initial phases
of the pandemic, the requested efforts may activate in the
population selfish mechanisms, such as the temptation to
exploit the others and the fear to be betrayed. An example
of these mechanisms is represented by the panic buying
arisen at the beginning of the COVID-19 pandemic (see,
for example, Stiff (2020)). Preventing these mechanisms
requires fostering altruistic and cooperative feelings.

Nowadays, cooperation is recognized to be a crucial factor
for successfully promoting the achievement of sustainable
development in self-interested societies (Pennisi (2009);
Hofman (2011)). The Evolutionary Game Theory (EGT)
represents a natural mathematical framework to deal with
this problem. Indeed, EGT provides a rigorous method-
ology for studying strategic interactions among people
evolving over time (Hofbauer (2003); Nowak (2004)). The

influence of networks on the dynamics of evolutionary
games has been also investigated recently (Madeo (2019)).

The emergence of cooperation has been analyzed deeply
in the framework of EGT, where the evident drawbacks of
selfish behavior are highlighted in the defective prisoner’s
dilemma game (Killingback (2001); Boyd (2010)). The
influence of structured populations has also been inves-
tigated (Otsuki (2006); Madeo (2020)) by taking into ac-
count the people interactions in a social dilemma context.

After the emergence of COVID-19 epidemic, the integra-
tion of the standard (Hethcote (2000)) or adapted (Gatto
(2020); Calafiore (2020)) SIR and SIRS models of epi-
demics with suitable control measures for contrasting the
pandemic, has started to be studied from different points
of view. For example, in Della Rossa (2020) optimal control
measures are identified by assuming networked popula-
tions, while in McAdams (2020) an analysis of strategic be-
havior during the COVID-19 pandemic has been developed
from the economic perspective. Additionally, in Ye (2021)
the strong interplay between the spreading dynamics of
an epidemic and the collective behavioral pattern of the
population has been accounted with suitable stochastic
models.

In this paper, we propose a model which integrates a stan-
dard SIRS epidemic model with the replicator equation
(SIRS-RE) describing the evolution over time of the coop-
eration in large populations. The two models are joined
in two ways. The infection rate is assumed to depend
on the propensity to cooperate by respecting the control
measures taken by the governments, represented by the
state variable of the replicator equation (RE). Moreover,
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the parameters of the game payoff matrix depend on the
strength of the epidemic at any time, thus the higher is
the gravity of the epidemic, the higher is the propensity
to cooperate.

The main findings of the study concern the evidence that
cooperation is effective in contrasting the epidemic spread-
ing. Indeed, cooperative behavior reduces the asymptotic
level of infection. Moreover, the strength of the disease
activates, as expected, the propensity of people to be more
cooperative despite the limitations and sacrifices imposed
by the government directives. Indeed, the switch from the
prisoner’s dilemma game to the fully cooperative harmony
game is observed.

From the dynamical point of view, in the integrated model
the infection peaks are reduced and delayed with respect
to the natural ones, thus inducing transitory oscillating be-
haviors. By further assuming seasonal changes of the infec-
tion rate, as it is reasonably expected (Augeraud (2014)),
a sequence of period doubling bifurcations is observed,
eventually giving rise to chaotic behavior. However, as
long as the strength of the seasonality is increased, a
drastic reduction of the pandemic is observed, leading to
its extinction.

2. THE MODEL

We consider a population of N individuals, composed of
the standard three classes of the SIRS dynamics. Specifi-
cally, S, I and R are the number of susceptible, infected
and recovered individuals, respectively. The equations of
the model are the following (Hethcote (2000)):

: I
$ =_-BS— +aR

I =485~ —~I > 1)
| THAST T

R =—-aR+~I

where 8 > 0 is the infection rate, v > 0 is the recovery rate
and a > 0 is the proportion of people who lose immunity.

