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Abstract: Pancreatic cancer is one of the most lethal malignancies and is associated with
a poor prognosis. Surgery is considered the only potential curative treatment for pancreatic
cancer, followed by adjuvant chemotherapy, but surgery is reserved for the minority of patients
with non-metastatic resectable tumors. In the future, neoadjuvant treatment strategies based on
molecular testing of tumor biopsies may increase the amount of patients becoming eligible for
surgery. In the context of non-metastatic disease, patients with resectable or borderline resectable
pancreatic carcinoma might benefit from neoadjuvant chemo- or chemoradiotherapy followed by
surgeryPatients with locally advanced or (oligo-/poly-)metastatic tumors presenting significant
response to (neoadjuvant) chemotherapy should undergo surgery if R0 resection seems to be
achievable. New immunotherapeutic strategies to induce potent immune response to the tumors
and investigation in molecular mechanisms driving tumorigenesis of pancreatic cancer may provide
novel therapeutic opportunities in patients with pancreatic carcinoma and help patient selection for
optimal treatment.

Keywords: pancreatic cancer; treatment options; surgery; chemotherapy; chemoradiation; therapeutic
targets; molecular mechanism; immunotherapy

1. Introduction

Pancreatic cancer is one of the most lethal malignancies, accounting for the 7th leading cause of
cancer-related mortality worldwide [1]. It is estimated that about 458,000 people will be diagnosed
with pancreatic cancer worldwide in 2018, and more than 432,000 will die of this disease. 5-year
survival in patients with pancreatic cancer is as low as 9% in the USA [2]. Although progress has been
made in multimodality treatment with surgery and adjuvant therapy, the mortality rate of pancreatic
cancer is still increasing throughout the years. The disappointing prognosis of this disease is largely
attributable to its late diagnosis, as most patients with pancreatic cancer remain asymptomatic until
the disease develops to an advanced stage [3]. Only non-specific symptoms may exist at early stage,
but there are currently no screening programs available [4]. Besides, tumor biology of pancreatic cancer
may contribute to its early metastasis. A preclinical study using a mouse model of pancreatic cancer
indicates that early metastasis might possibly be detected even when there is no primary tumor found
in the pancreas and is associated with epithelial-to-mesenchymal transition and focal inflammation [5].
Therefore, like many other types of cancers, pancreatic cancer is suggested to be a systematic disease,
and multidisciplinary management of this disease is of great importance. Treatment of pancreatic
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cancers includes surgery, chemotherapy, radiation therapy, and palliative care, which are selected on
the basis of disease stage (Figure 1). Here we review the current clinical strategies in the treatment of
pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancers, in different
scenarios (resectable, borderline resectable, locally advanced, and metastatic PDAC), and potential
novel approaches under development based on the expanding molecular biology knowledge.
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Figure 1. (a) Current treatment strategies for pancreatic carcinomas; (b) assumed future treatment
strategy for pancreatic carcinoma: The most distinctive changes (highlighted in red) are probably (1) an
extension of biopsy options and an introduction of routinely molecular tests including chemotherapy
sensitivity, (2) an introduction of neoadjuvant therapy even in resectable stage, (3) an improvement
of chemotherapy regimens with increased secondary resectability, and (4) the “introduction” of
oligometastasis as the fifth subgroup (besides resectable, borderline, locally advanced, and metastatic
stages) with enhanced therapy options including surgery in this new group. Dotted frames indicate
possible therapy options.
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2. Current Management of Pancreatic Cancer

2.1. Management of Resectable Pancreatic Cancers

In the management of pancreatic carcinomas, surgical resection is fundamental as surgery
is currently the only potential treatment to cure pancreatic cancer that could result in significant
improvement in survival, but over 80% of patients with pancreatic cancer are diagnosed when the
lesion is no longer primarily resectable [3,6,7]. Therefore, upfront surgery is currently standard in
patients with resectable pancreatic carcinomas. The most important goal of surgical resection of
pancreatic cancer is to achieve a negative resection margin (R0), as positive resection margin (R1 or
R2) is associated with recurrence and dismal prognosis [8,9]. Achieving an R0 margin mandates
meticulous perivascular dissection, recognition of the need for vascular resection and reconstruction,
as well as potential need for extra-pancreatic organ resection. Additionally, pancreatic cancer surgery
is strongly recommended to be performed in specialized high-volume centers, as the hospital volume
is reported by many groups associated with resection margin, in-hospital mortality, and long-term
survival [10–12].

Adjuvant chemotherapy is generally considered, as most patients will develop recurrence after
surgical resection. There have been some robust randomized clinical trials evaluating the role of different
postoperative chemotherapy regimens, especially for 5-fluorouracil, gemcitabine and combination
regimen (e.g., FOLFIRINOX) (Table 1) [13–30]. Currently FOLFIRINOX provides the standard adjuvant
therapy in patients with high performance status. The effectiveness of postoperative chemoradiotherapy
(CRT) remains controversial. The supportive evidence of the use of adjuvant CRT mainly comes from
retrospective cohort studies [31–34]. However, a pooled analysis of nine randomized controlled trials
showed that adjuvant CRT results in worse survival than chemotherapy alone [35]. High-quality
clinical evidence from randomized controlled trials is limited at present.

Table 1. Summary of randomized controlled trials concerning adjuvant chemotherapy in patients with
pancreatic carcinomas.

Trial Year Country/Region N Regimens Survival Outcomes

Bakkevold [13] 1993 Norway 47
AMF (5-FU, doxorubicin,
mitomycin C) (n = 23) vs.

observation (n = 24)

mOS 23 mo vs. 11 mo (p = 0.02);
2-year survival 43% vs. 32%;

5-year survival 4% vs. 8%

Takada [14] 2002 Japan 158 MF (5-FU and mitomycin C) (n
= 81) vs. observation (n = 77)

5-year OS 17.8% vs. 26.6% in
patients with curative resection
(p = 0.4544); 5-year DFS 8.6% vs.

7.8% (p = 0.8372)

ESPAC-1 [15] 2004 Europe 289

5-FU/folinic acid (with and
without chemoradiotherapy) (n

= 147) vs. no chemotherapy
(observation and

chemoradiotherapy) (n = 142)

mOS 20.1 mo vs. 15.5 mo (p =
0.009); 2-year estimated OS 40%

vs. 30%; 5-year estimated OS
21% vs. 8%; mDFS 15.3 mo vs.
9.4 mo (p = 0.02); 1-year DFS

58% vs. 43%

JSAP [16] 2006 Japan 89 5-FU/cisplatin (n = 45) vs.
observation (n = 44)

mOS 12.5 mo vs. 15.8 mo; 5-year
OS 26.4% vs. 14.9%

CONKO-001
[17,18]

2007
and
2013

Germany and
Austria 368 Gemcitabine 6 cycles (n = 179)

vs. observation (n = 175)

mOS 22.8 mo vs. 20.2 mo (p =
0.01); 5-year OS 20.7% vs. 10.4%;

10-year OS 12.2% vs. 7.7%;
mDFS 13.4 mo vs. 6.9 mo (p <

0.001); 3-year DFS 23.5% vs.
7.5%; 5-year DFS 16.5% vs. 5.5%
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Table 1. Cont.

