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BACKGROUND: The rapid collection of diverse genome-scale data raises the urgent need to integrate and utilise these resources for
biological discovery or biomedical applications. For example, diverse transcriptomic and gene copy number variation data are
currently collected for various cancers, but relatively few current methods are capable to utilise the emerging information.
METHODS: We developed and tested a data-integration method to identify gene networks that drive the biology of breast cancer
clinical subtypes. The method simultaneously overlays gene expression and gene copy number data on protein–protein interaction,
transcriptional-regulatory and signalling networks by identifying coincident genomic and transcriptional disturbances in local network
neighborhoods.
RESULTS: We identified distinct driver-networks for each of the three common clinical breast cancer subtypes: oestrogen
receptor (ER)þ , human epidermal growth factor receptor 2 (HER2)þ , and triple receptor-negative breast cancers (TNBC) from
patient and cell line data sets. Driver-networks inferred from independent datasets were significantly reproducible. We also
confirmed the functional relevance of a subset of randomly selected driver-network members for TNBC in gene knockdown
experiments in vitro. We found that TNBC driver-network members genes have increased functional specificity to TNBC cell lines
and higher functional sensitivity compared with genes selected by differential expression alone.
CONCLUSION: Clinical subtype-specific driver-networks identified through data integration are reproducible and functionally important.
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Over the past 2 decades, innovative genome-scale data collection
approaches have revolutionised biological research (Hawkins et al,
2010). The possibility to sequence entire genomes or to monitor
transcripts, proteins, or their interactions at genome-scale is
opening new avenues of knowledge generation. However, the
emergence and rapid accumulation of different genome-scale data
types also poses a challenge: how to integrate and analyse various
types of data to further accelerate the rate of biological discovery
and the development of biomedical applications (Veiga et al, 2010)?
Currently, few methods exist that address this problem, but recent
attempts to integrate genome-scale data with known molecular
interactions have already begun generating promising new insights
into the biology of cancer (Chuang et al, 2007; Pujana et al, 2007).

A major systems biology challenge in the context of cancer
research is how to extract and combine information from genome-
wide DNA copy number alteration (CNA) and gene expression
data into biologically meaningful and experimentally testable
models of cancer. Although CNA is generally expected to cause

corresponding expression changes, only a fraction of genes in
amplified or deleted chromosomal regions show differential
expression as detected by current methods (Hyman et al, 2002;
Chin et al, 2006; Neve et al, 2006; The Cancer Genome Atlas
Network, 2008). Likewise, few differentially expressed genes (based
on high-throughput expression profiling) show significant CNA
(Hyman et al, 2002; Chin et al, 2006; Neve et al, 2006; The Cancer
Genome Atlas Network, 2008). This incongruity between different
types of data sets has driven the development of various data
integration methods (Hyman et al, 2002; Pollack et al, 2002;
Garraway et al, 2005; Adler et al, 2006; Berger et al, 2006; Salari
et al, 2010), aimed to differentiate between ‘driver’ and ‘passenger’
genes based on the assumption that functionally important driver
genes must have simultaneous CNA and differential expression.
However, this assumption might be neither necessary nor sufficient
for defining driver genes. In spite of simultaneous CNA and
differential expression, a gene might still be functionally unim-
portant if it does not affect the expression or biological activity of its
interacting partner genes. Conversely, an amplified or deleted gene
that is upregulated or downregulated only minimally, in a
statistically non-significant manner in patient data can still
function as a driver gene if it alters the expression of its network
neighbourhood.
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A recent study (Akavia et al, 2010) proposed a Bayesian
approach for finding driver gene modules in melanoma and
experimentally validated two predicted candidates. However, this
method did not take advantage of the existing biological knowl-
edge in the form of bio-molecular networks. Existing knowledge
compiled as interactome networks can help to provide a validated
basis in the search for biologically relevant driver genes. Moreover,
network-based methods reveal links between biologically impor-
tant genes, highlighting pathways and mechanisms that can
become targets for therapy.