We also assume that people can cooperate or defect.
In particular, their behavior will change according to
the observed pandemic status. We denote by = € [0, 1]
the share of population cooperating by respecting the
restrictions imposed by government for contrasting the
spread of the disease, and by y = 1 — x the share
of defective individuals. The behavior of people with
respect to the diseases can be assumed to be ruled by
the following payoff matrix, describing the outcome of the
interaction between two players randomly chosen within

the population:
18
5=74] @)

where 7T represents the temptation to defect and S is
the “sucker’s payoff”, embodying the fear to be betrayed
by others. More specifically, rows of B correspond to the
strategy of player 1 (to cooperate is the first row, to defect
is the second), while columns correspond to the choice of
player 2. Players 1 earns 1 if both players cooperate, T if
he defects and the opponent cooperates, S if he cooperates
and the opponent defects, or 0 if both players defect. It is
worthwhile to remark that, for 7 > 1 and S < 0, the
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payoff matrix (2) represents a prisoner’s dilemma game,
where defection is dominant, while for 7 < 1 and § > 0,
the game switches to a harmony game, where cooperation
is dominant. The corresponding RE (Hofbauer (2003);
Nowak (2004)) reads as follows:

&z =ux(m — @)
{y = y(my—¢)’ ®)

BRI

represent the average payoffs w1 and mo collected by the
share of cooperative and defective individuals, respec-
tively, while

where

¢ = xm +ymo = 22 + (T + S)zy,
is the average payoff of the whole population.

Coherently with the payoff matrix (2), the evolution of the
cooperation over time represented by the RE (3) can show
full defection (z = 0 and y = 1) for the prisoner’s dilemma
case or full cooperation (z = 1 and y = 0) for the harmony
game.

If we assume that the RE (3) describes the cooperation
dynamics within a population experiencing a pandemic,
then it is natural to assume that the ruling parameters
T and S vary with respect to the perception of people
regarding the strength of the infection measured by the
state variable I of the SIRS model. In this regard, we
can assume that the payoff matrix (2) depends on I, i.e.
B = B(I), and that it switches from a prisoner’s dilemma
game to a harmony one when the value of I exceeds a
given threshold 6, according to the following definitions of
the temptation and of the sucker’s payoffs:
TI)=1-T°I-9),8(I)=-8"1-9),

where 70 > 0, S < 0 and 0 < # < N. In general, for
I < 0, B represents a prisoner’s dilemma game, since
T(I)=1-T%I—0)>1and S(I) = -S°(I—6) < 0. That
is, when the epidemics is quite low, the defection represents
the “natural” choice of individuals, since the low perceived
relevance of the disease does not justify the adoption of
any containment measure. This fact is coherent with the
fact that many people don’t follow the rules, or some
governments have been more laxer than others in imposing
restrictions. In this sense, the threshold 6 represents an
important tuning parameter for the policy-maker, as it can
be reduced by means of effective informative campaign on
the real risk of the current sanitary crisis, thus making
I > 0. In this case, B(I) turns to a harmony game since

TI)=1-T°I—-0)<1and S(I)=-8°(I—0) > 0.

As already said, cooperation corresponds to the adoption
of good practices, aimed at the reduction of the disease
spread, e.g. limitation of social interactions. Since in the
general epidemic SIR/SIRS model, the parameter 8 rep-
resents the infection rate, it can be assumed to vary ac-
cording to the behavior of people. More specifically, coop-
eration produces a reduction of the infection rate, while
defection leads to an increase of it. Hence, the infection
rate 8 depends on the cooperation x as follows:

B(z) = Bo(1 — mx),
where [y represents the natural infection rate of the
disease, while m € (0,1) weights the influence of the
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Blx)

B(I)

Fig. 1. Schematic representation of the proposed model.
Two feedback mechanisms are at work coupling the
SIRS and the RE: 1) the number of infected I in-
fluences the cooperation dynamics by changing the
payoff matrix B(I) (blue arrows); 2) the cooperation x
influences the infection rate 3(z) (dark green arrow).

cooperation on the infection rate. Notice that m € (0,1)
guarantees that §(x) > 0 Va € [0, 1]. In this case, the basic
reproduction number is defined as follows:

o) = Pe) _ o=

where the superscript G denotes the presence of the game,

and Ry = % represents the natural basic reproduction

= Ro(1 — mx),

number of the disease. The maximum of R§ () is reached
for no cooperation (x = 0), thus reducing to Ry, while the
minimum of R§(z) is attained in presence of maximum
cooperation (z = 1), when countermeasures against the
disease are effective at the highest level.

In order to couple systems (1) and (3), we start by noticing
that S can be omitted in system (1) since S+71+ R =N,
and y can be omitted in system (3), since x +y = 1.
Then, the coupled model, hereafter called SIRS-RE, is the
followmg

. I

= (Ba)(N 1~ R) )5

4)

= —aR +~I : (
(1 —2)((T° + 8%z — S°)(I - 0)

.bd'

x =

According to the properties of SIRS and of RE, the set
F = {[I,Ra]€R}: I+ R< N,z <1} is an invariant
set of system (4). Fig. 1 reports a pictorial representation
of the STRS-RE model (4).

