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Abstract

Background: microRNAs (miRNAs) are a class of small non-coding RNAs which have been recognized as
ubiquitous post-transcriptional regulators. The analysis of interactions between different miRNAs and their target
genes is necessary for the understanding of miRNAs’ role in the control of cell life and death. In this paper we
propose a novel data mining algorithm, called HOCCLUS2, specifically designed to bicluster miRNAs and target
messenger RNAs (mRNAs) on the basis of their experimentally-verified and/or predicted interactions. Indeed,
existing biclustering approaches, typically used to analyze gene expression data, fail when applied to miRNA:mRNA
interactions since they usually do not extract possibly overlapping biclusters (miRNAs and their target genes may
have multiple roles), extract a huge amount of biclusters (difficult to browse and rank on the basis of their
importance) and work on similarities of feature values (do not limit the analysis to reliable interactions).

Results: To overcome these limitations, HOCCLUS2 i) extracts possibly overlapping biclusters, to catch multiple
roles of both miRNAs and their target genes; ii) extracts hierarchically organized biclusters, to facilitate bicluster
browsing and to distinguish between universe and pathway-specific miRNAs; iii) extracts highly cohesive biclusters,
to consider only reliable interactions; iv) ranks biclusters according to the functional similarities, computed on the
basis of Gene Ontology, to facilitate bicluster analysis.

Conclusions: Our results show that HOCCLUS2 is a valid tool to support biologists in the identification of context-
specific miRNAs regulatory modules and in the detection of possibly unknown miRNAs target genes. Indeed,
results prove that HOCCLUS2 is able to extract cohesiveness-preserving biclusters, when compared with
competitive approaches, and statistically confirm (at a confidence level of 99%) that mRNAs which belong to the
same biclusters are, on average, more functionally similar than mRNAs which belong to different biclusters. Finally,
the hierarchy of biclusters provides useful insights to understand the intrinsic hierarchical organization of miRNAs
and their potential multiple interactions on target genes.

Backgound
miRNAs are post-transcriptional regulators which represent
one of the major regulatory gene families in animals, plants
and viruses. They bind to complementary sequences on tar-
get mRNAs, resulting in negative regulation (transcript
degradation and sequestering, translational suppression) or

positive regulation (transcriptional and translational activa-
tion) [1,2]. Studies on interactions between miRNAs and
their target genes are of the utmost importance to under-
stand the role of miRNAs in controlling cell processes and
metabolic pathways [3] as well as to discover unknown
functional synergies.
This work aims to contribute to the elucidation of miR-

NAs’ complex biological functions by proposing a method
for biclustering miRNAs and mRNAs. Biclustering is a
data mining task whose goal, similar to the classical

* Correspondence: gianvito.pio@uniba.it; michelangelo.ceci@uniba.it
1Department of Computer Science, University of Bari “Aldo Moro”, Via
Orabona 4, 70125, Bari, Italy
Full list of author information is available at the end of the article

Pio et al. BMC Bioinformatics 2013, 14(Suppl 7):S8
http://www.biomedcentral.com/1471-2105/14/S7/S8

© 2013 Pio et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:gianvito.pio@uniba.it
mailto:michelangelo.ceci@uniba.it
http://creativecommons.org/licenses/by/2.0


clustering, is to group together similar objects. The differ-
ence is that objects that fall in the same cluster are of two
different types. Furthermore, objects of one type are clus-
tered together according to their relationships with objects
of the other type (symmetrically).
The method we propose identifies (possibly unknown)

highly connected networks of miRNAs and mRNAs, that
is, regulatory networks/modules. Thus, the aim is to pro-
vide the biologists with a tool which can support them in
two challenging tasks: the identification of context-specific
miRNAs regulatory modules and the detection of (possibly
previously unknown) miRNAs target genes.
As recognized in [4], the problem of discovering regula-

tory modules that control gene transcription in biological
model systems can be solved by applying biclustering algo-
rithms. Consequently, several papers in the literature apply
biclustering in the biological domain [5-9]. However, they
work on gene expression data and not on miRNA:mRNA
interactions. In order to work properly on miRNA:mRNA
interactions, some important issues have to be considered.
In particular, extracted biclusters should be:

• Possibly overlapping, since mRNAs and miRNAs
can be involved in multiple regulatory networks [10].
Ignoring this aspect would lead to the identification
of incomplete interaction networks.
• Hierarchically organized. This organization facilitates
the interpretation of results, even when a high number
of biclusters is extracted. Moreover, it opens the
opportunity to consider an intrinsic hierarchical orga-
nization of miRNAs, where it is possible to distinguish
between miRNAs involved in many signaling pathways
(universe miRNAs) and pathway-specific miRNAs
(intra-pathway miRNAs). The latter aspect has recently
been considered an important issue that deserves dee-
per investigation [11].
• Highly cohesive. This means that miRNAs and
mRNAs in the same bicluster should be highly
related and show (only) reliable interactions. This is
different from what biclustering methods specifically
designed for gene expression data do, that is, group-
ing together genes and conditions with similar (both
high and low) expression values.

We propose an algorithm for the efficient discovery of
overlapping, hierarchically organized and highly cohesive
biclusters. Biclusters are extracted from a dataset of
experimentally verified miRNA:mRNA interactions, i.e.
miRTarBase [12], as well as from miRNAs target predic-
tion datasets extracted from mirDIP [11]. In the latter
case, the integration of different miRNA target predic-
tion algorithms contributes to reducing the impact of
noise (i.e., false positives) on the significance of the
resulting biclusters.

Besides the extraction and evaluation of potential reg-
ulatory modules (expressed as biclusters), this paper
provides a way to systematically assess the actual role of
miRNAs in biclusters in the control of biological pro-
cesses [3] in which their target mRNAs are involved.
This analysis is performed by exploiting a statistical sig-
nificance test, whose goal is to evaluate the hypothesis
that mRNAs which belong to the same biclusters are,
on average, more functionally similar than mRNAs
which belong to different biclusters. In this test, the
functional similarity is evaluated according to the Gene
Ontology (GO) [13] classification.
Furthermore, we provide a ranking of biclusters on the

basis of an additional statistical test which compares
intra-and inter-functional similarity of each bicluster
with respect to the GO classification. This ranking aims
to simplify the identification of the most significant
biclusters.

Related works
The research reported in this paper has its roots in
works which study biclustering (/co-clustering) algo-
rithms for biological data mining, as well as in works
which study the role of miRNA:mRNA regulatory mod-
ules. Regarding the first research line, we only concen-
trate on algorithms which extract overlapping biclusters,
since in our context, as previously stated, extracting
non-overlapping biclusters is too limitative.
Extraction of overlapping biclusters for biological data
analysis
There are several papers in the literature that deal with
the extraction of overlapping biclusters. Most of them
are applied or specifically designed for gene expression
data analysis. In this setting, gene expression data are
organized as matrices/tables, where rows represent
genes, columns represent various samples such as tis-
sues or experimental conditions, and values in each cell
characterize the expression level of the particular gene
in the particular sample. According to this setting,
biclustering methods typically group together rows (col-
umns) with similar (both high and low) expression
values, which, as previously stated, is different from our
goal of maximizing the cohesiveness (see Figure 1). In
the following, we describe these methods.
One of the pioneering works on this topic [8] proposes

a greedy heuristic search to generate arbitrarily posi-
tioned, overlapping biclusters, based on a homogeneity
constraint. In this case, biclustering is based on iterative
insertions and deletions of genes and conditions asym-
metrically (i.e. insertions and deletions of conditions
depend on insertions and deletions of genes). Since
biclustering is guided by only one dimension, rows and
columns are not interchangeable. Moreover, as pointed
out in [9], this iterative algorithm is computationally
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expensive, since it identifies individual biclusters sequen-
tially rather than all at once. The algorithm also causes
random perturbations to the data since it inserts random
values instead of deleting rows and columns correspond-
ing to the previously discovered bicluster. This process,
although allowing overlapping, can reduce the bicluster-
ing quality.
In [14], the authors propose initializing (possibly over-

lapping) biclusters with random rows and columns and,
then, iteratively moving rows/columns among them. Each
“move” operation aims to minimize the mean residue
which indicates the degree of coherence of a cell value
with the remaining values in the bicluster. This approach
has the disadvantage that it is significantly dependent on
the initial random biclustering. As in [8], this approach is
not deterministic and does not extract hierarchically orga-
nized biclusters. Contrary to [8], it discovers biclusters all
at once, thus improving computational efficiency.
A different solution is proposed in [7], where genes and

conditions are represented according to a binary matrix,
which is recursively divided into two smaller (possibly
overlapping) submatrices, after a rearrangement of col-
umns/rows. Since re-arrangement is computationally
expensive [15], the proposed solution is impractical for
large datasets.
In [5], biclustering is guided by a probabilistic process by

means of which objects are assigned to hierarchically orga-
nized clusters on a single dimension. Clustering on this
dimension determines clustering on the other dimension
(where it is possible to have overlapping). This means that
the hierarchy is defined only on the first dimension and
overlapping is supported only on the second dimension.
In [9], the authors propose the algorithm ROCC which

rearranges columns and rows in order to identify the most
coherent biclusters (expressed as submatrices). Subse-
quently, it works in a bottom-up fashion and iteratively
merges pairs of “closest” biclusters until a stopping criter-
ion is satisfied. ROCC bases the merging process on “rela-
tionships” (i.e. submatrices) and not directly on objects
(i.e. rows and columns), with the consequence that it may

encounter problems when processing datasets affected by
“relational” imbalance (i.e. when objects of different types
participate with significantly different cardinalities in the
interactions) [16]. Although this algorithm is, in principle,
able to extract a hierarchy of biclusters, it only returns the
set of biclusters obtained at the last iteration.
In the literature there have been a few attempts to

work on miRNA:mRNA interactions [6,10,17]. These
works will be introduced and described in the next
subsection.
miRNA:mRNA regulatory modules
Several works in the literature have studied different
facets of the interactions among miRNAs, genes and pro-
teins. In particular: [1], [18] and [19] study the global
miRNA regulation in cellular networks; [20] and [21]
study the combinatorial miRNA regulation in cellular
pathways; [22] and [23] study the correspondence
between regulatory networks extracted from transcrip-
tional and miRNA data; [24] studies and proves that miR-
NAs tend to target highly connected genes or proteins in
cellular networks; [11] combines multiple miRNA predic-
tion databases to identify signaling pathway-associated
miRNAs.
However, approaches for full-scale analysis of the regu-

latory networks spanned by miRNAs are only now get-
ting under way [10]. These approaches have their roots
in studies which, aiming to identify a modular organiza-
tion of biological networks (see, for instance [25]), have
pointed out that such networks have greatly advanced
our understanding of complex cellular systems. As recog-
nized in [10], identifying functional miRNA:mRNA regu-
latory modules is a challenging task for several reasons:
(i) one mRNA can be regulated by multiple miRNAs and
one miRNA can regulate a large number of mRNAs. (ii)
miRNA:mRNA specific interactions often differ in a cell-
type and cell-phase dependent manner. (iii) although
miRNAs physically interact with mRNAs, ultimately
miRNA regulation affects the quantity of proteins in cells
rather than the quantity of mRNAs. Thus, the expression
levels of miRNAs are not always exactly anti-correlated

Figure 1 Similarity-based vs. cohesiveness-based biclustering approaches. (a) Biclustering obtained by means of (most of) similarity-based
approaches. (b) Biclustering obtained by means of cohesiveness-based approaches.
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with those of their target genes. While (i) and (ii) moti-
vate the use of biclustering approaches which extract
overlapping biclusters, (iii) suggests the use of miRNA
target predictions (in alternative to the experimentally
verified interactions) extracted by appropriate algorithms.
Following this stream of research, in [6] the authors

have proposed an algorithm to identify miRNA:mRNA
regulatory modules based on predicted miRNA:mRNA
target information. This algorithm extracts maximal bicli-
ques (complete bipartite graphs) which represent candi-
date biclusters. From candidate biclusters, only those for
which the range of scores of miRNA:gene interactions are
in a user-defined interval are returned. Consequently, this
algorithm suffers from the problem of manually setting
the interval and from the problem that the extraction of
bicliques prevents the algorithm from identifying non-
completely connected interaction networks, which results
in a high number of (redundant) small biclusters. More-
over, since this algorithm is based on a method specifically
designed for gene expression data [26], it does not extract
highly cohesive biclusters. Finally, extracted biclusters are
not hierarchically organized. These limitations can also be
found in [17], where the method is similar to that pro-
posed in [6]. Here, however, the extraction of bicliques
also takes into account coherent expression patterns
between miRNAs and genes, or the (anti)-correlations
between each miRNA-target gene pair.
In [10], the proposed solution aims to extract biclusters

by solving a non-negative matrix factorization problem.
The peculiarity of this approach is that it takes into
account additional information coming from protein-
protein interaction networks and from gene expression
data. Also in this case, high cohesion is not guaranteed
and extracted biclusters are not hierarchically organized.