Here, we propose a method for integrating CNA and gene
expression data in the context of large-scale signalling, protein–
DNA (Matys et al, 2006), and protein– protein interaction (PPI)
networks that have become recently available (Peri et al, 2004).
Previous work has shown the utility of network-based gene
expression data analysis in identifying disease signatures (Chuang
et al, 2007; Cline et al, 2007; Pujana et al, 2007; Ideker and Sharan,
2008; Taylor et al, 2009; Nibbe et al, 2010). However, most
network-based methods so far have focused on a single type
of high-throughput data, instead of integrating multiple data
types with network information. Most of these network-based
approaches have either used differential expression or correlation
between gene pairs. Although both of these characteristics are
useful in elucidating disease networks in the context of breast
cancer (Chuang et al, 2007; Taylor et al, 2009), no method has
attempted to combine them.

Breast cancer patients can be clinically classified into three
distinct subtypes based on oestrogen (ER)-, progesterone (PR)-
and HER-2-receptor assessment (Onitilo et al, 2009) including:
(i) ER-positive and human epidermal growth factor receptor 2
(HER2)-normal (ERþ ), (ii) HER2-positve regardless of ER
(HER2þ ), and (iii) triple receptor-negative breast cancers
(TNBC). These subsets have distinct clinical behaviours and
require different treatment approaches. Gene expression analysis
(Perou et al, 2000; Sotiriou and Pusztai, 2009) and comparative
genomic hybridisation (CGH) studies (Bergamaschi et al, 2006;
Andre et al, 2009) suggest that distinct biological pathways drive
the biology of these different breast cancer subtypes. Although
network-based methods have been applied to analyse breast cancer
gene-expression data (Chuang et al, 2007; Pujana et al, 2007;
Taylor et al, 2009), clinical subtype-specific driver-networks have
never been defined. We applied our novel network-based data
integration method to two independent breast cancer patient data
sets (Chin et al, 2006; Andre et al, 2009) and one breast cancer cell
line data set (Neve et al, 2006) to identify distinct driver-networks
corresponding to each subtype. This network analysis revealed
important differences in the biological processes that distinguish
these 3 different types of breast cancers and also suggested
potential new therapeutic strategies. Moreover, we experimentally
validated the functional relevance of several novel genes that our
analysis implicated as potentially important in the biology
of TNBC using siRNA techniques in 13 different breast cancer
cell lines.

MATERIALS AND METHODS

Data sets and sample classification

The network-based data integration method requires gene expres-
sion and DNA copy number data collected from the same breast
cancer subtype. We obtained such data from two published papers
that included 103 and 78 clinically annotated breast cancers,
respectively (Chin et al, 2006; Andre et al, 2009). Patient samples
were classified into three mutually exclusive groups of ERþ or
HER2þ or TNBC based on routine clinical histopathology
information. Numbers of samples in these three subtypes from
each of the two data sets are included in Supplementary Table S1.

Patients with HER2 protein overexpression by immunohistochem-
istry or HER2 gene amplification by fluorescent in situ hybridisa-
tion were assigned to the HER2þ group regardless of their ER/PR
status. Patients with HER2-normal cancer with 410% ER or PR
expression using immunohistochemistry were considered as ERþ .
The remaining patients with HER2-normal and also ER- and PR-
negative disease were categorised as TNBC. In addition, we
obtained cell line data from Neve et al (2006). We used similar
criteria to assign breast cancer cell lines to three clinical subtypes
based on information provided in Neve et al (2006). Human
epidermal growth factor receptor 2 positive cell lines, irrespective
of their ER/PR status were assigned to the HER2þ subtype. ER/PR
positive and HER2-negative cell lines were assigned to the ERþ
subtype. The remaining cell lines were assigned to the TNBC
subtype. See the Supporting Information (SI) Appendix for the
analysis of DNA copy number and gene expression data.

Construction of the literature-based network space and
network visualisation

The PPI network was downloaded from the HPRD database
(www.hprd.org). The transcription factor (TF) network was
assembled based on the ORegAnno and TRANSFAC databases
(http://www.biobase-international.com/pages/index.php?id¼ transfac).
Signalling networks were assembled from the KEGG database
(www.kegg.com). All three types of networks (HPRD, TF, and
KEGG) were assembled into a single combined network space,
which was used for all analyses. In the combined network space,
signalling and transcription-regulatory network connections were
directed while PPIs were undirected. We used Cytoscape
(www.cytoscape.org) for network visualisation.

Seed gene selection

First, we calculated a discretised CNA score matrix, where rows
and columns represent genes and samples, respectively. Elements
of this matrix can have three different values, �1, 0, and 1, based
on whether the gene is deleted, not changed, or amplified,
respectively. Then, for each gene, we calculated the subtype-
specific average CNA score.