3. ANALYSIS OF THE SIRS-RE MODEL

For the analysis of the SIRS-RE model, we assume that
the natural basic reproduction number Ry is bigger than
1, thus investigating the case for which the disease is
spreading in the population without any active control
measure. The system (4) has 7 steady states:

e E; =[0,0,0]. This is always feasible.
e Ey =[0,0,1]. This is always feasible.
o 3= {0 0, 707 SO] This is unfeasible since

8% < 0 and T° > 0 implies that %OSO & [0,1].
o £y = [9,5%,0] , where 0 = a+7 (1 — —) This is
feasible when Ry > 1.

« Bs = |[Ng%DNZL

D, %OSO}, where D =
(1 - m) This is unfeasible since
8% < 0and T° > 0 implies that <5 ¢ [0,1].

o Fg = [0 0 1] where § = N2 (1—;).

a+y Ro(1—m)
This is feasible when Ro(l —m) > 1, or equivalently
whenm<m=1-— 4

Ro
o B = [9 67, N:L;i“(g(_zz)ae)e NZ)O‘ )} . This is feasible

when # < 6 < 6. Notice that the previous is a well-
posed interval, since m > 0 and Ry > 1 imply that
the lower bound is less than the upper one, and the
upper one is positive.

Both steady states E; and Es represent the disappearing
of the pandemic. Moreover, steady state E7 is the only one
having the x component in the set (0,1), thus showing an
intermediate level of cooperation.

Collision of steady states

e F; and Ej coincide for Ry = 1.

e E5 and Fjg coincide for Ry(1—m) = 1, or equivalently,
for m = m. B

e F, and E7 coincide for 6 = 6.

e Fg and E7; coincide for 6 = 6.

Stability of steady states

FE, and Es are unstable for any combination of the param-
eters since Ry > 1. For E4 and Eg, the following Theorems
on their stability hold.

Theorem 1. If Ry > 1and # > 6, then E, is asymptotically
stable.

Proof. The first eigenvalue of the Jacobian matrix of
system (4) evaluated in Ey is:

o SRy )~ Na(By ~ 1)
1= .
Ro(a+7)
Since 6 > 0, Sy < 0 and Ry(a + ) > 0, then:
1
1—= =
o+ Ry
9R0((1+’}/)—N(X(R0—1)>0 =
S (0ol +7) ~ Na(Ro—1) _
Ro(a+7)
)\1 < 0.
In addition, Ap 3 = (=6 4 /62 — n)u~", where:
6= a(Roy+a), (5)
n= 4ay(Ro —1)(a+7)?, (6)

and p = 2(a + 7). § and pu are always positive, and 7 is
positive since Ry > 1. Hence there are two cases:

e if 2 — 7 >0, then /62 — 1 < &. Hence g3 are both
real and less than 0.
e if §2—n < 0, then the real part of Ay and A3 is —% < 0.

Summarizing, all eigenvalues of the Jacobian matrix eval-
uated in E4 have negative real part, thus F, is asymptot-
ically stable. O

Theorem 2. If Ro(1 — m) > 1 and 8 < 0, then Fjg is
asymptotically stable.



Proof. The first eigenvalue of the Jacobian matrix of
system (4) evaluated in Fjg is:

T (0Ro(1— m)(a+ 1) — Na(Ro(1 —m) ~ 1)
Ro(1 —m)(a+7) .

Since 6 < 0, Ty > 0 and Ro(1 — m)(a + ) > 0, then:

At

« 1
9<N0¢+’y ~ Ro(1—m)
ORy(1 —m)(a+v) — Na(Ro(l—m)—1) <0 =
To (0Ro(1 —m)(a+7) — Na(Ro(1 —m) — 1))

Ro(1 —m)(a+1)

=

<0 =

A1 < 0.
The values of Ay and A3 are the same as in Theorem 2,
provided that in the terms § and n (equations (5) and
(6)) one must replace Ry with Ry(1 — m). Recalling that
by hypothesis Ry(1 —m) > 1, then Ejg is asymptotically
stable. O

| (@)
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Fig. 2. (a) Maximum value of the real part of the eigen-
values of the Jacobian matrix evaluated at the steady
state F7 as a function of parameters 6 and m. The
value of other parameters is reported in the main text.
(b) Feasibility and stability regions for each steady
state. Steady states reported in black are only feasible,
while stability is denoted by blue font color. The full
black lines are § = 6 and 6 = @, while the dashed line

ism=m.