Contributions
Taking into account all the considerations reported so far,
we propose an algorithm, called HOCCLUS2 (Hierarchical
Overlapping Co-CLUStering2), which provides a solution
to the issues raised by the specific task in hand and effec-
tively deals with the “relational” imbalance problem.
Moreover, it does not require as input the number of
desired biclusters, i.e. it is able to automatically determine
the optimal number of biclusters, by exploiting informa-
tion about the underlying data distribution. The algorithm
starts from an initial set of biclusters which express bicli-
ques (fully connected bipartite graphs) and, then, itera-
tively defines the hierarchical organization of biclusters
according to a bottom-up strategy.
This paper is based on the preliminary work in [16],

where only the system HOCCLUS is presented. How-
ever, this paper significantly extends and upgrades the
work presented there:

• We propose a novel algorithm for the construction
of the initial biclusters which are now expressed as
overlapping bicliques. This is different from what is
done in HOCCLUS, where the system METIS [27] is
adapted to extract (non-overlapping) biclusters. This
difference is crucial, since METIS can extract biclus-
ters that do not represent fully connected subgraphs.
Consequently, it is possible that very specific biclus-
ters are lost. Moreover, biclusters discovered by
METIS depend on a user-defined parameter: the
number of initial biclusters. Manual tuning of this
parameter is an open problem in METIS.
• We revise the method in order to consider the possi-
ble presence of “noise” objects. This is coherent with
the basic principle of some well-established and well-
known clustering algorithms such as DBSCAN [28].
• We report a theoretical analysis of the time com-
plexity of the learning algorithm.
• We report an extended experimental analysis of
experimentally verified miRNA:mRNA interactions
and miRNA target prediction datasets (miRTarBase
and mirDIP, respectively). This is different from
[16], where the analysis is only performed on miR-
NAMap 2.0 [29].
• We use statistical tests to evaluate the hypothesis
that mRNAs which belong to the same biclusters are
more functionally similar (according to GO) than
mRNAs which belong to different biclusters.
• We provide a ranking of biclusters on the basis of
a statistical analysis.

Methods
The method we propose is based on three main steps:

1 Extraction of a set of initial non-hierarchically
organized biclusters.
2 An iterative process in which, at each iteration, two
phases are performed, that is, overlap identification
and merging. In the former, some objects (miRNAs or
mRNAs) belonging to a bicluster can be added to
another bicluster. In the latter, biclusters are merged
when some heuristic criteria are satisfied. It is note-
worthy that at each iteration several pairs of biclusters
can be merged. Moreover, at each iteration, depending
on whether merging is performed, an additional level
of the hierarchy may or may not be added. This pro-
cess stops when neither overlaps nor merges are per-
formed in the last iteration.
3 A ranking of extracted biclusters. Ranking takes
into account a preference function which exploits
the intra-and inter-functional similarities (according
to GO) of objects in each bicluster.

Pio et al. BMC Bioinformatics 2013, 14(Suppl 7):S8
http://www.biomedcentral.com/1471-2105/14/S7/S8

Page 4 of 25



It is noteworthy that the iterative merging process
(Step 2) can be applied to biclusters consisting of a sin-
gle miRNA:mRNA interaction. Although this solution
would make Step 1 useless, it would lead to the con-
struction of a very large set of meaningless hierarchy
levels. The construction of an initial set of biclusters
guarantees the significance of the results, even from the
first level of the hierarchy.
Before formally introducing the problem we intend to

solve, some useful definitions are necessary: let Vr and
Vc be the sets of mRNAs and miRNAs, respectively
(subscripts r and c stand for row and column, respec-
tively. Here rows refer to mRNAs and columns refer to
miRNAs. They are actually interchangeable in HOC-
CLUS2). Let An × m be an adjacency matrix, where n = |
Vr|, m = |Vc| and Ar(x),c(y) is a score associated to the
interaction between x Î Vr and y Î Vc, where r : Vr ®
[1, n](c : Vc ® [1, m]) is a function that maps a row
(column) object to the corresponding row (column)
index of the matrix A. Without loss of generality, we
impose that ∀x Î Vr, ∀y Î Vc : Ar(x),c(y) Î [0,1], where 0
means no interaction and 1 means the most reliable
interaction.
Formally, the problem is defined as follows:
Given:

• the set of mRNAs Vr, the set of miRNAs Vc;
• the adjacency matrix An×m;
• a minimum interaction score b;
• a cohesiveness function q : C × [0, 1]n × m → R

(C = (2Vr ∪ 2Vc\{∅}) is the set of possible biclusters);
• a cohesiveness threshold a for q (·, ·) ;
• a preference function p : C → R.

Find: a ranked list of biclusters Lj for each level j = 1, . . . ,
k such that:

a) for each list Lj, j = 2, . . . , k we have that ∀ C’ Î
Lj ∃ C” Î Lj−1, such that C” ⊆ C’ (hierarchy);
b) biclusters at the same level can share objects in Vr

and in Vc (overlapping);
c) for each bicluster C’ Î L1; ∀x Î Vr ∩ C’ , ∀y Î Vc ∩
C’ , Ar(x),c(y) > b;
d) for each bicluster C’ Î Lj obtained after merging,
q(C’ , A) ≥ a (cohesiveness);
e) for each pair of biclusters C’ , C” Î Lj , p(C’ ) ≥ p
(C” ) iff C’ precedes C” in Lj .

It is noteworthy that, at this stage, we do not impose
additional conditions on the cohesiveness function q(·,·)
and on the preference function p(·) which will be defined
later. Moreover, Lk does not necessarily contain a single
bicluster, meaning that a forest of biclusters is actually

returned. This is coherent with the task in hand, where
some sets of miRNAs could be totally unrelated to some
sets of mRNAs. Moreover, a implicitly influences the
number k of the levels and the number of biclusters at
each hierarchy level.
Algorithm reported in Figure 2 solves the considered

problem. Single steps will be detailed in the following
subsections.

Building the initial biclusters
We consider two different alternatives for this task. The
first one consists in exploiting an existing biclustering
algorithm. For this purpose, we use the algorithm METIS
[27]. METIS is a good candidate for working with miRNA:
mRNA interactions, since it aims at minimizing the so-
called edge-cut of the graph and, consequently, at maxi-
mizing the intra-cluster cohesiveness. METIS, although
originally designed for classical clustering problems, can
extract miRNA:mRNA biclusters by forcing node weights
such that both miRNAs and mRNAs must appear in the
same cluster (http://glaros.dtc.umn.edu/gkhome/node/
685). However, METIS, as most of biclustering algorithms,
requires as input the desired number of biclusters.
Although in experiments this issue is not perceived, since
they are often performed on real/synthetic datasets where
the number of biclusters is already known, it is a relevant
problem in real contexts, such as in the analysis of gene
expression data or miRNA:mRNA interactions. Moreover,
METIS is exhaustive, i.e. each object (miRNA and mRNA,
in this case) is always assigned to a bicluster. This charac-
teristic leads to low-quality biclusters when some mRNAs
(resp. miRNAs) do not share with other mRNAs (resp.
miRNAs) a significant number of strong interactions with
miRNAs (resp. mRNAs). According to the considerations
provided in [28], these objects can be considered as noise
objects, since located in low-density areas of the space,
and should be automatically discarded.
The second alternative consists in the use of a new

algorithm which overcomes these limitations. The only
parameter the proposed algorithm requires is b Î [0,1],
whose value can be easily chosen by experts, since it
represents the minimum score for miRNA:mRNA inter-
actions. Interactions with score values less than b are
ignored, thus b implicitly defines a sort of filter on the
reliability of the interactions.
The algorithm builds biclusters in the form of bicliques

by analyzing interactions in two directions, i.e. from
miRNA to mRNA and from mRNA to miRNA. Once a set
of bicliques is obtained for each direction, they are merged
together to obtain the final set of bicliques. Since the algo-
rithm works in a symmetrical way, we here describe only
the extraction of the initial bicliques in the “miRNA to
mRNA” direction.
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The algorithm (see Figure 3) works by taking into
account some statistical properties, that is:

• avg_mirna: the average number of miRNAs which
target each mRNA, with a score greater than b;
• abs_min_mrna and min_mrna: the absolute and
the outlier-proof (respectively) minimum number of
mRNAs which are targeted by each miRNA, with a
score greater than b.

The min_mrna value (outlier-proof) is computed by
assuming that the number of mRNAs which are targeted
by each miRNA follows a Normal distribution. In parti-
cular, we take the minimum number of targeted
mRNAs (with a score greater then b) by discarding the
lowest 0.15% values, which are possibly outliers, accord-
ing to the 99.7 (or three-sigma) rule. Symmetrically,
avg_mrna, abs_min_mirna and min_mirna are calcu-
lated for the “mRNA to miRNA” direction.
Once these simple statistics are computed, an initial set

of bicliques is built. Each initial biclique consists of a sin-
gle miRNA and the set of mRNAs it targets with a score
greater than b, so that we have at most |Vc| initial bicli-
ques (Figure 3, line 1). The algorithm, then, iteratively
aggregates two biclusters C’ and C” into a new bicluster
C’’’ as follows (see Figure 3, lines 9-23, and Figure 4):

C′′′
r = C′

r ∩ C′′
r C′′′

c = C′
c ∪ C′′

c (1)

where Cr = Vr ∩ C and Cc = Vc ∩ C represent row and
column objects in C, respectively.