Next, we calculated the correlation of this CNA score and gene
expression for genes that had both expression and amplification
data, pooling all subtypes together. For each subtype, we selected
seed genes from the top 5% based on average CNA score and top
10% based on CNA score and expression correlation. Although we
calculated a subtype-specific CNA score, for calculating CNA-
expression correlation we used all the samples. We used this
strategy because, if a gene is amplified in all samples of a single
subtype, the CNA score across all these samples will be 1. Hence,
correlation is not informative of subtype-specificity when one of
the variables has a constant value. However, genes amplified as
well as over-expressed in a subtype-specific manner are good
candidates as seed genes. Expression-CNA correlation calculated
for these genes should be higher if samples from all subtypes are
pooled, as opposed to when samples from only a specific subtype
are used. On the other hand, the reverse is not true: even if the
correlation between CNA and expression is strong across all
samples, subtype-specific correlation might still be quite low.
Average CNA score and CNA-expression correlations are provided
in Supplementary Table S2.

We compared the distribution of expression-CNA correlations
for the three different data sets (Chin et al, 2006; Neve et al, 2006;
Andre et al, 2009) (Supplementary Figure S1). Among the two
patient data sets the correlation distribution was considerably
higher for the Andre et al (2009) data set. One possible reason for
this may be that the arrays used for measuring CNA had higher
resolution, hence producing better data quality. Interestingly, for
cell lines, the correlation was markedly improved compared with
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patient data sets. Hence, to select seed genes for patient and cell
line driver-networks, we used the Andre et al (2009) and Neve et al
(2006) data sets, respectively. In the Supplementary Information
(SI) we have also included the driver-networks using seed genes
from the Chin et al (2006) data set.

Driver-network identification

Starting from a seed gene, we identified all of its direct neighbours
in the network space (i.e., directly connected to the seed gene) and
tested for (i) differential expression or (ii) differential co-
expression. If a gene passed either one of these tests, it was
included in the driver-network. The same process was carried out
iteratively for all the new neighbours in the growing network until
there was no new gene that met either inclusion criterion.

(i) For differential expression we used the following steps. First,
a two-tailed t-test (combined with a Bonferroni correction for
multiple testing) was carried out for each probe of the gene
expression data to determine whether the expression of an
immediate neighbour was significantly higher in the patient subset
of interest compared with the rest of the patient groups. Probes
were ranked in ascending order of P-values from the t-test and 2%
of the probes with the lowest P-values were selected. To account
for probes that did not pass the t-test due to high intra group
standard deviation, we also selected probes based on median
expression difference between the group of interest and the
reference group. Probes were ranked in descending order based on
median expression difference and the top 1% of the probes was
selected. Finally, we calculated the union of the two aforemen-
tioned probe sets and converted them to corresponding gene IDs.
We followed these steps for each of the data sets and for each
clinical subtype.

(ii) The co-expression was calculated between each differentially
expressed gene in the expanding network and each of its first
neighbours. Therefore, correlations between a seed gene and its
first neighbours were considered only if the seed gene was
differentially expressed. For differential correlation, we calculated
two Pearson correlations for each of the links, that is, the adjacent
genes in the network space. One correlation was based on samples
that belonged to the subtype under investigation. The other
correlation was based on the rest of the samples (not belonging
to the subtype). Finally, the latter was subtracted from the former
and the top 0.2% of the links from the distribution of differential
correlations were selected as significantly correlated. When multi-
ple probes were present in the microarray corresponding to a gene,
we selected the probe with the highest absolute correlation. To
ensure comparability of the results, we used exactly the same criteria
for network expansion for all data sets and for all clinical subtypes.

The driver-networks for each of the three different clinical
subtypes identified through this process from all three data sets
(two patient data sets and one cell line data set) are listed in
Supplementary Table S3.