Trial Year Country/Region N Regimens Survival Outcomes

Yoshitomi [19] 2008 Japan 100
Gemcitabine and UFT

(uracil/tegafur) (n = 50) vs.
gemcitabine (n = 49)

mOS 21.2 mo vs. 29.8mo (p =
0.28); 1-year OS 80.0% vs. 85.7%;

3-year OS 30.4% vs. 46.9%;
mDFS 12.3 mo vs. 12.0 mo (p =

0.67); 1-year DFS 50.0% vs.
49.0%; 3-year DFS 17.7%

vs. 21.6%

ESPAC-1 plus
[20] 2009 Europe 192 5-FU/folinic acid (n = 97) vs.

observation (n = 95)

mOS 24.0 mo vs. 12.8 mo; 2-year
OS 49% vs. 28%; 5-year OS 24%

vs. 14%

ESPAC-3 v1
[20] 2009 Europe 122 5-FU/folinic acid (n = 61) vs.

observation (n = 61)

mOS 25.9 mo vs. 20.3 mo; 2-year
OS 54% vs. 48%; 5-year OS 20%

vs. 20%

JSAP-02 [21] 2009 Japan 119 Gemcitabine 3 cycles (n = 58) vs.
observation (n = 60)

mOS 22.3 mo vs. 18.4 mo (p =
0.19); mDFS 11.4 mo vs. 5.0 mo

(p = 0.01)

ESPAC-3 v2
[22] 2010 International 1088 5-FU/folinic acid (n = 551) vs.

gemcitabine (n = 537) for 6 mo

mOS 23.0 mo vs. 23.6 mo (p =
0.39); estimated 2-year OS 48.1%

vs. 49.1%; mPFS 14.1 mo vs.
14.3 mo (p = 0.53); estimated
2-year PFS 30.7% vs. 29.6%

RTOG 97-04
[23,24] 2011 USA and

Canada 451
5-FU (n = 230) vs. gemcitabine
(n = 221), both with (before and
after) CRT (5-FU and 50.4 Gy)

For pancreatic head tumors,
mOS 17.1 mo vs. 20.5 mo (p =
0.12); 5-year OS 18% vs. 22%

PACT-7 [25] 2012 Italy and
Switzerland 102

Gemcitabine (n = 51) vs. PEFG
(cisplatin, epirubicin, 5-FU,
gemcitabine) (n = 49), both

followed by chemoradiation
(5-FU and 54–60 Gy)

mOS 24.8 mo vs. 28.9 mo; mDFS
11.7 mo vs. 15.2 mo; 1-year DFS

49.0% vs. 69.4%

Shimoda [26] 2015 Japan 57 S-1 (n = 29) vs. gemcitabine
(n = 28)

mOS 21.5 mo vs. 18.0 mo (p =
0.293); 2-year OS 46% vs. 38%;
mDFS 14.6 mo vs. 10.5 mo (p =
0.188); 2-year DFS 41% vs. 18%

JASPAC 01 [27] 2016 Japan 385 S-1 (n = 187) vs. gemcitabine
(n = 190)

mOS 46.5 mo vs. 25.5 mo (p <
0.0001); 5-year OS 44.1% vs.

24.4%; mRFS 22.9 mo vs. 11.3
mo (p < 0.0001); 5-year RFS

33.3% vs. 16.8%; recurrence 66%
vs. 78%

ESPAC-4 [28] 2017 Europe 732 Gemcitabine and capecitabine (n
= 364) vs. gemcitabine (n = 366)

mOS 28.0 mo vs. 25.5 mo (p =
0.032); estimated 1-year OS
84.1% vs. 80.5%; estimated

2-year OS 53.8% vs. 52.1%; in R1
patients, mOS 23.7 mo vs. 23.0

mo; in R0 patients, mOS 39.5 mo
vs. 27.9 mo (p = 0.0001)

CONKO-005
[29] 2017 Germany 436 Gemcitabine and erlotinib (n =

219) vs. gemcitabine (n = 217)

mOS 24.5 mo vs. 26.5 mo (p =
0.61); estimated 2-year OS 53%
vs. 54%; estimated 5-year OS

23% vs. 20%; mDFS 11.4 mo vs.
11.4 mo (p = 0.26); estimated

2-year DFS 25% vs. 25%;
estimated 5-year DFS 12%

vs. 11%

PACT-15 [30] 2018 Italy 93

Gemcitabine 6 cycles (n = 26) vs.
PEXG (gemcitabine, cisplatin,

epirubicin, capecitabine) 6
cycles (n = 30)

mOS 20.4 mo vs. 26.4 mo; 3-year
OS 35% vs. 43%; 5-year OS 13%
vs. 24%; mDFS 4.7 mo vs. 12.4
mo; 1-year DFS 23% vs. 50%
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Due to lacking evidence, preoperative neoadjuvant treatment could not be recommended for
resectable pancreatic cancers but is investigated currently in randomized controlled studies for primary
resectable pancreatic carcinoma (Table 2) [30,36–40].

Table 2. Summary of randomized controlled trials concerning neoadjuvant chemo(radio-)therapy in
patients with pancreatic carcinomas.

Trial Year Country/Region N Regimens Outcomes

Neoadjuvant chemotherapy

Palmer [36] 2007 UK 50, resectable
PC

Gemcitabine (n = 24) vs.
gemcitabine and
cisplatin (n = 26)

Resection rate 38% vs.
70%; R0 resection 75% vs.
75%; mOS 9.9 mo vs. 15.6
mo; 1-year OS 41.7% vs.

61.5%

Sahora [37] 2014 Austria

30, 11x
borderline

resectable and
19x locally
advanced

Gemcitabine 4 cycles and
bevacizumab 3 doses (n
= 11) vs. gemcitabine 4
cycles and bevacizumab

6 doses (n = 19)

resection rate 36.4% vs.
36.8% (p = 0.97)

PACT-15 [30] 2018 Italy 93

PEXG (gemcitabine,
cisplatin, epirubicin,

capecitabine) 3 cycles
before and after surgery

(n = 29) vs. PEXG 6
cycles after surgery

mOS 38.2 mo vs. 26.4 mo;
3-year OS 55% vs. 43%;
5-year OS 49% vs. 24%;

mDFS 16.9 mo vs. 12.4 mo;
1-year DFS 66% vs. 50%

Neoadjuvant CRT

E1200 [38] 2010 USA 23

CRT (gemcitabine and
50.4Gy) (n = 10) vs.

chemotherapy
(gemcitabine, cisplatin,
5-FU) followed by CRT
(5-FU, 50.4Gy) (n = 11),

both followed by surgery
and gemcitabine

adjuvant chemotherapy

mOS 19.4 mo vs. 13.4 mo;
1-year acturial OS 69% vs.

61%; 2-year acturial OS
32% vs. 13%; mPFS 14.2
mo vs. not given; 1-year
acturial PFS 59% vs. 15%;

resectability 30% vs. 18.2%

Golcher [39] 2015 Germany and
Switzerland 73

Upfront surgery (n = 33)
vs. neoadjuvant CRT

(gemcitabine, cisplatin,
and 55.8 Gy) followed by

surgery (n = 33), both
followed by gemcitabine

chemotherapy

mOS 14.4 mo vs. 17.4 mo
(p = 0.96); mPFS 8.7 mo vs.
8.4 mo (p = 0.95); R0 rate
48% vs. 52% (p = 0.81);
pN0 rate 30% vs. 39%

(p = 0.44)

Casadei [40] 2015 Italy 38

Upfront surgery (n = 20)
vs. neoadjuvant CRT

(gemcitabine) followed
by surgery (n = 18), both
followed by gemcitabine

chemotherapy

mOS 19.5 mo vs. 22.4 mo
(p = 0.973); resectability

75% vs. 61.1% (p = 0.489);
R0 rate 25.0% vs. 38.9%

(p = 0.489)

There is currently no reliable clinical evidence or expert consensus to recommend any surveillance
strategies after potential curative resection of pancreatic cancer. A retrospective study showed that
postoperative surveillance with clinical evaluation and serum carbohydrate antigen (CA) 19-9, together
with routine CT and chest X-ray, for every 6 months, is effective and associated with a better survival
outcome; however, increased frequency and intensity of surveillance does not bring any benefit [41,42].

For patients experiencing recurrence following resection, the choice of second-line therapies will
depend on the site of recurrent disease. Patients with local recurrence will potentially be subjected to
surgical resection (if recurrence is in the pancreas or locoregional lymph nodes only) or chemoradiation.
Unfortunately, however, most patients with recurrent disease develop metastasis, where systemic
chemotherapy may be considered. In rare cases of isolated and limited liver metastasis, resection can
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improve survival. In addition, palliative and best supportive care is another option, especially for
patients with poor performance status.

2.2. Management of Borderline Resectable Pancreatic Cancers

In patients with suspected borderline resectable disease, biopsy confirmation of adenocarcinoma
with endoscopic ultrasound-guided fine needle aspiration (EUS-FNA), CT-guided biopsy, or staging
laparoscopy is required.