Aggregation is based on the property that the number
of miRNAs is antimonotonic with respect to the number
of mRNAs in a biclique. The necessary conditions for
aggregating are (Figure 3, lines 4 and 15):

C′
r ∪ C′′

r ≥ min mrna C′
c ∩ C′′

c ≤ avg mirna (2)

The basic idea is that a good biclique should contain
approximately avg_mirna miRNAs, while keeping the
highest possible number of mRNAs (at least min_mrna).
Moreover, as the goal of the algorithm is to obtain a set
of highly cohesive bicliques, among the possible aggre-
gations of pairs of bicliques 〈C’, C”〉 we select the one
for which the following measure is maximized (Figure 3,
line 10):

jaccard(C′
r , C′′

r ) ∗ q(aggregate(C′, C′′), A) (3)

where jaccard(C′
r , C′′

r ) = |C′
r∩C′′

r |
|C′

r∪C′′
r |, A is the adjacency

matrix and q(·,·) is a cohesiveness function. The cohe-
siveness function that we consider in this work is
defined as follows:

q(C, A) =

∑
x∈Cr

∑
y∈Cc

Ar(x),c(y)

|Cr| ∗ |Cc|
(4)

This function measures the weighted (i.e. by consider-
ing the score of the interactions) percentage of interac-
tions in a bicluster, normalized by the maximum
number of possible interactions. Intuitively, the function
q measures the intra-cluster cohesion (also known as
“compactness” in classical clustering).

Figure 2 Hierarchical and overlapping biclustering algorithm. High level description (in pseudocode) of the proposed hierarchical and
overlapping biclustering algorithm.
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The iterative process stops when there are no addi-
tional candidates for aggregation, i.e. there is no pair of
biclusters which satisfies the conditions of the inequal-
ities in (2).
The whole process is also performed in the “mRNA to

miRNA” direction and the two sets of biclusters are
then merged by simply removing biclusters which
appear more than once and biclusters which are a

subset of others. The algorithm then starts a pruning
phase whose goal is to remove noise objects. Coherently
with the definition of noise objects provided before,
each bicluster containing less than abs_min_mirna miR-
NAs or less than abs_min_mrna mRNAs is removed.
We recall that both abs_min_mirna and abs_min_mrna
are computed according to a statistical analysis of the
data.

Figure 3 Initial biclustering algorithm. High level description (in pseudocode) of the initial biclustering algorithm (miRNA to mRNA direction).

Figure 4 Aggregation. An example of aggregation of two bicliques (C’ and C”) into a new biclique (C’”), according to Equation (1).
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Overlap identification
The basic assumption behind the overlap identification
is that two non-overlapping biclusters should be (line-
arly or not) separable in the space. According to this
assumption, we identify objects belonging to one biclus-
ter that can be added to another bicluster. In particular,
given two biclusters C’ and C” (belonging to the same
level of the hierarchy), C’ ≠ C”, we identify two optimal
separating hyperplanes between C’ and C” by learning
an SVM model for each dimension (miRNAs and
mRNAs). Since our goal is not to build a good predic-
tive classification model, but to evaluate the separability
of objects belonging to different biclusters, the objects
in C’ and C” are used as both the training set and the
testing set. Misclassified objects are those which possibly
belong to both the considered biclusters. Intuitively, the
separating hyperplane can be interpreted as delineating
the changes of the underlying data distribution between
C’ and C”. This is coherent with studies that exploit
SVMs for solving clustering tasks [30].
When learning SVMs, each row (column) object is

represented as its corresponding row (column) vector of
A. The use of SVMs as discriminative methods is moti-
vated by their recognized peculiarity in dealing with
sparse data [31], that is a common situation in a miR-
NAs:mRNAs adjacency matrix.
More formally, we build two binary classifiers:

SVMC′
r ,C′′

r : [0, 1]m → {0, 1} and SVMC′
r ,C′′

r : [0, 1]n → {0, 1}.
Once the classifiers are built,

• for each row object x ∈ (C′
r ∪ C′′

r ), we consider its
corresponding row vector Ar(x),*

- if SVMC′
r ,C′′

r (Ar(x),∗) = 0 and x ∈ C′′
r , then

C′
r ← C′

r ∪ {x}
- if SVMC′

r ,C′′
r (Ar(x),∗) = 1 and x ∈ C′

r, then
C′′

r ← C′′
r ∪ {x}

• for each column object y ∈ (C′
c ∪ C′′

c ), we consider
its corresponding column vector A*,c(y)

- if SVMC′
c ,C′′

c (A∗,c(y)) = 0 and y ∈ C′′
c , then

C′
c ← C′

c ∪ {y}
- if SVMC′

c ,C′′
c (A∗,c(y)) = 1 and y ∈ C′

c, then
C′′

c ← C′′
c ∪ {y}

In this way we obtain overlapping biclusters, where
the common objects are those that cannot be correctly
classified by the separating hyperplane (Figure 5(a)).
It is noteworthy that SVMs have to be constructed on

each pair of biclusters for each level. In order to obtain
a result which is independent of the order in which
pairs of biclusters are analyzed, the misclassified objects
are added at the end of the overlap identification
process.
In Figure 2, overlapping(Lk, A) is in charge of identify-

ing possible overlaps. It returns the number of objects

that have been added to biclusters and the updated set
of biclusters with added objects. In our implementation,
the algorithm used for learning SVMs is SMO [32] with
the default kernel (linear).

Merging
Once a set of overlapping biclusters has been obtained,
we can analyze them to evaluate if some pairs of biclus-
ters can be reasonably merged. A naïve approach would
consider only the distance or the number of common
objects, neglecting their statistical distribution. Here, we
assume that row (column) objects in a bicluster are nor-
mally distributed in the space [0,1]m ([0,1]n), that is, in
the space in which their row (column) vectors are repre-
sented. We consider the distance between pairs of
biclusters in order to merge those for which a defined
percentage of (possibly unknown) objects can statisti-
cally be in common.
Formally, two biclusters C’, C” are candidates for mer-

ging if:

dist(C′
r , C′′

r ) − 2σ (C′
r) − 2σ (C′′

r ) ≤ 0 or dist(C′
c, C′′

c ) − 2σ (C′
c) − 2σ (C′′

c ) ≤ 0 (5)

where dist(w, z) is the Euclidean distance between the
centroids of the clusters w and z and s(w) is the standard
deviation of the cluster w (see Figure 5(b)). Since row and
column objects are represented as vectors, the centroid of
a cluster is computed in the classical way. The standard
deviation for row and column objects is computed

as σ (Cr) =
√

1
(|Cr|−1)

∑
x∈Cr

euclidean distance(x, centroid(Cr)) and

σ (Cc) =
√

1
(|Cc|−1)

∑
x∈Cc

euclidean distance(x, centroid(Cc))

respectively.
Intuitively, conditions in (5) state that two biclusters

are candidates for merging if they are close enough
according to at least one dimension. By considering the
factor 2 for s(w), we include in each sphere about 95.4%
of the objects of the corresponding cluster, as a conse-
quence of Chebyshev’s inequality.
If a pair of biclusters C’, C” is a candidate for merging,

a further quality constraint should be satisfied on the
bicluster C’’’ obtained by merging them. In particular,
merging is performed as follows:

C′′′
r = C′

r ∪ C′′
r C′′′

c = C′
c ∪ C′′

c (6)

and the quality constraint that must be satisfied is q
(C’’’, A) >a, where a allows the user to decide the mini-
mum cohesiveness value that each bicluster obtained
after a merging step has to satisfy. Low values of a facil-
itate merging at the price of low cohesive biclusters.
As in the overlap identification step, in order to obtain

a result which is independent of the order in which pairs
of biclusters are analyzed, merging is actually performed
at the end of the procedure. Obviously, a bicluster could
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be a candidate for more than one merging. In this case,
we actually perform the merging whose resulting biclus-
ter has the maximum cohesiveness (see Figure 6).
It is noteworthy that the combination of our overlap

identification and merging procedures allow us to con-
sider both the density of biclusters and the distance
among the objects, thus combining the major properties
which classical clustering algorithms are based on.

Ranking biclusters
Ranking of biclusters is based on the p-values of a statis-
tical test which aims to evaluate the hypothesis that the
mRNAs which belong to a specific bicluster are, on

average, more functionally similar to other mRNAs in
the same bicluster than to mRNAs which belong to
other biclusters.
The functional similarity between two genes is evalu-

ated by means of the SimGIC measure [33], which is a
semantic similarity measure computed according to the
genes’ annotations in GO. As in [34], we consider the
similarity as a special case of relatedness that is tied to
the likeness (in the shape or form, e.g. on the basis of
is-a relations) of concepts. SimGIC is proved to show
high values of “resolution”, that is, the relative intensity
with which variations in the sequence similarity scale
are translated into the semantic similarity scale.

Figure 5 Overlapping and merging phases. (a) Overlapping between two clusters along one dimension. The red marked object (misclassified)
is added to the other cluster. (b) An example of the object distribution of the row dimension of the biclusters C’ and C”. In this case, C’ and C”
are candidates for merging.

Figure 6 Merging procedure. High level description (in pseudocode) of the iterative merging phase of the proposed algorithm.
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Moreover, as recognized in [33], in the case of GO (as
in many other biological ontologies) Information Con-
tent-based approaches (like SimGIC), which estimate a
term’s specificity from its usage frequency within a
given corpus, are more adequate than alternative
approaches that typically infer a term’s specificity from
its depth in the graph. In fact, in the case of GO, the
specificity is poorly related with the depth in the graph.
For instance, the terms binding and translation regulator
activity are at the same depth, but the latter is both
semantically more complex and biologically more speci-
fic. SimGIC is defined according to the following for-
mula:

SimGIC(x1, x2) =

∑
t∈GO(x1)∩GO(x2) IC(t)∑
t∈GO(x1)∪GO(x2) IC(t)

(7)

where GO(x) represents the set of GO terms which x
is associated to and IC(t)= − log p(t) is the negative log-
likelihood of the term t computed on the basis of the
prior probability p(t) of t. p(t) is estimated as the per-
centage of genes associated to the term t, according to
the UniProt Homo sapiens GO annotations. It is note-
worthy that, although we used UniProt Homo sapiens
GO annotations, in HOCCLUS2 other sets of annota-
tions can be used.
The statistical test we consider is the classical one-

tailed Student’s t test that allows us to evaluate the null
hypothesis H0 : µ0(C) = µ(L, C) against the alternative
hypothesis H1 : µ0(C) >µ(L, C), where µ0(C) is the mean
of the intra-bicluster functional similarities for the
bicluster C and µ(L, C) is the mean of the inter-bicluster
functional similarities between the bicluster C and the
list L \{C}, i.e. the other biclusters belonging to the same
hierarchy level of C (see Figure 7(a)). µ0(C) and µ(L, C)
are defined as:

μ0(C) =
1

|Cr| ∗ (|Cr| − 1)

∑
x1∈Cr ,x2∈Cr,x1 �=x2

SimGIC(x1, x2) (8)

μ(C, L) =
1

|L| − 1

∑
C′∈L,C′ �=C

(∑
x1∈(Cr\C′

r),x2∈(C′
r\Cr) SimGIC(x1, x2)

|Cr\C′
r| ∗ |C′

r\Cr|

)
(9)

This test is used to identify the p-value associated to
the hypotheses to be verified. In particular, the lower
the p-value, the lower the probability that H0 is rejected
when H0 is true. Therefore, the lower the p-value, the
higher the difference between the average intra-func-
tional similarity and the average inter-functional similar-
ity. These considerations make the p-value appropriate
to be used in ranking biclusters in L, thus simplifying
the identification of the most significant biclusters.
Since we compute SimGIC according to two different

hierarchies of GO, that is, Molecular Function and Bio-
logical Process, we are able to obtain two different rank-
ings of biclusters.