Calculation of overlap

If A and B represent sets of driver-network members from
different clinical data sets, we calculate the normalised overlap
using the formula:

jA \ Bj
jA [ Bj

where |A| denotes the cardinality (number of elements) of set A.

siRNA validation

We selected 30 genes from the TNBC driver-networks for functional
validation that were not previously studied extensively in the

context of TNBC (Figure 2C, F and Supplementary Figure 3C).
We also selected 10 genes differentially expressed in TNBC in all
three data sets. Each of the 40 genes in the joint pool was targeted
with four distinct siRNAs obtained from Dharmacon Inc. We
performed siRNA screening for each gene in 12 different breast
cancer cell lines (TNBC¼ 9, non-TNBC¼ 4). See the SI for the
detailed description of the validation experiments. siRNA screen
data for 40 genes (four siRNAs corresponding to each gene and
three replicates for each siRNA) were provided in Supplementary
Table S4.

RESULTS

A computational method for network-based analysis
of CNA and gene expression data

First, we assembled the biological network space for this analysis
by combining PPI with transcription-regulatory and signalling
interactions from curated databases including a total of 12 358
genes (Materials and Methods). Next, we developed an algorithm
to identify breast cancer subtype-specific driver-networks by
integrating two different genome-scale data types (mRNA expres-
sion and CGH data) on this a priori defined network space
(Figure 1). These driver-networks were anchored to ‘seed’ genes
(Figure 1A) defined by significant DNA copy number elevation in a
given cancer subtype along with strong correlation between gene
copy number and the corresponding mRNA expression (Materials
and Methods). Starting from these seed genes, the algorithm
searched their immediate network neighbourhood and tested if
any of their neighbours were significantly (i) differentially
overexpressed (i.e., expression in the subtype studied is signifi-
cantly higher compared with the other subtypes) or (ii)
differentially co-expressed (i.e., expression correlation between
genes connected by an edge is significantly higher in the subtype
compared with the other subtypes) in the gene expression data. We
selected candidate genes to be tested for differential co-expression
based on the criterion that they had to be nearest neighbours of a
current network member that was differentially expressed. Thus,
co-expression was calculated between each differentially expressed
gene in the expanding network and each of its first neighbours.
If differential expression or co-expression was observed, the seed
and its neighbour(s) were included into the driver-network and
the process was repeated within the new, expanding network
neighbourhood (Figure 1B). This approach was based on two
hypotheses: (i) that significant CNA of a potential seed gene should
also be reflected in the expression of the corresponding mRNA;
and (ii) that seed genes surrounded by genes with significantly
increased expression or expression-correlation are more likely to
represent biological driver functions than genes that do not affect
their network neighbourhood.

To ensure that our results are not hijacked by a few outlier
samples, we used extensive re-sampling analysis. Starting from the
same seed genes, we randomly selected and used 80% of the
samples for network expansion. This random sampling was
repeated 1000 times and only those genes that appeared in at
least 50% of the driver-network samples were included in the final
driver-network (Figure 1B).

Discovery of driver-networks associated with three major
breast cancer subtypes

We assessed the reproducibility of disease subtype-specific driver-
networks by applying our method to two independent data sets
(n¼ 103 and n¼ 78) of mRNA expression and DNA copy number
data collected from each breast cancer patient from two different
cohorts (Chin et al, 2006; Andre et al, 2009). The copy number
data associated with the Chin et al (2006) data set was less recent
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and had lower resolution. We observed relatively poor correlation
between gene expression and amplification in this data set,
lowering the number of seed genes. Hence, here we present
driver-networks expanded from seed genes from the Andre et al
(2009) data set for both patient data sets, whereas driver-networks
inferred using seed genes from Chin et al (2006) are shown in
the Supplementary Figure S2. Figure 2 shows driver-networks
identified for each breast cancer subtype in the two different
patient cohorts. In general, a few highly connected ‘hub’ genes,
some with known subtype-specific involvement appear to hold
together components of these networks for both data sets,
suggesting their central roles in these subtypes. Most of these
subtype-specific hubs have no significant CNA, and are reached
only through network expansion, suggesting that chromosomal
aberrations can drive cancers by indirectly manipulating hub gene
expression through various regulatory interactions, such as
transcriptional regulation and protein modification. In addition
to the main network components containing the hubs, we also
observed a few satellite subnetworks without any links to the main
component. Below, we discuss the membership of these driver-
networks in some detail.