After ruling out metastatic disease, neoadjuvant chemotherapy or chemoradiotherapy is applied,
preferentially within a clinical trial. In the last years, preoperative neoadjuvant therapy was investigated
in order to obtain better local control and eliminate potential micrometastasis of the disease. A recent
systematic review of 35 comparative studies demonstrated that neoadjuvant therapy could improve
resectability of the disease through down-staging of the tumor, especially in borderline pancreatic
cancers [43]. Several large retrospective cohort studies based on a national cancer database also
demonstrated that preoperative chemotherapy was associated with improved survival outcome in
resected pancreatic cancers of different pathological stages [44,45]. In addition, another systematic
review indicated that neoadjuvant therapy is safe and does not affect postoperative complication
rates [46]. However, there are currently very few results from randomized trials available with
limited quality of evidence (Table 2) [30,36–40]. No clear conclusion could be drawn whether there
is advantage of neoadjuvant CRT compared to chemotherapy alone. Many of the larger phase 3
randomized controlled trials are prematurely terminated because of failure of recruitment, as the
patients may fear losing the opportunity for surgical resection. Nonetheless, there are still many
randomized trials ongoing to explore the potential effects of CRT. For instance, a large phase 3 trial,
CONKO-007, was proposed to demonstrate, with 830 participants expected, the effect of CRT as
compared to chemotherapy alone in the neoadjuvant setting, which is awaited to disclose meaningful
evidence to this field.

After neoadjuvant treatment, surgical exploration is considered with preferable tumor response
detected by restaging imaging assessment. Then, resection or palliative operative procedures could be
performed depending on the intraoperative findings.

Similar to primary resectable tumors, adjuvant therapies are generally considered as a result of the
high risk of recurrence even after radical surgical resection and the association of adjuvant chemotherapy
with improved survival in patients with resected pancreatic adenocarcinoma (Table 1) [13–30,35,44].

2.3. Management of Locally Advanced and Metastatic Pancreatic Cancer

Unresectable pancreatic cancers, both locally advanced and metastatic, might be detected with
imaging for staging and resectability assessment or discovered during surgical exploration for patients
initially considered as potentially resectable. After biopsy confirmation, the patient’s performance
status is evaluated, where patients with good performance status might probably be able to tolerate more
aggressive treatment. There have been extensive investigations on various chemotherapeutic regimens,
which are basically classified into fluoropyrimidine- and gemcitabine-based regimens (Table 3) [47–74].
If the patient’s performance status is good (usually determined as Eastern Co-operative of Oncology
Group (ECOG) scores 0–1), various combination chemotherapy, including fluoropyrimidine- and
gemcitabine-based regimens, are recommended, as a recent Cochrane analysis shows that a combination
of several chemotherapeutic agents in advanced pancreatic carcinoma is superior to gemcitabine
alone, albeit with a higher side effect profile [75]. Especially the FOLFIRINOX regimen is strongly
recommended for patients with locally advanced or metastatic disease. Other combination regimens,
especially gemcitabine-based, are usually used for patients with metastatic patients unlikely to tolerate
FOLFIRINOX. However, based on the current evidence, it is not possible to determine the optimal
gemcitabine combination. The combination of gemcitabine and erlotinib has been associated with
significant improvement in overall and progression free survival as compared with gemcitabine alone,
although this improvement was small. One characteristic adverse effect of the use of erlotinib is
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skin rash, and patients who developed skin rash after use of erlotinib might probably have better
survival outcomes [56,73]. For patients not fit enough to tolerate combination regimens, gemcitabine
monotherapy is considered.

Table 3. Summary of randomized controlled trials concerning first-line chemotherapy in patients with
locally advanced or metastatic pancreatic carcinomas.

Trial Year Country/Region N Regimens Outcomes

Burris [47] 1997 USA and
Canada 126 Gemcitabine (n = 63) vs.

5-FU (n = 63)

mOS 5.65 mo vs. 4.41 mo (p =
0.0025); 1-year OS 18% vs. 2%;
mPFS 2.33 mo vs. 0.92 mo (p =
0.0002); 1-year PFS 9% vs. 5%;

clinical benefit response 23.8% vs.
4.8 (p = 0.0022)

Huguier [48] 2001 France 45
5-FU + leucovorin +

cisplatin (n = 22) vs. best
supportive care (n = 23)

mOS 8.6 mo vs. 7.0 mo

Ducreux [49] 2002 France 207 5-FU + cisplatin (n = 104) vs.
5-FU (n = 103)

response 12% vs. 0% (p < 0.01);
1-year OS 17% vs. 9% (p = 0.10);

1-year PFS 10% vs. 0% (p = 0.0001)

Colucci [50] 2002 Italy 107 Gemcitabine + cisplatin (n =
53) vs. gemcitabine (n = 54)

mOS 30 weeks vs. 20 weeks (p =
0.43); response 26.4% vs. 9.2% (p =
0.02); mTTP (time to progression) 20

weeks vs. 8 weeks (p = 0.048)

Scheithauer
[51] 2003 Austria 83

Gemcitabine + capecitabine
(2500 mg/m2 qd 1/2 weeks)

(n = 41) vs. gemcitabine
(high-dose intense) (n = 42)

mOS 9.5 mo vs. 8.2 mo; 1-year OS
31.8% vs. 37.2%; mPFS 5.1 mo vs.

4.0 mo; response 17% vs. 14%;
clinical benefit 48.4% vs. 33%; P

values not reported

Tempero [52] 2003 USA and
Netherlands 92

dose-intense gemcitabine (n
= 49) vs. fixed dose rate

gemcitabine (n = 43)

mOS 5.0 mo vs. 8.0 mo (p = 0.013);
1-year OS 9% vs. 28.8% (p = 0.014);
2-year OS 2.2% vs. 18.3% (p = 0.007);
mPFS 1.9 mo vs. 3.4 mo (p = 0.68)

mTTF (time to treatment failure) 1.8
mo vs. 2.1 mo (p = 0.09)

Ducreux [53] 2004 France 63
5-FU + oxaliplatin (n = 31)

vs. 5-FU (n = 15) vs.
oxaliplatin (n = 17)

mOS 9.0 mo vs. 2.4 mo vs. 3.4 mo;
mPFS 4.2 mo vs. 1.5 mo vs. 2.0 mo;
response 10% vs. 0% vs. 0%; stable

48% vs. 20% vs. 12%

Louvet
(GERCOR

GISCAD) [54]
2005 France and

Italy 326
Gemcitabine + oxaliplatin (n

= 157) vs. gemcitabine
(n = 156)

mOS 9.0 mo vs. 7.1 mo (p = 0.13);
1-year OS 34.7% vs. 27.8% (p = 0.22);
mPFS 5.8 mo vs. 3.7 mo (p = 0.04);

response 26.8% vs. 17.3% (p = 0.04);
clinical benefit 38.2% vs. 26.9%

(p = 0.03)

Heinemann
[55] 2006 Germany 195 Gemcitabine + cisplatin (n =

98) vs. gemcitabine (n = 97)

mOS 7.5 mo vs. 6.0 mo (p = 0.15);
1-year OS 25.3% vs. 24.7% (p = 0.21);
mPFS 5.3 mo vs. 3.1 mo (p = 0.053);
response 10.2% vs. 8.2% ns; stable

60.2% vs. 40.2% (p < 0.001)

Moore (NCIC
CTG PA.3) [56] 2007 International 569

Gemcitabine plus erlotinib
(n = 285) vs. gemcitabine

plus placebo (n = 284)

mOS 6.24 mo vs. 5.91 mo (p = 0.038);
1-year OS 23% vs. 17% (p = 0.023);

mPFS 3.75 mo vs. 3.55 mo (p =
0.004); control 57.5% vs. 49.2%

(p = 0.07)

Herrmann [57]
(SAKK

44/00-CECOG/
PAN.1.3.001)

2007 Europe 319

Gemcitabine + capecitabine
(650 mg/m2 bid po 2/3

weeks) (n = 160) vs.
gemcitabine (standard dose)

(n = 159)

mOS 8.4 mo vs. 7.2 mo (p = 0.234);
1-year OS 32% vs. 30%; mPFS 4.3

mo vs. 3.9 mo (p = 0.103); response
10.0% vs. 7.8%; clinical benefit 19%

vs. 20%
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Table 3. Cont.

Trial Year Country/Region N Regimens Outcomes

Boeck [58] 2008 Germany 190

Capecitabine plus
oxaliplatin (n = 61) vs.

capecitabine plus
gemcitabine (n = 64) vs.

gemcitabine plus oxaliplatin
(n = 63)

mOS 8.1 mo vs. 9.0 mo vs. 6.9 mo (p
= 0.56); 1-year OS 29% vs. 33% vs.