Time complexity
The time complexity of the algorithm depends on the
time complexity of each single phase.
As regards the initial biclustering, we first consider the

miRNA to mRNA direction. The time complexity of
get_set_of_one_miRNA_bicliques(Vr,Vc, A, b) is O(m * n)
where m is the number of miRNAs and n is the number
of mRNAs. At the first iteration, we have average time
complexity:

O

⎛
⎜⎜⎜⎝m ∗ (m − 1)

2︸ ︷︷ ︸
(a)

⎞
⎟⎟⎟⎠

⎛
⎜⎝2 + 2avg mrna︸ ︷︷ ︸

(b)

+ (2avg mrna)︸ ︷︷ ︸
(c)

⎞
⎟⎠+

m ∗ (m − 1)
2

∗ log
m ∗ (m − 1)

2︸ ︷︷ ︸
(d)

⎞
⎟⎟⎟⎠ = O(m2∗avg mrna)

where (a) is due to the pairwise comparison of one-
miRNA bicliques, (b) is the cost of the union of miR-
NAs and intersection of mRNAs in two bicliques (we
have 1 miRNA and avg_mrna mRNAs in one biclique),
(c) is due to the computation of the cohesiveness func-
tion q and (d) is due to the identification of the best
pair to be considered for aggregation (after sorting).
Similarly, for the remaining iterations, we have:

Figure 7 Statistical tests for ranking and biclusters evaluation. (a) Ranking: Average intra-bicluster similarity for bicluster A (on red edges)
vs. average interbicluster similarity (on blue dashed edges). (b) Biclustering Evaluation: Average intra-bicluster similarity (on red edges) vs.
average inter-bicluster similarity (on blue dashed edges).
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O

⎡
⎢⎣ m︸︷︷︸

(a)

∗

⎛
⎜⎝m ∗ (2avg mrna + 2avg mrna + avg mrna ∗ avg mrna)︸ ︷︷ ︸

(b)

+ m ∗ log(m ∗ (m − 1)/2︸ ︷︷ ︸
(c)

⎞
⎟⎠

⎤
⎥⎦ = O(m2∗(avg mirna∗avg mrna))

where (a) represents the maximum number of itera-
tions, (b) represents the cost of updating the candidate
pairs of bicliques for aggregation at the light of the bicli-
que added in the previous iteration and (c) represents
the cost of adding the newly created candidates in aggre-
gationCandidates (see Figure 3).
This analysis indicates that the cost of identifying the

initial set of biclusters (by considering both directions)
is O(2 * m * n + (m2 + n2) * avg_mirna * avg_mrna),
that is, since n ≫ m:

O(n2 ∗ avg mirna ∗ avg mrna) (10)

In the overlap identification, at the first iteration (worst
case), SMO is applied m * (m − 1)/2 times for each dimen-
sion (we assume that m is the number of biclusters after
the initial biclustering). On average, the number of objects
involved in each execution of SMO for row (column)
objects is avg_mirna (avg_mrna). Therefore the cost of the
overlap identification is: O (m * (m − 1) * (avg_mirna * l1 +
avg_ mrna * l2)) = O (m2 * (avg_mirna * l1 + avg _mrna *
l2)) where avg_mirna*l1+avg_mrna*l2 is the cost of SMO
and l1 and l2 are the number of candidate support vectors
during the training phase (l1 ≤ avg_mirna, l2 ≤ avg _mrna).
The time complexity of the merging phase is: O (m *

(m - 1)/2 * avg_mirna * avg_mrna) = O (m2 * avg_mirna
* avg_mrna) where avg_mirna * avg_mrna is due to the
cohesiveness function q.
Since the computation of the cohesiveness function q

is exactly avg_mirna * avg_mrna, whereas the cost of
the execution of SMO on both dimensions, in the worst
case (l1 = avg_ mirna and l2 = avg_mrna), is O(avg_-
mirna2 + avg_mrna2), we approximate the complexity of
a single iteration of the algorithm in Figure 2 to:

O(m2 ∗ (avg mirna2 + avg mrna2)) (11)

The time complexity of the ranking phase is:

O(n ∗ (n − 1) ∗ S/2 + k ∗ m log m) = O(S ∗ n2) (12)

where n * (n − 1) * S/2 is the cost for computing all
the possible SimGIC values (S is the cost for a single
SimGIC value) and k * m log m is the cost of sorting all
extracted biclusters for all the hierarchy levels (k).
By combining (10), (11) and (12), the time complexity of

the complete algorithm is: O [n2 * (avg_mirna * avg_mrna)
+ u * m2 * (avg_mirna2 + avg_mrna2) + S * n2] where u >0
is the number of iterations of the algorithm in Figure 2.
Since in the experiments we observed that the main cycle
requires much more time than initial biclustering and rank-
ing, it is reasonable to say that the actual time complexity is

O(u *m2 * (avg_mirna2 + avg_mrna2)). This complexity sig-
nificantly depends on avg_mirna and avg_mrna, i.e. on the
density of the matrix A. Moreover, due to the worst case
assumptions, the analysis appears to be too pessimistic with
respect to the actual times measured during the
experiments.

Results and discussion
In order to evaluate HOCCLUS2, we have considered as
data sources a set of experimentally verified miRNA:
mRNA interactions, i.e. miRTarBase [12], as well as the
set of miRNAs target predictions in mirDIP [11]. These
data sources have been used to obtain six distinct data-
sets (described later).
The main goal of this experimental evaluation is two-

fold: we empirically prove that the extracted biclusters
preserve high values of cohesiveness and we evaluate
extracted biclusters in order to empirically assess their
biological significance. Moreover, we show the ability of
HOCCLUS2 in ranking extracted biclusters.
Experiments have been performed with different

values of a and b in order to evaluate their effect on the
obtained biclusters. In the case of miRTarBase, we com-
pare HOCCLUS2 with HOCCLUS (which uses METIS
for the initial biclustering) [16] and ROCC [15]. In the
case of mirDIP, we compare HOCCLUS2 with METIS
[27] and ROCC. We cannot compare HOCCLUS2 with
HOCCLUS on mirDIP because of the huge amount of
non-linearly separable biclusters returned by METIS
(with many similar miRNAs and mRNAs) that inhibit
HOCCLUS from completing the mining process in rea-
sonable running time. For fair comparison, METIS is
asked to return the same number of biclusters returned
by our initial biclustering algorithm.

Datasets
miRTarBase (ver. 2.5) [12] contains 4,270 experimentally
verified miRNA-target interactions between 669 miRNAs
and 2,533 target genes among 14 species. In our study, we
only consider the human dataset. From this dataset (here-
after miRTarBase), we have generated an additional data-
set (miRTarBasefilt), that contains only mRNAs which are
annotated in GO, according to both Molecular Function
(MF) and Biological Process (BP) hierarchies, and miRNAs
that, once mRNAs have been filtered, are still connected
to the remaining mRNAs. For both miRTarBase and miR-
TarBasefilt, interaction scores are binary (yes = 1/no = 0).
Table 1 provides additional details on miRTarBase and
miRTarBasefilt.
mirDIP [11] integrates twelve miRNA prediction data-

sets from seven miRNA prediction databases. In this
study, we consider only predictions extracted using Tar-
getScan Conserved, PITA Top Hits and picTar 5-way
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which, according to [11], provide a relatively low num-
ber of false positives (when compared to others) without
affecting recall. We have not included additional predic-
tion algorithms in order to minimize collinearity pro-
blems [35] in the combined predictions. Indeed, in
order to obtain interaction scores, we (linearly) combine
the standardized scores returned by single algorithms.
In this combination, the consideration of the same fea-
tures (e.g. conservation, site accessibility, free energy of
duplex) multiple times may negatively affect the final
score. This means that we have only considered the best
prediction algorithms with the smallest overlap in the
considered characteristics. From the original mirDIP we
have generated 4 datasets: mirDIP, FmirDIP, mirDIPfilt
and FmirDIPfilt. mirDIP contains all the predictions
obtained by at least one of the considered prediction
algorithms. In this case, interaction scores are obtained
as the average of the standardized scores returned by
each algorithm. FmirDIP is similar to mirDIP, except in
the fact that the interaction scores are obtained accord-
ing to a weighted average, where weights correspond to
F-score values reported in [11] which represent a degree
of “reliability” of the predictions of each algorithm. mir-
DIPfilt and FmirDIPfilt have been obtained from mirDIP
and FmirDIP (respectively), by filtering out mRNAs
whose genes are not included in GO. A summary of all
considered datasets is reported in Table 1.

Evaluation measures
Biclusters are evaluated on the basis of the average
biclustering cohesiveness, which measures the average
strength of the intra-biclusters connections:
μq(Lj, A) = 1∑

Ci∈Lj
|Ci|

∑
Ci∈Lj

|Ci|q(Ci, A), where Lj is the

set of biclusters obtained at the j-th hierarchy level. In
addition to µq(), we also use an evaluation measure
which is based on statistical properties of the obtained
biclusters. In particular, we use the independent two-
sample Student’s t test to evaluate the null hypothesis
H0 : μ′

0(Lj) = μ′(Lj) against the alternative hypothesis
H1 : μ′

0(Lj) = μ′(Lj), where μ′
0(Lj) is the average intra-

bicluster functional similarity μ′
0(Lj) = 1

|Lj|
∑

C∈Lj
μ0(C)

and μ′(Lj) is the average inter-bicluster functional
similarity defined as follows:

μ′(Lj) =
1

|Lj| ∗ (|Lj| − 1)

∑
C′∈Lj,C′′∈Lj,C′ �=C′′

(∑
x1∈(C′

r\C′′
r),x2∈(C′′

r\C′
r) SimGIC(x1, x2)

|C′
r\C′′

r| ∗ |C′′
r\C′

r|

)
(13)

The lower the p-value, the higher the difference
between the average intra-functional similarity and the
average inter-functional similarity (see Figure 7(b)). As
in the ranking phase, we use both GO Biological Process
(BP) and GO Molecular Function (MF) hierarchies to
compute SimGIC. Henceforth we will refer to the p-
values computed on BP and MF as pBP and pMF ,
respectively.
In the following, we report results for the first level of

the hierarchy (i.e. the result of the initial biclustering),
for the last level of the hierarchy (i.e. Lk) and for the
“best level” of the hierarchy. The best level is the one
for which we have the minimum value of pBP+pMF

2 . When

more than one level has the same pBP+pMF

2 value, the one
with the highest µq is considered. Experiments are run
on a 4 Intel CPUs @4Ghz system.

miRTarBase
Tables 2 and 3 report results obtained with HOC-
CLUS2, HOCCLUS and ROCC on miRTarBase datasets.
From these tables, it is possible to see that at the highest
levels of the hierarchy, results significantly depend on
the values of the parameter a. As expected, the higher
the a value, the higher the µq value. An important result
comes from the very low values of pMF and pBP. This
statistically confirms (at a confidence level of 99%) that
mRNAs which belong to the same biclusters are, on
average, more functionally similar than mRNAs which
belong to different biclusters. Moreover, pMF and pBP
results are monotonic with respect to µq (and a). This
confirms that µq is a valid measure to evaluate the qual-
ity of extracted biclusters. Another result is that at
higher levels of the hierarchy, HOCCLUS2 is generally
able to significantly reduce (especially for high values of
a) the number of biclusters without a significant loss in
the pMF, pBP and µq.
An additional important result is the number of

biclustered miRNAs and mRNAs (N ), which gives an
indication of the number of isolated objects in miRTar-
Base that are considered noise by HOCCLUS2. Finally,
by comparing results in the two tables, it is possible to