Genes from ERþ driver-networks In ERþ breast cancers, for
both cohorts the ESR1 gene encoding ER alpha (ERa) was the most
prominent hub of a large interconnected network, consistent with
its central role in this cancer subtype. The ERa neighbourhood
included many known transcriptional targets of ERa such as TFF1
(Lacroix and Leclercq, 2004; Tozlu et al, 2006), BCL2L1, NQO1,
CCNG2, TP53, PGR, and SLC9A3R1. Several other genes not
directly transcriptionally regulated by ERa, but frequently over-
expressed in ERþ breast cancer (Bhargava et al, 1994; Dressman

et al, 2001; Lacroix and Leclercq, 2004; Laganiere et al, 2005; Chin
et al, 2006; Maor et al, 2006; Tozlu et al, 2006; Hua et al, 2009)
surrounded ERa in the driver-network, including androgen
receptor (AR), insulin-like growth factor 1 receptor (IGF1R)
(Hartog et al, 2011), RARA, XBP1, CCND1 (Dressman et al, 2001;
Tozlu et al, 2006), and CELSR1 (Figure 2A and D). Besides ERa,
AR, IGF1R (Hartog et al, 2011), IRS1 (Migliaccio et al, 2009),
YWHAZ, and BCL2 were additional hubs connecting multiple
significantly over-expressed genes. These hub nodes appear to act
as signal integrators and may have a key role besides ESR1 in the
developing ERþ breast cancer. AR and ERa are co-expressed in
most of the breast tumours and AR is emerging as an independent
prognostic factor in ERþ breast cancer (Peters et al, 2009).
Previous studies have also indicated positive correlation between
IGF1R and ESR1 expression (Hartog et al, 2011). IGF1R
phosphorylates IRS1 (Insulin receptor substrate-1) and recruits
its downstream effectors (Migliaccio et al, 2009). Moreover, IRS1
can translocate to the nucleus and can modulate the transcrip-
tional activity of ERa (Migliaccio et al, 2009). Finally, IRS1 shows
positive association with ERþ breast cancer in both data sets
analysed here as well as in other studies (Migliaccio et al, 2009).

Genes involved in apoptosis and autophagy appear in ERþ driver-
networks We used both differential expression and differential
co-expression for network expansion. In addition to the genes
identified based on their differential expression, BCLAF1, BECN1,
MOAP1, SMARCA2, HSP90AA1, UBC, and MED16 were included
in the driver-network based on differential co-expression only.
These genes have significantly correlated expression with either
ESR1 or BCL2 in the ERþ breast cancer subtype compared with
other subtypes, but without differential expression. The protein
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Bcl-2 encoded by BCL2 promotes tumourigenesis by inhibiting
apoptosis, the basic mechanism of programmed cell death
(Tabuchi et al, 2009). In breast cancer, Bcl-2 levels correlate with
ER-positivity, as the expression of BCL2 is transcriptionally
regulated by ERa (Tabuchi et al, 2009; Subhawong et al, 2010).
Two other members of the ERþ driver-network, BCLAF1 and
MOAP1, interact with several Bcl-2 family members and have
important roles in regulating apoptosis. BCN1 encodes Beclin1,
which is differentially co-expressed with Bcl-2 in our ERþ driver-
network and has a key role in autophagy, a mechanism used by
cancer cells to survive under stressful conditions (John et al, 2008).
The function of Beclin1 is defined by its interactions with Bcl-2
and its family members (John et al, 2008). Interestingly, these
potentially important connections with apoptosis and autophagy
in ERþ breast cancer are revealed by co-expression rather than
differential expression.

Genes from HER2þ driver-networks HER2þ cancers are
frequently associated with amplification and over-expression of
the ERBB2 and GRB7 genes, both from the 17q12–21 amplicon.
These two genes were present in the driver-networks obtained