22%; mPFS 4.2 mo vs. 5.7 mo vs. 3.9
mo (p = 0.67); 1-year PFS 8% vs.

14% vs. 8%; response 13% vs. 25%
vs. 13% (p = 0.13)

Cunningham
[59] 2009 UK 533

Gemcitabine + capecitabine
(830 mg/m2 bid po 3/4

weeks) (n = 267) vs.
gemcitabine (standard dose)

(n = 266)

mOS 7.1 mo vs. 6.2 mo (p = 0.08);
1-year OS 24.3% vs. 22.0%; mPFS

5.3 mo vs. 3.8 mo (p = 0.004); 1-year
PFS 13.9% vs. 8.4%; response 19.1%

vs. 12.4% (p = 0.03)

Poplin (E6201)
[60] 2009 USA 824

Gemcitabine (n = 275) vs.
fixed dose rate gemcitabine
(n = 277) vs. gemcitabine
plus oxaliplatin (n = 272)

mOS 4.9 mo vs. 6.2 mo vs. 5.7 mo;
1-year OS 16% vs. 22% vs. 21%;

2-year OS 4% vs. 6% vs. 6%; mPFS
2.6 mo vs. 3.5 mo vs. 2.7 mo

Kulke (CALGB
89904) [61] 2009 USA 245

Gemcitabine plus cisplatin
(n = 62) vs. fixed dose rate

gemcitabine (n = 58) vs.
gemcitabine plus docetaxel

(n = 65) vs. gemcitabine plus
irinotecan (n = 60)

mOS 6.7 mo vs. 6.4 mo vs. 6.4 mo
vs. 7.1 mo; mTTP 4.5 mo vs. 3.3 mo
vs. 4.1 mo vs. 4.0 mo; response 13%

vs. 14% vs. 12% vs. 14%

Colucci (GIP-1)
[62] 2010 Italy 400

Gemcitabine + cisplatin (n =
201) vs. gemcitabine (n =

199)

mOS 7.2 mo vs. 8.3 mo (p = 0.38);
1-year OS 30.7% vs. 34.0%; mPFS

3.8 mo vs. 3.9 mo (p = 0.80); 1-year
PFS 14.5% vs. 12.8%; response

12.9% vs. 10.1% (p = 0.37); clinical
benefit 15.1% vs. 23.0% (p = 0.057)

Dahan (FFCD
0301) [63] 2010 France 202

5-FU/folinic acid/cisplatin
followed by gemcitabine (n

= 102) vs. gemcitabine
followed by 5-FU/folinic
acid/cisplatin (n = 100)

mOS 6.7 mo vs. 8.03 mo (p = 0.83);
mPFS 3.4 mo vs. 3.5 mo (p = 0.67);

response 15% vs. 19%

PRODIGE 4/
ACCORD 11

[64]
2011 France 342 FOLFIRINOX (n = 171) vs.

gemcitabine (n = 171)

mOS 11.1 mo vs. 6.8 mo (P <0.001);
1-year OS 48.4% vs. 20.6%; mPFS

6.4 mo vs. 3.3 mo (p < 0.001); 1-year
PFS 12.1% vs. 3.5%; response 31.6%

vs. 9.4% (p < 0.001); 6-month
degradation QoL 31% vs. 66% (p <

0.001)

Ozaka
(JACCRO

PC-01) [65]
2012 Japan 112 Gemcitabine plus S-1 (n =

53) vs. gemcitabine (n = 59)

mOS 13.7 mo vs. 8.0 mo (p = 0.035);
1-year OS 55.9% vs. 29.0%; mPFS
6.15 mo vs. 3.78 mo (p = 0.0007);

response 28.3% vs. 6.8% (p = 0.005)

Nakai
(GEMSAP) [66] 2012 Japan 106 Gemcitabine plus S-1 (n =

53) vs. gemcitabine (n = 53)

mOS 13.5 mo vs. 8.8 mo (p = 0.104);
1-year OS 52.8% vs. 30.2% (p =

0.031); mPFS 5.4 mo vs. 3.6 mo (p =
0.036); response 18.9% vs. 9.4% (p =

0.265)

Chao [67] 2013 Taiwan 46 Gemcitabine + ciaplatin (n =
21) vs. gemcitabine (n = 25)

mOS 7.9 mo vs. 7.7 mo (p = 0.752);
1-year OS 9.5% vs. 12%; mTTP 3.6
mo vs. 4.6 mo (p = 0.857); partial

response 4.8% vs. 8% (p = 1); clinical
benefit 29% vs. 36% (p = 0.592)

Von Hoff and
Goldstein

(MPACT) [68]

2013
and
2015

International 11
countries 861

Gemcitabine +
nab-paclitaxel (n = 431) vs.

gemcitabine (n = 430)

mOS 8.7 mo vs. 6.6 mo (p < 0.001);
1-year OS 35% vs. 22% (p < 0.001);

2-year OS 10% vs. 5%; 3-year OS 4%
vs. 0%; mPFS 5.5 mo vs. 3.7 mo (p <

0.001); 1-year PFS 16% vs. 9%;
response 23% vs. 7% (p < 0.001);

mTTF 5.1 mo vs. 3.6 mo (p < 0.001)
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Table 3. Cont.

Trial Year Country/Region N Regimens Outcomes

Ueno and
Okusaka

(GEST) [69,70]

2013
and
2017

Japan and
Taiwan 834

Gemcitabine plus S-1 (n =
275) vs. S-1 (n = 280) vs.
gemcitabine (n = 277)

mOS 9.9 mo vs. 9.7 mo vs. 8.8 mo;
1-year OS 40.7% vs. 38.7% vs. 35.4%;
2-year OS 14.5% vs. 12.7% vs. 9.2%;
mPFS 5.7 mo vs. 3.8 mo vs. 4.1 mo;
1-year PFS 20.3% vs. 7.2% vs. 9.1%;
response 29.3% vs. 21.0% vs. 13.3%

Sudo [71] 2014 Japan 101 Gemcitabine plus S-1 (n =
51) vs. gemcitabine (n = 50)

mOS 8.6 mo vs. 8.6 mo (p = 0.714);
mPFS 5.3 mo vs. 3.8 mo (p = 0.039);
response 21.6% vs. 6% (p = 0.048)

Petrioli [72] 2015 Italy 67
Gemcitabine + capecitabine

+ oxaliplatin (n = 34) vs.
gemcitabine (n = 33)

mOS 11.9 mo vs. 7.1 mo (p < 0.001);
mPFS 6.8 mo vs. 3.7 mo (p < 0.001);

4-month control 79.4% vs. 45.4%
(p = 0.08)

Wang [73] 2015 Taiwan 88
Gemcitabine plus erlotinib

(n = 44) vs. gemcitabine
(n = 44)

mOS 7.2 mo vs. 4.4 mo (p < 0.001);
mPFS 3.8 mo vs. 2.4 mo (p < 0.001);

control 64% vs. 25% (p < 0.001)

Lee [74] 2017 Korea 214

Gemcitabine + capecitabine
(830 mg/m2 bid po 3/4

weeks) (n = 103) vs.
gemcitabine (standard dose)

(n = 101)

mOS 10.3 mo vs. 7.5 mo (p = 0.06);
mPFS 6.2 mo vs. 5.3 mo (p = 0.08);

response 43.7% vs. 17.6% (p = 0.001)

For locally advanced non-metastatic pancreatic cancer, the additional role of radiotherapy has
been studied, but the survival benefits of chemoradiotherapy (CRT) are still undetermined. There is
currently very limited evidence from randomized clinical trials supporting the use of CRT in this setting.
In a systematic review, Huguet and colleagues indicated that CRT increased overall survival when
compared with best supportive care or exclusive radiotherapy, but it was more toxic [76]. The advantage
of CRT over exclusive chemotherapy is inconsistent (Table 4) [77–83]. Induction chemotherapy may
select patients with locally advanced pancreatic cancer for optimal benefit from CRT by excluding
patients with rapid progressive disease. Two retrospective studies indicated significantly improved
survival benefit with the use of induction chemotherapy before continuing with CRT, as compared with
upfront CRT or with exclusive chemotherapy [84,85]. A recent meta-analysis showed that induction
chemotherapy followed by consolidation CRT did not significantly improve survival in patients with
locally advanced pancreatic cancer as compared to chemotherapy alone; however, the survival benefit
of this treatment strategy over chemotherapy alone was noted only when induction chemotherapy
lasted for at least 3 months [86].