In the following, we complete the stability analysis of
steady states by analyzing F; in its feasible region with
respect to the parameters m and 6. In this region, E1, F»
and E, are feasible, while Ey is feasible only for m < m.
We recall that F; and E5 are unstable. Moreover, thanks
to Theorems 1 and 2, E; and Eg (when feasible) are
also unstable. Due to the boundedness of the solution
(F is bounded and is an invariant set of system (4)),
then the only candidate to be a stable steady state is Fr.
Nevertheless, steady state solutions can converge also to
attractive limit cycles. In subplot (a) of Fig. 2, we report
the maximum real part among all eigenvalues of the Jaco-
bian matrix evaluated at the steady state E7 as a function

D. Madeo et al. / IFAC PapersOnLine 54-17 (2021) 1-6

of parameters 6 and m. Other parameters have been set

as follows: N = 10%, By = 3% year™! = 73 year !,
¥ = % year~! = 26.1 year !, o = % year—! = 1 year™!,
7% = 1.5 and S = —2. By and v have been set ac-

cording to the values reported in (Della Rossa (2020)).
With this setup, the natural basic reproduction number
is Ry = 2.8. The reported value are always negative,
thus ensuring the asymptotic stability of E7 in its feasible
region. Some eigenvalues with null real part are present
in the left border (f = 0), where E7 becomes unfeasible
or possibly bifurcates with other unfeasibile steady states.
Both cases fall out of the scope of this study, and hence
are not investigated. In addition, several simulations of
system (4) have been performed by randomly choosing
initial conditions in the interior of F. The average values of
the mean square error between the equilibrium F; and the
asymptotic values of the numerical solution in the feasible
region of E7 is about 10710, This fact shows numerically
that there are no attracting limit cycles in this region, and
thus the solutions always converges to F;. Summarizing,
subplot (b) of Fig. 2 reports the feasibility and stability re-
gions for all studied steady state. More specifically, steady
states depicted in black are feasible and unstable, while
the stable ones are highlighted in blue.

(a
3000 3000

N [- —SIRS
|\ | —SIRS-RE

I
2500 § 2000

'
2000 § 1000

euy
= 1500
= ’
1000 ¥ t

y

500 0

Fig. 3. Comparison of SIRS (1) and SIRS-RE (4) models.
(a) Dynamics of the infected individuals I(¢). The
inset shows a detail of the initial dynamics. (b)
basic reproduction number R§ (z). (c) propensity to
cooperate z. (d) 7(I) and S(I).

It is interesting to notice that equilibria Eg and FE; arise
thanks to the presence of the game. Moreover, their [
components are lower than the corresponding one of Fy,
which is a non null equilibrium also for the SIRS model.
Indeed, Es1 = 8 < 8 = Es,, and E7; < 6. Thus, the
effect of the cooperation on the pandemic corresponds to
a reduced number of infected individuals at steady state.
Additionally, the effect of the game can be observed also
at the level of the maximum peak reached by I:

fNngNRWN(11> ~ R,

B(x) Bo Ry

where the last term corresponds to the peak value reached
without game, or equivalently when all members of the
population defect. It is worthwhile noticing that equilib-
rium FEy corresponds to the endemic steady state of the
standard SIRS model. Since for § > 6 E, is the unique
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Fig. 4. Comparison of SIRS (1) and SIRS-RE (4) models.
(a) Dynamics of the cumulative infected individuals
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asymptotically stable equilibrium, and its stability does
not depend on the value of m (see Fig. 2), then the virtuous
mechanisms produced by cooperative behaviors are not
activated. This has a notable epidemiological consequence:
in order to design effective containment measures, the
policy makers should ensure that the threshold 6 is smaller
than the baseline endemic value of I.