Table 1 Properties of considered datasets

Dataset Data Source No. interactions No. miRNA No. mRNA GO Filter Weighting

miRTarBase miRTarBase 2,881 301 1,730 Binary

miRTarBasefilt miRTarBase 2,336 287 1,291 • Binary

mirDIP mirDIP 307,075 703 13,714 Average

FmirDIP mirDIP 307,075 703 13,714 F-Score

mirDIPfilt mirDIP 207,011 703 8,495 • Average

FmirDIPfilt mirDIP 207,011 703 8,495 • F-Score
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say that considering only filtered data improves both the
significance of the statistical analysis (pMF and pBP ) and
the cohesiveness of biclusters.
Regarding comparison with other systems, HOC-

CLUS2 performs significantly better than ROCC,
which, as previously stated, is not designed to work
with miRNA:mRNA interactions. Moreover, HOC-
CLUS2 always outperforms HOCCLUS in terms of
cohesiveness and, at the best hierarchy level, in terms
of pMF and pBP. In the last hierarchy level (max level),

better performances of HOCCLUS with a = 0.1 and
a = 0.2 can be motivated by the huge number of
extracted biclusters (e.g. 52 vs. 5 extracted by HOC-
CLUS2, with a = 0.1). As regards the number of noise
objects, HOCCLUS2 has biclustered less mRNAs and
more miRNAs than ROCC. In this respect, the beha-
vior of HOCCLUS2 is preferable, since the number of
miRNAs is generally significantly lower than the num-
ber of mRNAs (HOCCLUS2 better deals with the rela-
tional imbalance). Moreover, while the possibility to

Table 3 miRTarBasefilt results

a N (%/%) level 1 max level best level time (s)

#cc pMF pBP μq lev #cc pMF pBP μq lev #cc pMF pBP μq

HOCCLUS2

0.1 12/36 72 0.000 0.000 1.00 6 5 0.099 0.125 0.14 1 72 0.000 0.000 1.00 9

0.2 5 10 0.011 0.015 0.27 1 72 0.000 0.000 1.00 8

0.3 4 17 0.009 0.002 0.41 1 72 0.000 0.000 1.00 8

0.4 4 24 0.000 0.002 0.55 1 72 0.000 0.000 1.00 8

0.5 3 28 0.000 0.001 0.61 1 72 0.000 0.000 1.00 8

HOCCLUS (with METIS)

0.1 100/100 72 0.000 0.015 0.21 3 43 0.008 0.043 0.10 2 47 0.003 0.008 0.11 30

0.2 2 68 0.000 0.006 0.14 2 68 0.000 0.006 0.14 54

0.3 1 72 0.000 0.015 0.21 1 72 0.000 0.015 0.21 70

0.4 1 72 0.000 0.015 0.21 1 72 0.000 0.015 0.21 71

0.5 1 72 0.000 0.015 0.21 1 72 0.000 0.015 0.21 71

ROCC

- 41/16 198 1.000 1.000 0.01 - - - - - - - - - - 89

miRTarBasefilt results. N (%/%)represents the percentage of biclustered mRNAs and miRNAs. #cc is the number of biclusters. lev represents the level number.

Results do not vary at the first level since it does not depend on the a value. b does not influence results because of binary interaction scores.

Table 2 miRTarBase results

a N (%/%) level 1 max level best level time (s)

#cc pMF pBP μq lev #cc pMF pBP μq lev #cc pMF pBP μq

HOCCLUS2

0.1 10/37 75 1.000 1.000 1.00 6 5 0.281 0.289 0.13 2 38 0.000 0.000 0.72 10

0.2 5 10 0.064 0.060 0.24 2 38 0.000 0.000 0.72 9

0.3 4 18 0.000 0.000 0.40 2 38 0.000 0.000 0.72 9

0.4 4 23 0.000 0.000 0.49 2 38 0.000 0.000 0.72 10

0.5 3 33 0.000 0.000 0.66 2 38 0.000 0.000 0.72 9

HOCCLUS (with METIS)

0.1 100/100 75 0.000 0.003 0.19 3 51 0.013 0.031 0.09 1 75 0.000 0.003 0.19 51

0.2 2 73 0.000 0.007 0.14 1 75 0.000 0.003 0.19 82

0.3 1 75 0.000 0.003 0.19 1 75 0.000 0.003 0.19 94

0.4 1 75 0.000 0.003 0.19 1 75 0.000 0.003 0.19 94

0.5 1 75 0.000 0.003 0.19 1 75 0.000 0.003 0.19 92

ROCC

- 35/17 198 0.231 1.000 0.01 - - - - - - - - - - 149

miRTarBase results. N (%/%) represents the percentage of biclustered mRNAs and miRNAs. #cc is the number of biclusters. lev represents the level number.

Results do not vary at the first level since it does not depend on the a value. b does not influence results because of binary interaction scores.
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discard noise objects helped HOCCLUS2 to achieve a
very high value of cohesiveness, ROCC obtained poor
results (µq = 0.01).
Running times show that HOCCLUS2 outperforms

both HOCCLUS and ROCC. This confirms that the
reported complexity analysis is too pessimistic and that
HOCCLUS2 extracts biclusters in a reasonable time.

mirDIP
Tables 4, 5, 6 and 7 report results obtained on the mir-
DIP datasets. All the considerations about the monoto-
nicity between a and µq and the capability of
HOCCLUS2 to extract cohesiveness-preserving hierar-
chies reported for miRTarBase datasets are valid also for
the mirDIP datasets. However, in this case, pMF and pBP
are monotonic with respect to the cohesiveness only in
the case of filtered datasets. This can be explained by
the high number of missing GO annotations (for about
40% of biclustered mRNAs) in mirDIP and FmirDIP
datasets which makes pMF and pBP not completely reli-
able indicators of the biclusters’ quality. In these cases, i.
e. when the algorithm cannot calculate reliable values of
pMF and pBP, µq should be considered the primary indi-
cator for the evaluation.
By observing the differences between mirDIP and

FmirDIP (or between mirDIPfilt and FmirDIPfilt) it is
possible to say that, coherently with results reported in
[11], HOCCLUS2 benefits from the F-score-based
weighting of the interactions. Furthermore, when com-
pared with other algorithms, HOCCLUS2 performs

significantly better, in terms of cohesiveness, than
ROCC and METIS. Additionally, ROCC and METIS are
not able to extract significant biclusters in terms of pBP
and pMF, whereas HOCCLUS2 is almost always able to
extract actual functional biclusters for at least one level
of the hierarchy.
As regards the number of noise objects, while ROCC

has biclustered a very low number of miRNAs and
mRNAs (9 and 101 respectively in mirDIP), obtaining a
poor value of choesiveness (0.01), HOCCLUS2 has
biclustered a reasonable number of objects for every
considered values of b.
Running times show that HOCCLUS2 is always faster

than ROCC. Moreover, although METIS requires signifi-
cantly lower time, a detailed analysis reveals that the
time for completing our initial biclustering step is com-
parable to that of METIS (we remind that METIS
returns non-hierarchically organized biclusters). Similar
to miRTarBase, also these results confirm that the
reported worst case analysis is too pessimistic. Here, in
addition, we demonstrate that HOCCLUS2 scales well
also for huge datasets.

Biological evaluation of extracted biclusters
In order to evaluate the ability of HOCCLUS2 to detect
meaningful miRNAs:mRNAs functional relationships, we
have first analyzed the results obtained from miRTar-
Base datasets and then compared them with the results
obtained from mirDIP. In this analysis, we have selected
biclusters to be analyzed only according to the ranking

Table 4 mirDIP results

a b N (%/%) level 1 max level best level time (s)

#cc pMF pBP μq lev #cc pMF pBP μq lev #cc pMF pBP μq

HOCCLUS2

0.1 0.3 43/87 700 1.000 1.000 0.49 9 56 0.000 0.000 0.12 2 350 0.000 0.000 0.41 5797

0.2 7 183 0.000 0.000 0.24 3 210 0.000 0.000 0.31 6416

0.3 5 355 1.000 1.000 0.36 1 700 1.000 1.000 0.49 7783

0.1 0.4 36/86 619 1.000 1.000 0.52 8 41 0.411 0.331 0.11 3 155 0.004 0.009 0.32 4089

0.2 7 144 0.006 0.001 0.24 7 144 0.006 0.001 0.24 4816

0.3 6 274 1.000 1.000 0.35 1 619 1.000 1.000 0.52 6123

0.1 0.5 25/81 599 1.000 1.000 0.58 8 34 0.284 0.273 0.12 4 77 0.345 0.167 0.27 3439

0.2 7 101 0.315 0.146 0.23 5 108 0.257 0.112 0.26 3958

0.3 6 202 1.000 0.221 0.34 5 205 1.000 0.206 0.35 4361

METIS

- - 100/100 700 1.000 1.000 0.36 - - - - - - - - - - 50

- - 619 1.000 1.000 0.40 - - - - - - - - - - 51

- - 599 1.000 1.000 0.35 - - - - - - - - - - 52

ROCC

- - 1/1 122 1.000 1.000 0.01 - - - - - - - - - - 16531

mirDIP results. N (%/%)represents the percentage of biclustered mRNAs and miRNAs. #cc is the number of biclusters. lev represents the level number.
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values returned by the algorithm. In this paper we focus
the analysis on some of the biclusters which group miR-
NAs belonging to the miR-17-92 gene cluster, also
known as oncomir-1 [36], and to its paralogs, miR-
106b-25 and miR-106a-363. Table 8 reports the com-
plete list of these biclusters, together with their proper-
ties. Moreover, some other examples of biclusters are

provided to elucidate the usefulness of HOCCLUS2 in
supporting biologists in the detection of multiple miR-
NAs functional interactions and in the identification of
new potential targets. Functional analysis has been car-
ried out by considering: i) structural and functional
properties of miRNAs; ii) pathways mapping and statis-
tical significance of gene enrichment in pathways; iii)

Table 5 FmirDIP results

a b N (%/%) level 1 max level best level time (s)

#cc pMF pBP μq lev #cc pMF pBP μq lev #cc pMF pBP μq

HOCCLUS2

0.1 0.3 45/88 758 1.000 1.000 0.50 9 57 0.023 0.005 0.11 2 379 0.000 0.000 0.41 7319

0.2 7 194 0.016 0.004 0.25 3 221 0.001 0.000 0.31 9022

0.3 6 374 1.000 1.000 0.36 1 758 1.000 1.000 0.50 9940

0.1 0.4 37/85 667 1.000 1.000 0.54 7 42 0.434 0.206 0.11 4 58 0.094 0.016 0.21 4760

0.2 6 145 0.096 0.004 0.24 5 148 0.053 0.004 0.25 5415

0.3 5 273 1.000 1.000 0.34 1 667 1.000 1.000 0.54 6567

0.1 0.5 27/81 622 1.000 1.000 0.60 8 35 0.311 0.346 0.12 3 156 0.151 0.263 0.37 3792

0.2 7 105 0.221 1.000 0.24 3 168 0.123 0.298 0.38 4121

0.3 6 205 0.374 1.000 0.36 2 314 0.256 1.000 0.50 4685

METIS

- - 100/100 758 1.000 1.000 0.29 - - - - - - - - - - 50

- - 667 1.000 1.000 0.39 - - - - - - - - - - 51

- - 622 1.000 1.000 0.35 - - - - - - - - - - 50

ROCC

- - 1/1 122 1.000 1.000 0.01 - - - - - - - - - - 16764

FmirDIP results. N (%/%)represents the percentage of biclustered mRNAs and miRNAs. #cc is the number of biclusters. Lev represents the level number.