In patients with locally advanced unresectable tumor at primary diagnosis, resectability should
be reassessed after first treatment. Patients presenting significant response to chemotherapy and/or
CRT should undergo surgery if R0 resection seems to be achievable according to the latest imaging as
this significantly improves their prognosis (preliminary data from CONKO 007 trial).

When first-line treatment fails, second-line therapy is increasingly considered in patients
with good performance status, as it is suggested in association with improved survival [87,88].
There is a paucity of clinical evidence supporting any optimal second-line regimens for patients
with advanced pancreatic cancer. For those who have received prior gemcitabine-based therapy,
fluoropyrimidine-based chemotherapy regimens are generally accepted as the second-line options.
On the other hand, gemcitabine-based therapy could be used to those previously treated with
fluoropyrimidine-based therapy. Chemoradiation could be considered in patients with locally
advanced disease, but palliative radiotherapy may be administered to patients with locally metastatic
disease and poor performance status.
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Table 4. Summary of randomized controlled trials concerning chemoradiation in patients with locally
advanced pancreatic carcinomas.

Trial Year Country/Region N Regimens Outcomes

Chauffert [77]
(2000-01

FFCD/SFRO)
2008 France 119

CRT (60 Gy, 5-FU/cisplatin) plus
maintenance gemcitabine
chemotherapy (n = 59) vs.

gemcitabine chemotherapy
(n = 60)

mOS 8.6 mo vs. 13 mo
(p = 0.03); 1-year OS 32% vs.
53%; 1-year PFS 14% vs. 32%

Loehrer [78] 2011 USA 74
CRT (50.4 Gy, gemcitabine)

(n = 34) vs. gemcitabine
chemotherapy (n = 37)

mOS 11.1 mo vs. 9.2 mo
(p = 0.017); mPFS 6.0 mo vs.
6.7 mo; response 6% vs. 5%;

stable 68% vs. 35%

Hammel
(LAP-07) [79] 2016 International 449 gemcitabine (n = 223) vs.

gemcitabine + erlotinib (n = 219)

From first randomization,
mOS 13.6 mo vs. 11.9 mo (p =
0.09); mPFS 7.8 mo vs. 6.5 mo

(p = 0.26)

269
chemotherapy same as previously
for 2 mo (n = 136) vs. CRT (54 Gy,

capecitabine) (n = 133)

From first randomization,
mOS 16.5 mo vs. 15.2 mo (p =
0.83); mPFS 8.4 mo vs. 9.9 mo
(p = 0.06); local progression

46% vs. 32% (p = 0.03)

Li [80] 2003 Taiwan 34

CRT (50.4~61.2 Gy, gemcitabine)
(n = 18) vs. CRT (50.4~61.2 Gy,

5-FU) (n = 16), both followed by
gemcitabine chemotherapy

mOS 14.5 mo vs. 6.7 mo (p =
0.027); 1-y OS 56% vs. 31%;

2-y OS 15% vs. 0%; mTTP 7.1
mo vs. 2.7 mo (p = 0.019);
response 50% vs. 12.5%

(p = 0.005)

Wilkowski [81] 2009 Germany 95

CRT (50 Gy, 5-FU) (n = 30) vs.
CRT (50 Gy, gemcitabine/cisplatin)

(n = 32) vs. CRT (50 Gy,
gemcitabine/cisplatin) followed

by gemcitabine/cisplatin
chemotherapy (n = 31)

mOS 9.6 mo vs. 9.3 mo vs. 7.3
mo (p = 0.61); 9-mo OS 58% vs.
52% vs. 45%; mPFS 4.0 mo vs.
5.6 mo vs. 6.0 mo (p = 0.21);

response 19% vs. 22% vs. 13%

Mukherjee and
Hurt [82,83]

2013
and
2017

UK 114

Induction chemotherapy with
gemcitabine and capecitabine for
12 weeks, if no tumor progression,

then chemotherapy with
gemcitabine and capecitabine for
another cycle; then CRT (50.4 Gy,

capecitabine) (n = 36) vs. CRT
(50.4 Gy, gemcitabine) (n = 38)

mOS 17.6 mo vs. 14.6 mo (p =
0.185); 1-year OS 79.2% vs.

64.2%; mPFS 12.0 mo vs. 10.4
mo (p = 0.120); 9-mo PFS

62.9% vs. 51.4%; response (26
weeks) 23% vs. 19%

2.4. Palliative Care

A considerable proportion of patients with pancreatic cancer require palliative interventions to
relieve symptoms and ensure optimal quality of life. Biliary obstruction is one of the most common
severe circumstances in patients with pancreatic cancer. Placement of self-expanding metal stents
is the preferred method to relieve biliary obstruction in patients with unresectable disease, as it is
associated with lower rates of, and longer time to, recurrent biliary obstruction as compared to plastic
stents, resulting in less cholangitis [89,90]. Placing the stents endoscopically is preferable as it is safer
than percutaneous insertion; however, percutaneous biliary drainage is an alternative option when
an endoscopic stent cannot be placed. Another option is surgical biliary bypass, which is considered
when the cancer is found unresectable during attempted resection, as it provides durable palliation
and potentially avoids additional stent-insertion procedure [91]. For patients with gastric outlet
obstruction, endoscopically placed enteral stent is preferred for patients with a short life expectancy
or poor performance status, while gastrojejunostomy is considered more effective for patients with
longer life expectancy and favorable prognosis [92]. As the quality of life is markedly hampered if
gastric outlet obstruction occurs, prophylactic gastrojejunostomy could be considered for those at risk
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of developing symptomatic gastric outlet obstruction but otherwise fit and with a relatively good
prognosis [93].

Most patients with locally advanced or metastatic pancreatic cancer develop cancer-related pain.
The mainstay of pain management in these patients is administration of analgesics. However, for those
whose analgesic control shows inadequate or with undesirable side effects, EUS- or image-guided
celiac plexus neurolysis could significantly improve pain relief [94]. In selected patients with severe
local back pain refractory to analgesia, palliative radiation might be considered to ameliorate pain [95].
Except pain, malnutrition is also prevalent in patients with pancreatic cancer. A proper nutritional
evaluation should be performed, and oral pancreatic enzyme should be administered in patients with
both unresectable and resected pancreatic cancer [96]. Additionally, the risk of developing venous
thromboembolism is substantially increased in patients with pancreatic cancer. Low molecular weight
heparin is preferably administered, as randomized clinical trials indicated significantly decreased
incidence of venous thromboembolism associated with intake of low molecular weight heparins [97,98].

2.5. Conclusion/Future Directions

Even with the latest efforts for novel therapeutic strategies, especially new chemo(radio)therapy
regimens in (neo)adjuvant settings and improved surgical options, the clinical outcome of patients with
pancreatic cancer remains disappointing. Clinically, we anticipate a higher amount of neoadjuvant
therapeutic approaches for patients with non-metastatic pancreatic cancer in the near future; however,
a better understanding of the underlying molecular mechanisms of this disease is of central importance
to design new therapeutic strategies for all patients (Figure 1b). For molecular testing of pancreatic
cancer, an individualized therapeutic concept for each patient might be available, thus leading to a
better prediction of the patient’s prognosis, a better prediction of the effectiveness of the available
chemotherapeutics, and finally improvement in the patient’s outcome.

3. Immunotherapy and Other State-of-the-Art Molecular Options

Knowledge of the molecular aspects is becoming increasingly important in the therapy and
prognosis of patients with ductal pancreatic carcinoma. The understanding of pancreatic carcinoma at
the molecular level is a complex interplay of various factors (Figure 2): In patients with pancreatic ductal
adenocarcinoma (PDAC) the tumor microenvironment, consisting of cellular and stromal components,
plays an important role and influence prognosis leading to development of tumor vaccination as a
potential future treatment option. The influence of genes plays a decisive role as well. The most
common genes in pancreatic carcinoma are KRAS, TP53, CDKN2A, and SMAD4/TGFBR1/2. In addition
to the immunological and genetic components, epigenetic modifications and molecular subtypes have
a significant influence on PDAC. Promising findings for diagnostic and treatment are expected from
liquid biopsy.