In subplot (a) of Fig. 3 the time evolution of I(¢) for the
SIRS (dashed line) and for the SIRS-RE (solid line) are
reported. As aforementioned, the first peak (see inset)
and the asymptotic value are smaller in the SIRS-RE
case, while the frequency of pandemic waves increases.
Subplot (b) of Fig. 3 reports the time evolution of the
basic reproduction number in both models. It can be
appreciated that the oscillating behavior produces time
intervals in which the basic reproduction number is smaller
than 1, and hence there are time ranges in which the
strength of the infection is strongly reduced. Accordingly,
subplot (c) of Fig. 3 depicts the time evolution of the
cooperation z(t) for the STIRS-RE model. Also in this case,
we observe alternating cooperative and defective behaviors
in the population. Finally, in subplot(d) of Fig. 3 we report
the evolution of the payoff parameters T(I) and S(I),
showing the succession of phases where the population
plays a prisoner’s dilemma game, and phases where the
game played is the harmony one. The inset reports a
zoom on the first year of simulation, allowing to better
appreciate the variations of these quantities. Fig. 4 shows
that the cumulative amount of infected individuals over
time for the SIRS-RE (solid line) is significantly lower than
the SIRS case (dashed line).

Bifurcations
The findings of this study can be summarized as follows:

e A transcritical bifurcation occurs between E, and E7
for 6 = 6.

e A transcritical bifurcation occurs between Eg and Er
for 6 = 6.

4. THE SIRS-RE MODEL WITH SEASONALITY

It is reasonable to assume that the contagion follows a
seasonal behavior. This can be embedded in the SIRS-
RE model by introducing a periodic forcing of period
T = 1 year. Since there exists the internal steady state
FE7, nearby which oscillations are formed, it is interesting
to check whether any limit cycle is present under the effect
of a seasonally changing parameter R .

A forcing function, modeling a time varying infection
rate according to a seasonal periodicity, is introduced as
follows:

B(z) = Bo(l — ma) (1 — esin (2T7Tt + ¢>>) Y

An extensive simulation analysis of the forced systems
has been carried out, by setting the model parameters
as in Section 3. Specifically, we set ¢ = 0 and we vary
e € [0.005,0.15].

As the effect of the seasonality on the infection rate
increases, period doubling bifurcations of period T, 3T,
6T, ..., are observed, as reported in subplots (a)-(c) of
Fig. 5. For ¢ = 0.119 a chaotic strange attractor is also
present (subplot (d)). These findings suggest that, when
dealing with seasonal epidemic, the onset of new infections
in future years must be expected. Moreover, when the
periodicity is strong enough, predicting the timing of re-
infections may be difficult due to the presence of chaotic
dynamics in the system.

“ 100

200

Fig. 5. Route to chaos in the seasonal system (4)-(7)
for N = 10% By = 73 year™!, v = 26.1 year—!,
a=033year !, 70=15,8°=-2¢=0 m=0.9
and # = 75. The red points represents steady state
E;. (a) e = 0.02: limit cycle of period T'. (b) € = 0.09:
limit cycle of period 3T. (¢) e = 0.11: limit cycle of
period 67. (d) e = 0.119: chaotic attractor.

Stronger values of the parameter € may induce the ex-
tinction of the virus, thus destroying the pandemic. Fig.
6 reports the simulation of the variables I(¢) and z(t) for
€ = 0.6 and 0 = 50. It can be noticed that after some epi-
demic peaks the disease is fully wiped out. The mechanism
explaining the phenomenon is the interplay between the
propensity towards cooperation x(¢) and the strength of
the infection I(t) over time. Indeed, significantly high val-



ues of I foster the cooperation and a successive reduction
of the infection itself. The mechanism repeats four times,
corresponding to two infection peaks per year, before the
convergence of the variables towards vanishing epidemic
steady states.

Fig. 6. Defeating the pandemic. Strong values of the
seasonality in the SIRS-RE system (4)-(7) induce the
extinction of the virus. The parameters setting is the
same as in Fig. 5, except for § = 50 and ¢ = 0.6.

5. CONCLUSION

This paper presents an extended model, called SIRS-RE,
which integrates a standard epidemic SIRS model and
the evolutionary game equation RE, which describes the
propensity of people to be cooperative, thus adopting the
measures taken to control the pandemic. The resulting
model assumes that the infection rate decreases when the
cooperation rises, while the propensity to cooperate is
favoured by strong infection levels, ruled by the threshold
parameter # which embodies the awareness of people on
the gravity of the current sanitary crisis. The obtained
model shows that the interplay between control measures
and infection gravity produces transitory oscillating be-
havior converging asymptotically towards low infection
values. In particular, the succession of epidemic peaks is
the result of the alternating phases human/epidemic be-
haviors. As a results, the dramatic peak of the SIRS model
is drastically reduced in the SIRS-RE case; moreover, the
cumulative number of infected people is also successfully
contained. Moreover, the dependence on seasonality in the
infection rate induces chaos, thus showing rich aperiodic
behavior in the long run. Finally, for larger values of the
parameters defining the seasonal function, the epidemic
is also seen to coalesce. As a further development, the
authors are investigating the impact of “imperfect infor-
mation” on the described process. Indeed, it is well known
that some of the infectious individuals are pauci- or even
a-symptomatic. Additionally, information provided on the
status of the pandemics can be also incorrect for the diffi-
culties inherent to the data collection, or for the diffusion
of fake news. As a natural consequence, it would be inter-
esting to analyze the system behavior by considering only
the fraction of (supposedly) known infectious individuals.