Table 6 mirDIPfilt results

a b N (%/%) level 1 max level best level time (s)

#cc pMF pBP μq lev #cc pMF pBP μq lev #cc pMF pBP μq

HOCCLUS2

0.1 0.3 46/86 528 0.000 0.000 0.49 8 40 0.027 0.127 0.12 1 528 0.000 0.000 0.49 2031

0.2 6 135 0.001 0.000 0.25 1 528 0.000 0.000 0.49 2225

0.3 5 269 0.000 0.000 0.36 1 528 0.000 0.000 0.49 2824

0.1 0.4 40/85 500 0.000 0.000 0.52 7 35 0.056 0.045 0.12 1 500 0.000 0.000 0.52 1627

0.2 6 121 0.000 0.000 0.25 1 500 0.000 0.000 0.52 1870

0.3 5 225 0.000 0.000 0.35 1 500 0.000 0.000 0.52 2213

0.1 0.5 29/79 503 1.000 1.000 0.58 8 30 0.061 0.215 0.12 8 30 0.061 0.215 0.12 1495

0.2 6 92 0.485 1.000 0.24 2 252 0.188 0.110 0.49 1582

0.3 6 178 0.095 0.215 0.36 4 184 0.046 0.165 0.38 1948

METIS

- - 100/100 528 1.000 1.000 0.34 - - - - - - - - - - 26

- - 500 1.000 1.000 0.30 - - - - - - - - - - 27

- - 503 1.000 1.000 0.31 - - - - - - - - - - 24

ROCC

- - - - - - - - - - - - - - - - - -

mirDIPfilt results. N (%/%)represents the percentage of biclustered mRNAs and miRNAs. #cc is the number of biclusters. lev represents the level number. ROCC

results are not reported for filtered datasets since it raised an error during the execution and the biclustering process could not terminate.
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the biological context of target genes. The main
resource used for mapping gene in pathways is Reac-
tome [37]. GeneCards [38] has been used for retrieving
gene function information. Studies reported in the litera-
ture have been considered i) for retrieving information
on miRNAs and validated miRNA:mRNA interactions
and ii) for the discussion of the results.
Structural and functional properties of miR-17-92, miR-
106b-25 and miR-106a-363
miR-17-92, miR-106b-25 and miR-106a-363 belong to a
family of highly conserved miRNA gene clusters and have
potent effects on many type of human cancers [39]. They
are located on chromosome 13, 7 and X, respectively, and
derive from duplications and mutations of a unique gene
and from the loss of some miRNAs occurred during the
early evolution of vertebrates. Each cluster is transcribed
as polycistronic primary transcript that ultimately yields
six mature miRNAs in miR-17-92 and miR-106a-363
(miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, miR-
92a-1 in miR-17-92; miR-106a, miR-18b, miR-20b, miR-
19b-2, miR-92a-2 and miR-363 in miR-106a-363) and
three miRNAs in miR-106b-25 (miR-106-b, miR-93, miR-
25). The high degree of conservation across different spe-
cies suggests an important role of this miRNAs cluster
family for coordinated regulation and function in many
pathways and cellular processes.
The miR-17-92 gene cluster acts pleiotropically during

both normal development and cancer progression. Depend-
ing on both cell type and physiological context, miR-17-92
can promote proliferation, increase angiogenesis, and

sustain cell survival through the post-transcriptional repres-
sion of a number of target mR-NAs [39]. Different types of
experimental evidences suggest the intriguing hypothesis
that miRNAs in the miR-17-92 cluster may perform speci-
fic functions, either individually or in combination, in a
coordinated rather than in an additive manner. A key fea-
ture of miR-17-92 is its property of being a potent inhibitor
of the transforming growth factor-b (TGF-b) signaling.
Ligands of the TGF-b superfamily are essential for the
development and the adult tissue homeostasis, and the
inactivation of TGF-b tumor suppression pathway is a
main step in the development of a variety of human tumors
[40]. Indeed, the miR-17-92 cluster is often activated in
cancer cells and overexpression studies in gastrointestinal
and other tumors reveal that both miR-17-92 and miR-
106b-25 are able to inactivate the TGF-b tumor suppres-
sion pathway by interfering with the cell cycle arrest and
apoptosis [40]. Although recent studies have greatly con-
tributed to the elucidation of the miR-17-92 gene cluster
family function and mechanism, the identity of all its tar-
gets remains still elusive and much work is still necessary
to clarify miRNAs cooperative effects on signaling path-
ways. Moreover, the role of miR-106a-363 remains still
obscure.
Validation of the functional consistency of extracted
biclusters
The large amount of literature available on the miR-17-
92 gene cluster family constitutes a reliable resource to
verify the ability of our algorithm to discover actual bio-
logical functional interactions among miRNAs and their

Table 7 FmirDIPfilt results

a Β N (%/%) level 1 max level best level time (s)

#cc pMF pBP μq lev #cc pMF pBP μq lev #cc pMF pBP μq

HOCCLUS2

0.1 0.3 50/86 561 0.000 0.000 0.50 8 39 0.001 0.048 0.12 1 561 0.000 0.000 0.50 2287

0.2 7 138 0.019 0.000 0.24 2 282 0.012 0.000 0.40 2666

0.3 5 266 0.000 0.000 0.36 1 561 0.000 0.000 0.50 3423

0.1 0.4 42/84 522 0.000 0.000 0.54 7 35 0.074 0.117 0.12 1 522 0.000 0.000 0.54 1845

0.2 6 114 0.006 0.002 0.24 1 522 0.000 0.000 0.54 2025

0.3 5 217 0.000 0.000 0.35 1 522 0.000 0.000 0.54 2373

0.1 0.5 31/79 513 0.028 1.414 0.60 7 29 0.370 0.310 0.12 2 258 0.002 0.066 0.49 1597

0.2 6 90 0.137 0.180 0.24 2 258 0.002 0.066 0.49 1706

0.3 6 172 0.001 1.000 0.35 2 260 0.002 0.079 0.49 2052

METIS

- - 100/100 465 1.000 1.000 0.35 - - - - - - - - - - 27

- - 522 1.000 1.000 0.35 - - - - - - - - - - 25

- - 515 1.000 1.000 0.34 - - - - - - - - - - 26

ROCC

- - - - - - - - - - - - - - - - - -

FmirDIPfilt results. N (%/%)represents the percentage of biclustered mRNAs and miRNAs. #cc is the number of biclusters. lev represents the level number.

ROCC results are not reported for filtered datasets since it raised an error during the execution and the biclustering process could not terminate.
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Table 8 Biclusters containing the miR-17-92 gene cluster family

ID miRNAs mRNAs miRNA GC pMF pBP q

Hierarchy level 2

6 mir-17, mir-20a APP, BCL2, BMPR2, CCND1, CCND2, CDKN1A, E2F1, E2F3, MAP3K12, MAPK9,
MEF2D, MYC, PTEN, RB1, RBL1, RBL2, RUNX1, SMAD4, TGFBR2, THBS1, VEGFA,
WEE1

miR-17-92 3.96 E-6 3.37 E-7 1.0

22 mir-93, mir-106b CDKN1A, E2F1, KAT2B, MAPK9, VEGFA miR-106b-25 1.00 1.30 E-6 1.0

31 mir-20b, mir-106a ARID4B, CDKN1A, HIPK3, MYLIP, VEGFA miR-106a-363 1.00 1.00 1.0

58 mir-17, mir-21, mir-18a, mir-19b NCOA3, PTEN miR-17-92 1.00 1.00 1.0

66 mir-17, mir-19a, mir-20a, mir-92a BMPR2, SMAD4, TGFBR2 miR-17-92 5.53 E-41 3.23 E-31 1.0

67 mir-19b, mir-20b, mir-92a, mir-106a ARID4B, HIPK3, MYLIP miR-17-92,
miR106a-363

1.00 0.03 1.0

70 mir-17, mir-20a, mir-106a CDKN1A, E2F1, RB1, RUNX1, VEGFA miR-17-92,
miR106a-363

5.77 E-4 1.99 E-9 1.0

72 mir-17, mir-20a, mir-106b APP, CCND2, E2F3, MAPK9, RBL1, RBL2, WEE1 miR-17-92, miR-
106b-25

1.00 5.00 E-24 1.0

Hierarchy level 2

6-72 mir-17, mir-20a, mir-106b APP, BCL2, BMPR2, CCND1, CCND2, CDKN1A, E2F1, E2F3, MAP3K12, MAPK9,
MEF2D, MYC, PTEN, RB1, RBL1, RBL2, RUNX1, SMAD4, TGFBR2, THBS1, VEGFA,
WEE1

miR-17-92,
miR106b-25

1.90 E-5 6.46 E-5 0.8

22-70 mir-17, mir-93, mir-20a, mir-106a, mir-106b CDKN1A, E2F1, KAT2B, MAPK9, RB1, RUNX1, VEGFA miR-17-92, miR-
106b-25, miR106a-
363

1.60 E-5 1.07 E-7 0.8

58-66 mir-17, mir-21, mir-18a, mir-19a, mir-19b,
mir-20a, mir-92a

BMPR2, NCOA3, PTEN, SMAD4, TGFBR2 miR-17-92 3.18 E-9 1.30 E-8 0.8

Hierarchy level 3

6-72-22-70 mir-17, mir-93, mir-20a, mir-106a, mir-106b APP, BCL2, BMPR2, CCND1, CCND2, CDKN1A, E2F1, E2F3, KAT2B, MAP3K12,
MAPK9, MEF2D, MYC, PTEN, RB1, RBL1, RBL2, RUNX1, SMAD4, TGFBR2, THBS1,
VEGFA, WEE1

miR-17-92, miR-
106b-25, miR106a-
363

2.46 E-4 1.56 E-4 0.6

Biclusters containing the miR-17-92 gene cluster family, extracted from miRTarBasefilt with a = 0.2. The column miRNA GC contains the corresponding gene cluster in the miR-17-92 family.
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target genes belonging to the same bicluster. The ratio-
nale is that, if the results obtained on experimentally
verified datasets are confirmed, there exists a real possi-
bility that our biclustering algorithm is effective and that
it could also work well on large datasets produced by
prediction algorithms. This would allow us to uncover
new potential gene functions and targeting interactions.
The aim of the analysis reported in this section is not

to give a complete and exhaustive picture of all the pos-
sible discovered interaction networks, that would be
impossible to report and that does not fit the aim of the
present paper, but only to demonstrate that the system
shows to be effective.
We have identified and analyzed a series of highly-

ranked biclusters containing the miR-17-92 cluster
family. Table 8 reports the list of miRNAs and relevant
target genes for each of these biclusters. Biclusters at
level number 1 are biclusters where all included genes
are targeted by all the miRNAs grouped in the bicluster.
At higher levels of the hierarchy, other miRNAs and tar-
gets are included at different values of cohesiveness sug-
gesting miRNAs alternative multiple interactions. The
identification of specific and yet overlapping functions
of each component of the miR-17-92 cluster, can be
obtained by comparing targets in each bicluster with
those belonging to other related biclusters.
Reactome-based mapping of biclusters 6 (hierarchy