3.1. Immunotherapy

Pancreatic cancers are characterized by an immunosuppressive microenvironment due to the
dysfunction of immune effector CD8+ T cells and Natural killer (NK) cells, which is a result of the
involvement of multiple types of immune cells, including cancer-associated fibroblasts, regulatory
T cells, myeloid-derived suppressor cells, tumor-associated macrophages, and tumor-infiltrating
lymphocytes [99]. The immune suppression occurs through both the expression of tolerance-inducing
cell surface molecules (PD-1, CTLA-4, and CD40) and the secretion of immunosuppressing cytokines
(IL-10, TGF-β) [100]. The function of the immune system is therefore converted from anti-cancer
immunity to a supportive microenvironment that fosters the growth and invasion of the tumor and
helps the tumor escape from host immune surveillance. Thus, strategies could be exploited to disrupt
this immunosuppressive network and promote the tumoricidal activity of these immune effector cells
to potentially improve the outcome of the patients [100,101].
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T cells are activated when antigen presenting cells (APCs) present antigen peptides on both major
histocompatibility complex (MHC) class I (for CD8+ T cells) and class II (for CD4+ T helper cells)
molecules to the T cell receptor (TCR) [100]. Effective activation of T cells also requires additional ligand
binding of co-stimulatory receptors, such as CD40, which is a member of the tumor necrosis factor (TNF)
receptor family presented on APCs such as tumor-associated macrophages. CD40 on the surface of
APCs could bind with the CD40 ligand expressed on activated CD4+ T cells, thus forming a stimulatory
loop. CD40 and its ligand (CD154) are both expressed in a subset of pancreatic patients, and the
high expression of CD40 ligand is associated with significantly better prognosis than others [102].
The activation of CD40 with a CD40 agonist in combination with gemcitabine is indicated to promote
accumulation of tumoricidal macrophages within the tumors in the KPC mouse model, which resulted
in stromal collapse and tumor regression in the KPC mouse model and some advanced-stage pancreatic
cancer patients [103,104]. On the other hand, inhibitory receptors such as programed cell death-1 (PD-1)
and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) expressed on the surface of T cells inhibit
T cell activation upon binding to their ligands. PD-1 is an immune checkpoint receptor expressed
on activated T cells; whereas PD-1 ligands (PD-L1 and PD-L2) could be expressed on stroma and
cancer cells. The binding of PD-1 ligands to PD-1 inactivates T cell responses to the cells presenting
these ligands, i.e., the pancreatic cancer cells and stroma in this situation, facilitating the cancer to
escape from the host’s immune surveillance [101]. PD-L1 expression, but not PD-L2, is correlated
to significantly poorer survival than the ligand-negative patients, and it is inversely correlated with
tumor-infiltrating lymphocytes within the tumor, particularly CD8+ T cells [105]. In vivo experiments
suggested that blockade of PD-1 signaling with anti-PD-L1 or anti-PD-1 monoclonal antibody promoted
CD8+ T cells infiltration into the tumor, induced local immune activation, and finally resulted in
substantial anti-tumor effects in a murine pancreatic cancer model [105]. However, the effect of PD-L1
inhibitors in treating patients with pancreatic cancer was low [106]. A preclinical study using the KPC
mouse model suggested that depletion of fibroblast-associated protein (FAP)-positive cancer-associated
fibroblasts (CAFs) sensitized the tumor to the treatment with anti-PD-L1 monoclonal antibody [107].
FAP-positive CAFs in tumor stroma are the major source of C-X-C motif ligand 12 (CXCL12) in the
tumor, and inhibition of its receptor, the C-X-C motif receptor 4 (CXCR4), induced T cell accumulation
in the tumor and acted synergistically with anti-PD-L1 in diminishing cancer cells [107]. In addition,
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PD-L1 inhibitor and gemcitabine chemotherapy also showed synergistic effect on pancreatic cancer in
preclinical mouse model [105]. CTLA-4 is another inhibitory checkpoint protein expressed on regulatory
T cells and exhausted CD8+ T cells. In a transgenic mouse model, depletion of myofibroblasts induced
an immunosuppressive microenvironment, as characterized by decreased overall immune infiltration
but increased number of regulatory T cells, which then accelerated the progression of pancreatic
cancer leading to reduced survival [108]. The use of anti-CTLA-4 monoclonal antibody reversed the
accelerated disease progression and prolonged survival in this CAFs-depleted mouse model. Although
single agent Ipilimumab (an anti-CTLA-4 monoclonal antibody) immunotherapy was shown in a
phase 2 study ineffective in the treatment of advanced pancreatic cancer, it might be considered when
combination chemotherapy with nab-paclitaxel and gemcitabine is applied, as this regimen decreased
the number of CAFs in the treatment of pancreatic cancer [109,110].

Tumor vaccination is another immunotherapeutic strategy on the basis that tumor antigens,
both mutated proteins present exclusively on cancer cells and normal proteins present at a higher
concentration on cancer cells, are expressed by a remarkable proportion of pancreatic tumors [100].
The vaccines could be administered as whole cells, proteins, peptides, DNA, and RNA, which can
cause antigen-specific T cell responses that may lead to tumor regression. KRAS is one of the most
frequent oncogenic mutations present in pancreatic cancers, mostly as a single point mutation at
codon 12 resulting in a constitutive activation of KRAS, which can be recognized both by T helper
cells and cytotoxic T-cells and can be used as an antigen in peptide vaccination for tumors with
KRAS mutations [111]. In a phase 1/2 clinical trial, a mutant KRAS vaccine, designed to induce
T-helper responses, seemed to induce immunologic response in a number of patients with resected
pancreatic cancer, and it might be associated with improved long-term immune responses and long-term
survival [111]. However, in another study, KRAS vaccination for patients with resected pancreatic
cancer failed to show elicitable immunogenicity or proven efficacy, although it is safe and tolerable [112].
Whole tumor cell vaccines have the advantage of containing all possible tumor antigens and can
be patient-specific. GVAX pancreas is an allogeneic whole-cell pancreatic cancer vaccine generated
from pancreatic cancer cell lines modified to express granulocyte-macrophage colony-stimulating
factor (GM-CSF) [113]. The rationale for designing the allogeneic GVAX vaccine is that many tumor
antigens are commonly expressed among different patients’ cancers, and GM-CSF released by the
modified tumor cells induce antigen-presenting cells chemotaxis to the vaccinating tumor, which then
phagocytose the tumor cells and present the tumor antigens on MHC class I and II molecules to both
CD4+ and CD8+ T cells and thus induce immune-response against the tumor. In several clinical trials,
the GVAX pancreas vaccine, in combination with the use of conventional chemotherapy, is shown
well-tolerated and induced systemic antitumor immunity to autologous tumor cells in a dose-dependent
manner in both resected and advanced pancreatic cancer patients [113–115]. Besides, the use of GVAX
is seemingly associated with improved survival and correlated with mesothelin-specific CD8+ T cell
responses [114,115]. To enhance the efficacy of GVAX pancreas tumor vaccine, cyclophosphamide
could be administered to inhibit regulatory T cells [115]. Apart from being used in combination with
chemotherapeutic agents, GVAX pancreas could also be administered in combination with CRS-207,
a live-attenuated Listeria monocytogenes vaccine expressing mesothelin, which could increase the
incidence of mesothelin-specific T cell responses [116]. GVAX/cyclophosphamide in combination
with CRS-207 for second-line treatment was suggested to extend survival in patients with metastatic
pancreatic cancer [117]. In addition, the combination of GVAX and immune checkpoint inhibitors
might provide further benefit to patients with pancreatic cancer and could be evaluated in clinical
trials [118,119]. Nevertheless, the use of a telomerase peptide vaccine, GV-1001, in combination with
modern chemotherapeutic agents gemcitabine and capecitabine did not show any survival advantage
when compared to chemotherapy alone in patients with locally advanced or metastatic pancreatic
cancers [120].