REFERENCES

Augeraud-Véron, E. & Sari, N. (2014). Seasonal dynamics
in an SIR epidemic system. J Math Biol, vol. 68, pages
701-725.

D. Madeo et al. / IFAC PapersOnLine 54-17 (2021) 1-6

Boyd, R., Gintis, H. & Bowles, S. (2010). Coordinated
punishment of defectors sustains cooperation and can
proliferate when rare. Science, vol. 328, pages 617-620.

Calafiore, G.C., Novara, C. & Possieri, C. (2020). A
Modified SIR Model for the COVID-19 Contagion in
Ttaly. 59th IEEE Conference on Decision and Control
(CDC), pages 3889-3894.

Della Rossa, F., Salzano, D., Di Meglio, A. et al. (2020). A
network model of Italy shows that intermittent regional
strategies can alleviate the COVID-19 epidemic. Nat
Commun 11, pages 5106.

Funk, S., Salathé, M. & Jansen, V.A.A. (2010). Modelling
the influence of human behaviour on the spread of
infectious diseases: a review. J R Soc Interface, vol. 7,
pages 1247-1256.

Gatto, M., Bertuzzo, E., Mari, L., Miccoli, S., Carraro,
L., Casagrandi, R. & Rinaldo, A. (2020). Spread and
dynamics of the COVID-19 epidemic in Italy: Effects
of emergency containment measures. PNAS, 117 (19),
pages 10484-10491.

Hethcote, H.-W. (2000). The Mathematics of Infectious
Diseases. STAM Rev., 42(4), pages 599-653.

Hofbauer, J. & Sigmund, K. (2003). Evolutionary game dy-
namics, Bulletin of the American mathematical society,
vol. 40, pages 479-519.

Hofmann, L.M. & Chakraborty, N. & Sycara, K. (2011).
The evolution of cooperation in self-interested agent
societies: a critical study. In The 10th International
Conference on Autonomous Agents and Multiagent
Systems, vol. 2, pages 685—692.

Killingback, T. & Doebeli, M. (2002). The continuous
prisoner’s dilemma and the evolution of cooperation
through reciprocal altruism with variable investment.
The American Naturalist, vol. 160, pages 421-438.

Madeo, D. & Mocenni, C. & Moraes, J.C. & Zubelli,
J.P. (2019). The role of self-loops and link removal in
evolutionary games on networks. Math. Biosci. Eng.,
vol. 16, pages 5287-5306.

Madeo, D. & Mocenni, C. (2020). Self-regulation versus
social influence for promoting cooperation on networks.
Sci. Rep., vol. 10, pages 4830.

McAdams, D. (2020). Nash SIR: An economic-
epidemiological model of strategic behavior during
a viral epidemic. Covid Econ, (forthcoming).

Nowak, M.A. & Sigmund, K. (2004). Evolutionary dynam-
ics of biological games. Science, vol. 303, pages 793-799.

Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M.A.
(2006). A simple rule for the evolution of cooperation
on graphs and social networks. Nature, vol. 441, pages
502-505.

Pennisi, E. (2009). On the origin of cooperation. Science
vol. 325, pages 1196-1199.

Santos, F.C. & Pacheco, J.M. (2005). Scale-free networks
provide a unifying framework for the emergence of
cooperation. Phys. Rev. Lett., vol. 95, pages 098104.

Stiff, C. (2020). The game theory of panic-buying — and
how to reduce it. The Conversation, UK.

Strogatz, S.H. (2018). Nonlinear dynamics and chaos. CRC
press.

Ye, M., Zino, L., Rizzo, A. & Cao, M. Game-theoretic
modeling of collective decision making during epidemics.
Phys. Rev. E, vol. 104, pages 024314.