level 1), 6-72 (hierarchy level 2) and 6-72-22-70 (hierar-
chy level 3) (Figure 8), well matches the known func-
tions of miR-17-92. Indeed, the most overrepresented
events are cell cycle and signal transduction. In particu-
lar, as for cell cycle, the mitotic transition from the G1
to the S phase is represented with the lowest p-value
(1.5 E-13) with 9 (E2F1, E2F3, RB1, CDKN1A, RBL2,
CCND2, WEE1, RBL1, CCND1) out of 23 of the target
genes involved in this pathway. Signal transduction
pathway, with 11 (THBS1, PTEN, TGFBR2, VEGFA,
CDKN1A, RBL1, KAT2B, APP, BMPR2, SMAD4, MYC)
out of 23 genes involved, is represented with the lowest
p-value (2.5 E-10) in the TGF-b signaling pathway
including TGFBR2, SMAD4, MYC and RBL1. Other
related signaling pathways with significant p-values are
signaling by BMP (bone morphogenetic protein), AKT
(Protein Kinase B), PDGF (platelet-derived growth fac-
tor); signaling by EGFR (epidermal growth factor recep-
tor) in cancer and FGFR (fibroblast growth factor
receptors) in disease. EGFR and FGFR signaling path-
ways depend on PTEN PIP3 activation in the AKT sig-
naling, promoting cell survival and opposing apoptosis
by a variety of routes. Gene expression and DNA repli-
cation pathways are also over-represented because influ-
enced by two main downstream effectors of the TGF-b
antiproliferative signaling pathway, SMAD4 and
CDKN1A [40], and by RB1. SMAD4 is the common

signaling transducer of TGF-b at nuclear level, while
CDKN1A and RB1 are master regulators of cell cycle
progression (negatively regulate the mitotic G1-S check-
point). The analysis of biclusters that contribute to the
bicluster 6-72-22-70 clarifies the individual contribution
of miRNAs and target genes in the general picture
above. The main difference between 6 (hierarchy level
1), 6-72 (hierarchy level 2) and 6-72-22-70 (hierarchy
level 3) is the miRNA component. Biclustering at level 1
(i.e., bicluster 6) indicates that all the genes in the
bicluster are unique targets of miR-17 and miR-20a,
suggesting that only these two genes have a universal
role whereas the others may have a pathway-specific
activity. This observation contributes to clarify the gen-
eral model that, in the attempt to explain the pleiotropic
effect of miR-17-92, proposes that the entire gene clus-
ter gives rise to a moderate down-regulation of a large
number of mRNAs in each cell type, which collectively
mediates its biological functions [39].
As for the targets component of these biclusters,

KAT2B is the unique gene that is only present in biclus-
ter 6-72-22-70 but not in bicluster 6 and 6-72. Looking
for other biclusters containing KAT2B at level 1 of the
hierarchy (Table 8), it is possible to see that it is present
in the bicluster 22 and is cotargeted by miR-93 and
miR-106b. KAT2B has not been included in the biclus-
ters 6 because, differently from the other genes, it is not
target of miR-17 and miR-20a. This is confirmed by a
study on multiple myeloma pathogenesis [41] which
demonstrates that, among over expressed miRNAs,
miR-106b-25, but not miR-17-92, is able (through
KAT2B) to indirectly control the tumor suppressor pro-
tein p53 in the multiple myeloma. Indeed, KAT2B is a
histone acetyltransferase involved in the reversible acety-
lation of various transcriptional regulators, including the
tumor suppressor protein p53. Activation of p53
mediated by KAT2B activates CDKN1A (a direct target
and master effector of p53) that in turn induces the
arrest of the cell cycle at the G1/S transition, and a ser-
ies of other p53-dependent events such as DNA repair
and apoptosis. Futhermore, this specific function of
KAT2B would be mediated by the coordinate co-target-
ing of miR-181a, miR-181b and miR-32 [41]. The co-
targeting of these last miRNAs on KAT2B is not
included in biclusters 22, 22-70 and 6-72-22-70 but is
included in biclusters 41 and 65 at level 1 and in biclus-
ter 16-65 at level 2. These biclusters, although not sta-
tistically supported by GO, help to disclose new
interaction networks. Indeed, in these biclusters (see
Table 9), other important regulators of key steps of the
cell cycle, TGF-b signaling pathway, cell growth, differ-
entiation and apoptosis, are associated with KAT2B and
with the co-targeting of miR-25, miR-32, miR-19a, miR-
19b, miR181a and miR181b. Moreover, these biclusters,

Pio et al. BMC Bioinformatics 2013, 14(Suppl 7):S8
http://www.biomedcentral.com/1471-2105/14/S7/S8

Page 18 of 25



Table 9 Biclusters containing co-targeting on KAT2B

ID pMF pBP q miRNAs mRNAs mRNA Function Reactome Mapping (p-value)

Hierarchy level 1

41 0.40 0.05 1.00 miR-181a, miR-
181b

NLK Serine/threonine-protein kinase that regulates a number of transcription factors with key roles in cell fate
determination. Positive effector of the non-canonical Wnt signaling pathway and negative regulator of the
canonical Wnt/beta-catenin signaling pathway and of Notch signaling pathway

none

BCL2* Integral outer mitochondrial membrane protein that regulate and contribute to programmed cell death or
apoptosis

none

CDX2 Transcription factor. Important in broad range of functions from early differentiation to maintenance of the
intestinal epithelial lining of both the small and large intestine

none

GATA6 Member of a small family of zinc finger transcription factors that play an important role in the regulation of
cellular differentiation and organogenesis during vertebrate development

none

KAT2B* Functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Inhibits cell-cycle
progression

none

PLAG1 Transcription factor whose activation results in up-regulation of target genes, such as IGFII, leading to
uncontrolled cell proliferation: when overexpressed in cultured cells, higher proliferation rate and
transformation are observed

none

65 1.00 1.00 1.00 miR-25, miR-32,
miR-19a

KAT2B* Functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Inhibits cell-cycle
progression

none

PRMT5 Protein arginine methyltransferase 5. Plays a role in the assembly of snRNP core particles. May play a role in
cytokine-activated transduction pathways. Negatively regulates cyclin E1 promoter activity and cellular
proliferation

none

BCL2L11 Integral outer mitochondrial membrane protein that regulate and contribute to programmed cell death or
apoptosis.

none

Hierarchy level 2

16-
65

1.00 0.07 0.639 miR-25, miR-32,
miR-19a, miR-19b

ESR1† Estrogen receptor. Ligand-activated transcription factor composed of several domains important for hormone
binding, DNA binding, and activation of transcription. The steroid hormones and their receptors are involved
in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target
tissues

Signal Transduction (4.9e-04)
Signaling by ERBB4 (1.4e-02)

PTEN*† Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase. It negatively regulates intracellular levels of
phosphatidylinositol-3,4,5- trisphosphate in cells and functions as a tumor suppressor by negatively regulating
AKT/PKB signaling pathway

Signal Transduction (4.9e-04)
Signaling by SCF-KIT (1.2e-02)
Signaling by ERBB4 (1.4e-02)
Signalling by NGF (4.6e-02)

ATXN1† Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting
as a CBF1 corepressor.

none

BMPR2*† Member of the bone morphogenetic protein (BMP) receptor family of transmembrane serine/threonine
kinases. The ligands of this receptor are BMPs, which are members of the TGF-beta superfamily.

Signal Transduction (4.9e-04)

KAT2B* Functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Inhibits cell-cycle
progression.

Signal Transduction (4.9e-04)

PRMT5 Protein arginine methyltransferase 5. Plays a role in the assembly of snRNP core particles. May play a role in
cytokine-activated transducion pathways. Negatively regulates cyclin E1 promoter activity and cellular
proliferation.

Signal Transduction (4.9e-04)

SOCS1 Suppressor of cytokine signalling. SOCS1 is involved in negative regulation of cytokines that signal through
the JAK/STAT3 pathway.

Signaling by SCF-KIT (1.2e-02)
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Table 9 Biclusters containing co-targeting on KAT2B (Continued)

TGFBR2*† Transforming growth factor, beta receptor II. Transmembrane protein that has a protein kinase domain, forms
a heterodimeric complex with TGFBR1, and binds TGF-beta. This receptor/ligand complex phosphorylates
proteins, which then enter the nucleus and regulate the transcription of a subset of genes related to cell
proliferation.

Signal Transduction (4.9e-04)

BCL2L11 Transforming growth factor, beta receptor II. Transmembrane protein that has a protein kinase domain, forms
a heterodimeric complex with TGFBR1, and binds TGF-beta. This receptor/ligand complex phosphorylates
proteins, which then enter the nucleus and regulate the transcription of a subset of genes related to cell
proliferation.

Signalling by NGF (4.6e-02)

Biclusters containing co-targeting on KAT2B. The function of genes is extracted from GeneCards. (*) genes present in bicluster 6-72-22-70. (†) new suggested potential targets of miR-25 and miR-32.
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as they also contain BCL2, PTEN, BMPR2 and TGFBR2
(also present in bicluster 6-72-22-70), suggest that com-
plex interaction networks involving miR-25, miR-32,
miR-181a and miR-181b, may account for the diverse
and multiple role of miR-17-92 gene cluster in the
maintenance of cell homeostasis. In particular, in biclus-
ter 65, KAT2B is associated, under the direct control of
miR-25, miR-32 and miR-19a, with BCL2L11(BIM), the
master downstream effector of TGF-b-depend apoptosis,
and with PRMT5, a protein arginine methyltransferase
that negatively regulates cell proliferation by epigenetic
control of the RB family of tumor suppressor genes
(RB1, RBL1 and RBL2), and that it is regulated by miR-
19a, miR-25, miR-32, miR-92b and miR-96 [42]. The RB
family members are known to regulate the expression of
genes involved in G1/S transition through their interac-
tion with the E2F transcription factors [43]. However,
while transcription of RB1 is repressed in a cell cycle-
dependent manner, the PRMT5-mediated inhibition of
RBL1 and RBL2 appears to be associated, in leukemia
and lymphoma cells transformation, with the deregula-
tion of specific miRNAs [42]. RB1, RBL1 and RBL2 are
all present in biclusters 6, 6-72 and 6-72-22-70 and, as
shown in bicluster 6, they are all direct targets of miR-
17 and miR-20a. However, as shown in biclusters 70
and 72, RB1 is co-targeted by miR-106a, whereas RBL1
and RBL2 are co-targeted by miR-106b. This suggests for
miR-106a and miR-106b a functional specificity that
could be responsible for the context-dependent response
of RBs and of the other genes in these biclusters. Indeed,
also E2F1 and E2F3, which are functionally related to

RB1 and RBL1/RBL2 [44] (respectively), are coherently
biclustered in biclusters 70 and 72. This indicates that
functional relationships between E2Fs and RBs [44], as
well as the different responses of the RB components (see
[42]), may be due to a complex network of transcriptional
machineries and regulatory negative feedbacks [39]. This
complex network involves transcriptional factors (e.g.,
E2F1, E2F3, p53, VEGFA) regulating, and in turn regu-
lated by, different components of the miR-17-92 cluster
family in a cell type and context-dependent manner.
Bicluster 41 associates co-targeting of miR-181a and

miR-181b on KAT2B with a series of other transcription
factors involved in cell fate determination (by different
routes like NLK and BCL2) and differentiation (i.e., CDX2,
GATA6, PLAG1). This suggests that the cooperation of
miR-181a and miR-181b with miR-17-92 may be more
specifically related with cell growth and differentiation.
In bicluster 16-65, KAT2B is grouped together with

genes which are coordinately regulated by miR-25, miR-
32, miR-19a and miR-19b. The enrichment of these genes
in pathways (Table 9) suggests that the cooperation of
miR-32 with the multiple associations of miR-25 (miR-
106b-25 cluster), miR-19a and miR-19b (miR-17-92 clus-
ter) is specifically related to the TGF-b signaling.
Among the biclusters containing genes of miR-17-92, the

bicluster 66 is the top ranked (according to GO). Pathway
mapping of bicluster 66 returns significant results in the
TGF-b/BMP pathway, which regulates embryonic and
adult cell proliferation and differentiation, and that is impli-
cated in a great number of human diseases. The transduc-
tion of the signal depends on the activation state of