Other immunotherapeutic strategies have also been tested in patients with pancreatic cancers;
however, most of them failed to show any clinically meaningful effects as had been found in other
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malignancies. Therefore, new strategies of immunotherapy to induce potent immune response to the
tumors need to be developed. Investigation in molecular mechanisms that underlie the tumorigenesis
of pancreatic cancer may provide novel therapeutic opportunities in these patients and instruct patient
selection for optimal treatment.

3.2. Molecular Pathology of Pancreatic Ductal Adenocarcinoma

Cancer is a genetic disease caused by the accumulation of somatic mutations in oncogenes and
tumor suppressor genes. Genetic analyses reveal four major oncogenes (KRAS, CDKN2A, TP53,
SMAD4), amongst other mutated genes present at lower prevalence, involved in the development
of pancreatic ductal adenocarcinoma [121]. Somatic activating mutations of the KRAS oncogene,
which encodes a ~21 kDa small GTPase, are present in over 90% of PDAC patients [122]. In PDACs,
the activating mutations of KRAS are mostly point mutations at codon 12, leading to constitutive
activation of KRAS protein and persistent stimulation of downstream pathways. Three major KRAS
downstream pathways are identified in PDAC, including Raf/Mek/Erk, PI3K/Pdk1/Akt, and the Ral
guanine nucleotide exchange factor pathway. In vivo analyses with mouse models demonstrate that
sustained oncogenic KRAS signaling is essential for both the progression and maintenance of PDAC and
the growth and maintenance of its metastatic lesions [123–125]. Apart from advanced PDAC, somatic
KRAS activating mutation is also present in most low-grade pancreatic intraepithelial neoplasms
(PanINs)—the most common precursor lesion of PDAC, indicating that KRAS mutation is one of
the earliest alterations in the initiation of pancreatic tumorigenesis [126]. However, low frequency
of spontaneous progression of precursor lesions to invasive PDAC suggests that additional genetic
aberrations (CDKN2A, TP53, or SMAD4) are needed for disease progression [127].

Three major tumor suppressor genes (CDKN2A, TP53, and SMAD4) have been identified frequently
mutated in PDAC, and they are strongly associated with malignant behavior of the tumor and may
predict poor survival in patients with resectable pancreatic cancers [128]. The cyclin dependent
kinase inhibitor 2A (CDKN2A), which functions in cell cycle control by a combination of 2 CDK
kinase inhibitor isoforms and 1 alternate open reading frame isoform as p53 protein stabilizer, is the
most frequent altered tumor suppressor gene, with loss-of function mutations in more than 90% of
PDAC [129,130]. Alterations in CDKN2A are also early events, with loss of protein function in a subset
of low-grade PanINs [126,131]. On the contrary, alterations of TP53 and SMAD4 expression are late
events, occurring only in high grade PanINs or invasive carcinomas [131,132]. Somatic mutations in
the tumor suppressor gene TP53, which responds to diverse cellular stresses by inducing cell cycle
arrest and apoptosis, are also frequently shown in PDACs [133]. In addition to pancreatic cancers,
mutations in this gene are also associated with a wide range of human cancers. Somatic inactivation of
tumor suppressor gene SMAD family member 4 (SMAD4) occurs in greater than 50% of PDACs [134].
SMAD4 encodes a signal transduction protein downstream of the transforming growth factor β

(TGF-β) pathway. In response to the activating signaling from TGF-β, Smad 2/3, the TGF-β receptor
substrates, are phosphorylated and associated with Smad 4, forming a Smad complex, which then
translocates into the nucleus and regulates gene expression by interacting with DNA and DNA-binding
proteins [134]. In normal pancreas cells, the TGF-β/SMAD4 signaling pathway induces a tumor
suppressive effect by activation of cell cycle arrest, apoptosis of epithelial cells, and the maintenance of
genomic integrity; whereas, in PDACs, due to inactivation or loss of SMAD4, SMAD4-independent
TGF-β signaling pathways are triggered, resulting in reduced cell cycle arrest and apoptosis, promotion
of epithelial-to-mesenchymal transition and angiogenesis and induction of immune suppression, all of
which lead to progression and metastasis of cancer cells [134]. However, studies using genetically
engineered mice show that pancreas-specific SMAD4 deficiency does not initiate either PanIN or
invasive PDAC; SMAD4 loss markedly promotes tumor progression initiated by KRASG12D activating
mutation, indicating that blockade of TGF-β signaling and activation of Ras signaling cooperate
to promote PDAC progression [135,136]. In addition, overexpression of TGF-β activates Ras/Erk,
P13K/AKt, p38 MAPK, and NF-κB pathways, all of which play a role in PDAC tumorigenesis.
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Apart from these well-characterized oncogene and tumor suppressor genes, other genes are
altered at lower prevalence in PDACs but may still play a pivotal role in pancreatic oncogenesis.
For instance, GPRC5A, a member of the G protein-coupled receptor family, is shown upregulated in
pancreatic cancer primary and metastatic lesions as compared with normal tissues, and it promotes
the growth and migration of pancreatic cancer cells [137]. The standard chemotherapy treatment
with gemcitabine increased the expression of GPRC5A by the interaction between its mRNA and
RNA-binding protein HuR; whereas, knockout of GPRC5A sensitized pancreatic cancers to gemcitabine
chemotherapy. Knockout of GPRC5A reduced the proliferation and migration ability of PDAC cells
and suppressed chemotherapy resistance with various chemotherapy agents currently in clinical use,
suggesting that targeting GPRC5A may have the potential to improve chemotherapy efficacy [138].
The RIP 1/3 proteins, the main components of the necrosome, are also shown highly expressed in PDAC
and are pivotal in the process of necroptosis, another type of programed cell death [139]. The RIP 1/3
promote PDAC oncogenesis and induce the immunosuppressive tumor microenvironment through
both the necroptosis-induced CXCL1 and Mincle signaling; whereas, depletion of RIP 1/3, CXCL1,
or Mincle protected against PDAC progression and restored anti-tumor immunity in vivo.

Moreover BRCA1 and BRCA2 mutations resulting in DNA damage repair deficiency and increasing
especially the risk for breast and ovarian cancer are the most common causes of familial pancreatic
cancer. In familial pancreatic cancer, BRCA2 is mutated in about 5% to 10% of cases and BRCA1 in
approximately 1% [140].

3.2.1. Molecular Subtypes of Pancreatic Cancers and Other Considerations Based on Genomic and
Transcriptomic Analyses

Whole-exome and genome sequencing has revealed that human PDAC is an extremely
heterogeneous disease with diverse molecular subtypes [141–147]. Although the major oncogenic
mutations are pivotal in the tumorigenesis of PDAC, most other genes are mutated in only a small
proportion of tumors. These genes, however, are typically a part of or affect several common signaling
pathways. Studies with these cutting-edge analyses show that there are several principal signaling
pathways that are genetically altered in most PDACs, but specific genes altered in any individual
tumor are largely different [141,142]. This molecular heterogeneity of PDACs may explain, at least in
part, the reason why agents targeting specific oncogenic genes have mostly failed to benefit unselected
patient populations. Thus, drugs targeting a signaling pathway or a key point of the pathway could
potentially improve treatment outcomes and warrant further development.