Figure 8 Pathway mapping of the bicluster 6-72-22-70 in Reactome. The figure shows the pathway mapping of the bicluster 6-72-22-70 in
Reactome. Results in a tab-delimited format as provided by Reactome are reported in the Additional file 1. The functional mapping of the
biclusters 6 and 6-72 is very similar to that of the bicluster 6-72-22-70. The difference is in the fact that KAT2B is only present in the bicluster 6-
72-22-70.
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different nuclear transcriptional co-activators/co-repressors
which can positively or negatively regulate different effec-
tors, so that the interpretation of a signal depends on the
cell-type and cross talk with other signaling pathways such
as Notch, MAPK and Wnt (© Reactome). Bicluster 66
includes BMPR2 (bone morphogenetic protein receptor
type II), TGFBR2 (TGF-b receptor type II) and SMAD4.
While BMPR2 and TGFBR2 are key factors for the activa-
tion of TGF-b/BMP receptor complexes and for the trans-
duction of the signal from the cell surface to the cytosol,
SMAD4 is essential for the transduction to the nucleus for
transcriptional regulation (© Reactome). miRNAs grouped
in bicluster 66 indicate that the regulation of TGF-b/BMP
signaling at nodal check-points of the signal cascade is
modulated by the miR-17-92 gene cluster, namely, miR-17,
miR-19a, miR-20a and miR-92a. Moreover, as stated before,
the presence of BMPR2 and TGFBR2 in the bicluster 16-65
suggests that they may also be functional targets of miR-25
and miR-32. This supports the hypothesis that the activa-
tion of the TGF-b receptor is under a complex control
mediated by multiple associations of constitutive regulators
(e.g. miR-17 and miR-20a), with diverse members of the
same cluster, i.e. miR-19a and miR-92, and with miR-25
(miR-106b-25) and miR-32, in a context-specific manner.
This also suggests that, among the components of miR-
106b-25, miR-25 is the one that contributes to the control
of the transmission of the TGF-b signaling from the cell
surface to the nucleus.
Genes in biclusters 70 and 72, although different, are

enriched in cell cycle regulation. Bicluster 70 shows a
significant over-representation of genes in the G1 phase
(p-value = 8.0 E-07) and G1/S-phase transition (p-value
= 1.9 E-5), whereas bicluster 72 specifically maps in the
G1/S-phase transition (p-value = 7.8 E-08). As for miR-
NAs, biclusters 70 and 72 share miR-17 and miR-20a,
but bicluster 70 contains miR-106a and bicluster 72
contains miR-106b. These observations provide useful
insights: first, they confirm experimental evidences that
demonstrate that miR-17 is a key regulator of cell cycle
progression by targeting more than 20 genes involved in
the G1/S-phase transition [43]; second, the co-targeting
of miR-20a (always associated with miR-17a) underlines
that it also cooperate to this pathway-specific role of
miR-17. Third, the association of miR-106b in bicluster
70 suggests that miR-106b-25 influences the effects of
miR-17-92 in the cell cycle progression by controlling
regulatory circuits involving E2F3, RBL1 and RBL2,
while the association of miR-106a in bicluster 72 sug-
gests that miR-106a-363 influences the effects of miR-
17-92 on cell cycle progression by keeping under con-
trol regulatory circuits involving CDKN1, E2F1 and
RB1. This last aspect may help to shed light on the role
of miR-106a-363 in the general function of the miR-17-
92 cluster family [40].

Discussion on potential applications of extracted biclusters
A general conclusion of the analysis reported in the pre-
vious subsection is that our results match with validated
experimental results reported in the current literature,
demonstrating that HOCCLUS2 is able to provide valu-
able clues for the understanding of miRNAs functions
and mechanisms. In this subsection, we mainly discuss
potential uses of biclusters extracted by HOCCLUS2.
As shown for biclusters 41, 65 and 16-65, neither GO-

based ranking nor the analysis of gene enrichment in path-
ways provide complete understanding on the quality of
discovered interaction networks. Nevertheless, we have
proved that these biclusters provide important insights for
the clarification of functions and interaction networks
involving miR-17-92 components. This example clarifies
both the usefulness and effectiveness of HOCCLUS2, even
when results are not supported by statistical confirmations
on existing resources. It is noteworthy that the statistical
ranking of target genes in GO depends on the complete-
ness of annotations available and on the gene classification
in the GO tree. Thus, although GO ranking is used to
score biclusters, it has not to be intended as an exclusive
criterion for the evaluation of the quality of biclusters and
for the consequent analysis of data. Rather, it has to be
considered as an indicator of potential functional correla-
tions which depend on annotation systems and, as such, it
could inevitably fail because of poor, wrong or incomplete
annotations.
As regards possible applications, results obtained by

HOCCLUS2 on miRTarBase can be used to retrieve all
the significant multiple interactions that a miRNA (or a
set of miRNAs) of interest may have. Performing this task
manually on the source database (miRTarBase in this
case) would require to execute a large set of queries and
to analyze and aggregate tens of thousands of results.
Nevertheless, all this effort would not provide any infor-
mation on significant gene correlations and miRNA con-
text-specific multiple interactions.
Furthermore, HOCCLUS2 (which is freely available)

can be easily applied to the analysis of other collections
of data, e.g. to the analysis of data obtained in specific
physiological and pathological conditions which may
greatly contribute to the elucidation of miRNAs func-
tions in the relative context. Similarly, HOCCLUS2 could
be applied to the analysis of miRNA:mRNA interactions
in other organisms annotated in miRTarBase as well as
in organisms and plants for which still poor annotations
on validated targets are available. In this last case, com-
bining microarrays data with target predictions would
allow the researchers to easily detect potentially signifi-
cant multiple interactions which are worth to be experi-
mentally validated.
In addition to the possibility to extract multiple and sig-

nificant co-targeting of miRNAs, HOCCLUS2 is able to
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give new clues in the identification of still unknown
miRNA targets. This possibility is due to its ability to
associate objects, by iteratively merging pairs of biclusters,
that are apparently not related. By observing the biclusters
analyzed in the previous subsection, the bicluster 16-65
appears to be a good candidate for suggesting the valida-
tion of still unknown targets of miR-25, miR-32, miR-19a
and miR-19b. The cohesiveness value of this bicluster, q =
0.639, indicates that around the 64% of all the possible
interactions between its miRNAs and mRNAs are in the
dataset and, since they come from miRTarBase, are experi-
mentally validated. This means that the hypothesis that
the remaining 36% of possible interactions could actually
exist is based on the 64% of validated interactions. This
observation confirms that the cohesiveness-preserving
strategy adopted by HOCCLUS2 is effective, since, intui-
tively, the higher the cohesiveness of a bicluster, the higher
the probability that the discovered (but not present in the
database) interactions actually exist. Indeed, a deep analy-
sis of the interactions of bicluster 16-65 revealed that, in
miRTarBase, all the genes are validated targets of miR-19a
and miR-19b with the exception of PRMT5, which is a
validated target of miR-25, miR-32 and miR-19a but not
of miR-19b. Moreover, KAT2B and BCL2L11 are validated
targets of all the miRNAs in the bicluster. Looking at pre-
diction data in mirDIP, it is possible to find some predic-
tions which support the hypothesis that the remaining
interactions actually exist. In particular, at least one algo-
rithm predicted: ESR1, PTEN, ATXN1, BMPR2, KAT2B,
TGFBR2 and BCL2L11 as targets of miR-19a, miR-19b,
miR-25 and miR-32; PRMT5 as target of miR-19a, miR-25
and miR-32; SOCS1 as target of miR-19a and miR-19b,
but not of miR-25 and miR-32. These observations lead to
the conclusion that, in addition to KAT2B and BCL2L11,
it would be worth to experimentally validate the hypoth-
esis that ESR1, PTEN, ATXN1, BMPR2 and TGFBR2 are
targets of miR-25 and miR-32.
Comparison of results on miRTarBase with results on
mirDIP
Conversely by results of the analysis carried out on miR-
TarBase, results on biclusters extracted from mirDIP
datasets cannot be considered impressive. Although
some biclusters have presented enough enrichment in
genes that fall in the same or related biological processes
and although validated miRNAs interactions have been
detected, the much larger number of genes involved has
not allowed us a so detailed analysis as for miRTarBase
data. On the other hand, Reactome, as other similar
resources, still misses pathway mapping annotations for
many genes, thus negatively affecting statistical enrich-
ment analysis. In particular, searching for biclusters of
the miR-17-92 gene cluster family in mirDIP has led to
identify a few biclusters which were not so well defined
as those extracted from miRTarBase, even though

functional characterization by pathways mapping has
returned a picture that well matches with functional
properties of miR-17-92.
In the attempt of motivating this different behavior, we

have searched for predictions of validated targets of miR-
17-92 components in mirDIP. We have found that the dif-
ference in the quality of the results obtained on miRTar-
Base and on mirDIP were mainly due to the performance
of prediction algorithms in detecting actual targets. For
example, TargetScan Conserved predictions present very
low standardized scores for those genes that have been lar-
gely confirmed as targets of miR-17-92 (e.g., E2F1, E2F3
and CDKN1A are predicted targets of mir-17 and mir-20a
with a standardized score ranging from 0.337 to 0.392;
CDKN1A is a predicted target of mir-106b with a standar-
dized score of 0.358).

Conclusions
In this work, we tackle the problem of biclustering miR-
NAs and mRNAs on the basis of their interactions. In
order to solve this problem, by taking into account specific
issues raised by this task, we propose the algorithm HOC-
CLUS2 which extracts hierarchically organized and over-
lapping biclusters by maximizing biclusters cohesiveness
and exploiting statistical distribution of the data.
The performance of our method is evaluated in terms of

execution time and bicluster cohesiveness on a dataset of
experimentally verified miRNA:mRNA interactions, i.e.
miRTarBase, as well as on miRNA target predictions
extracted from mirDIP. A comparative analysis shows that
HOCCLUS2 is able to extract a set of (hierarchically orga-
nized) biclusters with significantly higher cohesiveness
values than ROCC, in a comparable execution time, which
proves the inappropriateness of the application of gene
expression biclustering algorithms to discover meaningful
biclusters from miRNA:mRNA interactions.
The effectiveness of the algorithm in extracting biologi-

cally related biclusters is automatically tested and con-
firmed on the basis of the GO classification. Furthermore,
an in-depth biological analysis proves that functional rela-
tionships among miRNAs and mRNAs in the same biclus-
ter (at different levels of the hierarchy) find large
confirmation in the literature. This indicates that the algo-
rithm is able to extract valuable knowledge and that its
application in the biological domain may provide us good
insights in the study of complex miRNA mechanisms and
functions. Moreover, it also proves that the algorithm
could be considered as a valid tool for the detection of
candidate new miRNAs target genes.
Current results of HOCCLUS2 on miRTarBase human

dataset may already be used to easily map differentially
expressed miRNAs from microarrays experiments in
miRNA:mRNA interacting modules. On the other hand,
the application of HOCCLUS2 on very large datasets of
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predicted targets of differentially expressed miRNAs,
although in some way impaired by the poor effectiveness
of the prediction algorithms, may significantly help in sug-
gesting potential significant interactions among the huge
amount of results they produce. For future work, we intend
to use HOCCLUS2 for multi-label classification purposes,
according to the predictive clustering framework [45].
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