Many studies set out to define molecular subtypes of PDACs based on the genetic mutational
characteristics of the tumor to provide evidence for patient selection for optimal treatment [144–147].
In the most recent study conducted by an international research group, Bailey and colleagues, with the
use of transcriptomic sequencing, propose 4 molecular subtypes of PDACs: squamous, pancreatic
progenitor, aberrantly differentiated endocrine exocrine (ADEX), and immunogenic based on the
differential expression of transcription factors and downstream targets [147]. Squamous tumors
are characterized by the alteration of gene networks involved in inflammation, hypoxia response,
metabolic reprogramming, TGF-β signaling, and autophagy. They are also associated with mutations
in TP53 and KDM6A, activation of MYC signaling, α6β1 and α6β4 integrin signaling, and EGF
signaling pathways, upregulation of TP63∆N network, as well as hypermethylation of pancreatic
endodermal cell-fate determining genes (PDX1, MNX1, GATA6, and HNF1B). In addition, pancreatic
squamous tumors have a poor prognosis. Pancreatic progenitor tumors are defined by the preferential
expression of genes involved in pancreatic endoderm cell-fate determination towards a pancreatic
lineage that are pivotal for early pancreatic development, including transcription factors PDX1, MNX1,
HNF4G, HNF4A, HNF1B, HNF1A, FOXA2, FOXA3, and HES1. Besides, alterations in genes regulating
fatty acid oxidation, steroid hormone biosynthesis, drug metabolism and O-linked glycosylation of
mucins, as well as TGFBR2 inactivation are also typical in this subtype. The ADEX class, which is
a subclass of the pancreatic progenitor tumors, displays upregulation of transcriptional networks
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involved in later stages of pancreatic development and differentiation. Transcriptional networks
involved in both exocrine (NR5A2, MIST1, RBPJL and their downstream targets) and endocrine (INS,
NEUROD1, NKX2-2, and MAFA) differentiation at later stages are upregulated, rather than one or the
other as is the case in normal pancreas development. The immunogenic subtype, apart from sharing
many molecular characteristics with pancreatic progenitor tumors, is associated with upregulated
immune networks including B cell signaling pathways, antigen presentation, CD4+ T cell, CD8+ T
cell and Toll-like receptor signaling pathways. Additionally, the study also identified 32 recurrently
mutated genes aggregating into 10 signaling pathways, including KRAS, TGF-β, WNT, NOTCH,
ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA
processing. The identification of signaling pathways important in PDAC tumorigenesis and molecular
classification provides the most pivotal insights in improving the clinical outcomes of PDAC patients
by selecting patients for the optimal therapy.

Recent studies based on novel genomic analysis and informatics methods also challenge the
conventional notion of pancreatic cancer progression model [148]. PDAC tumorigenesis may neither
be gradual nor follow the currently prevailing model of gene alteration sequence (KRAS, followed by
CDKN2A, then TP53 and SMAD4). On the contrary, simultaneous gene rearrangements associated with
mitotic errors occur at early stages of tumorigenesis and confer its invasive and metastatic properties,
which is supported by the observation that early stage PanIN2 lesions share a great proportion of
somatic mutations required for PDAC development with the invasive cancer [149].

3.2.2. Epigenetic Modifications in the Tumorigenesis of PDACs

Another concern in the initiation and progression of PDAC is the epigenetic modifications of
oncogenes and tumor suppressor genes, which alter the conformation of the chromatin and histones
in a reversible manner, leading to changes in gene promoter accessibility and gene expression [150].
The best characterized mechanisms of epigenetic regulations that play a role in the tumorigenesis of
PDACs include DNA methylation and histone modifications (such as methylation and acetylation).
DNA methylation of tumor suppressor genes APC, BRCA1, CDKN2A at their promoter regions blocks
transcription activity, which is thought to be associated with human PDACs [150]. Genome-wide DNA
methylation analysis in PDACs shows that aberrant hypermethylation is prevalent at 5’ regions with
reduced mRNA expression levels and is involved in key molecular mechanisms important to PDAC,
including TGF-β, Wnt, integrin signaling, cell adhesion, stellate cell activation, and axon guidance
signaling pathways [151]. DNA methylation is carried out by 3 active DNA methyltransferases
(DNMTs), including DNMT1, DNMT3A, and DNMT3B, which transfer a methyl group from
S-adenosylmethionine to cytosine residues in DNA. All 3 DNMTs have been shown increased
in PDACs and are associated with lower overall survival [152,153]. Several DNMT inhibitors have
been developed and shown some promising results, but their efficacy in the treatment of pancreatic
cancer still needs further investigations [150].

Histone methylation and acetylation are the 2 most important types of histone modifications
associated with pancreatic tumorigenesis. Histone methylation is regulated by histone methyltransferases
(HMTs) and histone demethylases (HDMs) in a reversible manner, mostly on the lysine residues
of histone amino acid side chains [150]. The effect of histone methylation varies depending on the
position of methylated lysine residue and the extent of methylation (mono-, di, or tri-methylation).
A recent whole genome sequencing and copy number analysis identified KDM6A and MLL2 as the
most frequently altered histone methylation regulatory genes in pancreatic cancers [146]. KDM6A is
an H3K27me3 demethylase, which is also crucial for pancreas endodermal differentiation through
regulating Wnt signaling pathway [154]. Enrichment of H3K27me3 marks on gene promoter regions
is associated with suppressed expression of the genes. H3K27 methylation is carried out by the
histone methyltransferase EZH2, a component of the polycomb group protein complex, which is
upregulated within the cell nucleus in PDAC and possibly contributes to its progression [155]. However,
a study with pancreatic tissue sample indicates that H3K27me3 expression is significantly reduced in
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pancreatic cancer as compared to normal tissues and is associated with worse overall survival [156].
On the other hand, MLL2 is a methyltransferase for H3K4 (an activating epigenetic mark) and is
shown altered in a smaller proportion of PDACs [156]. Histone acetylation is the most well-studied
histone modification. The acetylation of histones, with an acetyl group attached to the lysine residues
of histone N-terminal tails, generally results in relaxed chromatin conformation and transcription
activation [150]. It is a balanced dynamic process controlled by the reverse regulatory functions of
histone acetyltransferases (HATs) and histone deacetylases (HDACs); whereas, aberrant balance of
HATs and HDACs is implicated in a variety of human diseases, including pancreatic cancers. HDACs
1, 2, 3, and 7 have been found overexpressed in a subset of PDACs, which all play an important role in
the development of the disease [157]. However, the functions of HATs have been far less investigated.
The HAT p300 seems to possess multifaceted functions in the tumorigenesis of PDACs: it shows
decreased expression in highly metastatic PDAC cell lines, suggesting a metastasis-suppressive role
in PDACs; and it is also involved in the activation of c-myc gene, suggesting its growth-promoting
function in PDACs [157]. Various agents targeting HATs and HDACs have been intensively tested in
preclinical and clinical studies, but their effects are generally disappointing [158]. Hence, novel agents
with highly selective targeting functions and the underlying molecular mechanisms of epigenetic
modifications clearly warrant further exploration.

Additionally, posttranscriptional RNA modification is another aspect of epigenetic regulation.
N6-methyladenosine (m6A) is the most abundant mRNA modification in mammals, which is a
reversible process regulated by a group of RNA methyltransferases and demethylases, regulating
RNA stabilities, mRNA splicing, microRNA processing, and mRNA translation. A recent preclinical
study shows that methyltransferase-like 3 (METTL3), an RNA m6A methyltransferase, is involved
in the chemo- and radioresistance in pancreatic cancer cells, although it does not show any effect on
the morphology and proliferation of the cells [159]. On the other hand, another study shows that
ALKBH5, an RNA demethylase, is down-regulated in pancreatic cancer cells, and is associated with
the significant enrichment of total RNA methylation in PDAC cells [160]. The cellular and molecular
processes of RNA methylation underlying PDAC development still needs further investigation.

Two further proteins playing an important role in epigenetic regulation of PDAC are UNR
(Upstream of N-ras) and PIWI (P-element-induced wimpy testis). Low UNR expression was significantly
associated with shorter progression-free survival after surgery [161]. Human P-element-induced
wimpy testis 1 and 2 (PIWIL1 and PIWIL2) proteins act as protectors of germline and correlate with
factors associated to the progenitor molecular subtype of PDAC [162]. Both proteins could be a potential
prognostic biomarker for resectable PDAC, improving subsequent adjuvant treatment decisions.
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PDAC Pancreatic ductal adenocarcinoma
EUS-FNA Endoscopic ultrasound-guided fine needle aspiration
CRT Chemoradiotherapy
ECOG Eastern Co-operative Oncology Group
NK cells Natural killer cells
APC Antigen presenting cells
MHC Major histocompatibility complex
PD-1 Programed cell death-1
CTLA-4 Cytotoxic T-lymphocyte associated protein-4
FAP Fibroblast-associated protein
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CAF Cancer-associated fibroblast
GM-CSF Granulocyte-macrophage colony-stimulating factor
PanIN Pancreatic intraepithelial neoplasm
CDKN2A Cyclin dependent kinase inhibitor 2A
TGF-β Transforming growth factor β
ADEX Aberrantly differentiated endocrine exocrine
HMT Histone methyltransferase
HDM Histone demethylase
HAT Histone acetyltransferase
HDAC Histone deacetylase
UNR Upstream of N-ras
PIWI P-element-induced wimpy testis
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