from our analysis (Figure 2B and E). Multiple other genes from the
driver subnetworks, including GRB2, MED1, MED24, and EPN3 are
also located in the proximity of the same amplicon (between
17q12– 25), underscoring the significance of this chromosomal
region in HER2þ breast cancer. Two other genes, TFAP2B
and FGFR4, were present in driver-networks from both data sets.
These two genes are differentially expressed without amplification
and they are related to HER2þ breast cancer. TFAP2B is an
AP-2 family TF that can regulate cell proliferation. AP-2 TFs can
induce HER2 protein expression even without gene amplification
(Bosher et al, 1995). Although the ERBB2 gene is frequently
amplified in HER2þ breast cancer, upregulation of the TFAP2B
gene provides an additional mechanism for over-expression of
the ErbB2/HER2 protein. Regarding FGFR4, a previous study
(Koziczak and Hynes, 2004) has shown that it is over-expressed
in a significant fraction of HER2þ breast cancer samples and
simultaneous inhibition of FGFR4 and ERBB2 using small
molecule inhibitors have synergistic anti-proliferative effect.
These observations provide important clues about pathway
deregulation in HER2þ breast cancer and potential combinatorial
therapies. However, as the number of samples in the HER2þ
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Figure 2 Breast cancer subtype-specific (ERþ : A and D, HER2þ : B and E, TNBC: C and F) driver-networks in two separate data sets
(Chin et al. (2009): A–C, Andre et al. (2006): D–F). The size of each node is proportional to the differential expression level of the corresponding
gene. Yellow and blue nodes represent upregulation and downregulation, respectively, from gene expression data. The shapes indicate the type of
genomic change, squares representing the seed genes with copy number alterations, circles representing differential expression without copy number
alteration, hexagons representing both copy number and mRNA expression changes, and triangles representing inclusion based on differential co-expression
without differential expression. Downregulated genes were included in the network either as seed genes (square nodes) or based on differential positive
or negative co-expression (triangle nodes), as only significant overexpression was used for network expansion. The width and colour of an edge connecting
two nodes reflect the magnitude and sign of the correlation (red: positive; green: negative) between two genes within the driver-network. An arrow
pointing from one member gene to another indicates a transcriptional or signalling relationship, whereas lines represent PPIs. Genes common between the
two driver-networks have blue font colour.
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subtype (7 and 11 samples, see Supplementary Table S1) was much
smaller compared with other subtypes (51 and 55 ERþ samples;
20 and 37 TNBC samples), our findings might be less statistically
robust. This is also reflected in the lower overlap between the two
independent data sets (Table 1). Larger data sets may enable the
identification of more robust driver-networks.

Genes from TNBC driver-networks TNBC is the focus of intense
research because the key biological drivers behind these highly
proliferative and poor-prognosis cancers remain unknown. Unlike
the ERþ or HER2þ breast cancer subtypes, pathway deregulation
is least understood in TNBC, hence no targeted therapies exist for
these patients. Driver-networks from our analysis may shed light
on the underlying biology of the disease and suggest new therapies.
We identified EGFR (Corkery et al, 2009) as the central hub in both
data sets, which was connected to GPM6B, ICAM1, PTK2, MET,
KRT17, ANXA1, COL9A3, NCK1, HSPA1A, TGF1, YWHAZ, LYN,
PLEC, PLD1, PLCG2, and PIK3CG (Figure 2C and F). In the Chin
et al (2006) dataset, several other genes including LYN, PLCG2,
MSN, SYK, and ICAM1 were identified as hub genes. However,
these other genes were not hubs in the Andre et al (2009) data set,
possibly because the driver-network itself was much smaller.
Multiple genes from our driver-networks, including EGFR
(Hochgrafe et al, 2010), MET (Hochgrafe et al, 2010), LYN
(Hochgrafe et al, 2010), PTK2/FAK (Hochgrafe et al, 2010), KRT17
(Sharp et al, 2008), ANXA1 (Sharp et al, 2008), and NDRG1 (Sharp
et al, 2008) were previously associated with TNBC. Although the
ESR1 gene is under-expressed in the TNBC subtype compared with
other subtypes, expression of this gene is strongly correlated with
EGFR in this subtype. As the ESR1 gene is believed to have an
important role in ERþ breast cancer, but not in TNBC, its strong
co-expression with the central EGFR gene, specifically in TNBC
compared with other clinical subtypes, is rather counter intuitive.
We were able to identify this intriguing relationship, because we
used differential co-expression as one of the criteria for network
expansion.

Epithelial-mesenchymal transition (EMT)-related genes are enriched
in TNBC driver-networks Through EMT cancer cells lose their
epithelial characteristic and transform to mesenchymal morpho-
logy, which causes the invasion of other tissues and later, distant
metastasis (Mani et al, 2008). Recent studies have shown that
EMT signatures are predominant in ‘basal like’ breast cancers,
which is a subtype similar to TNBC (Sarrio et al, 2008). The TNBC
driver-networks from both data sets are enriched in EMT-related
genes, including LYN, SYK, FAK/PTK2, MSN, WWTR1, YWHAZ,
ICAM1, PLEC, and NDRG1 (Sharp et al, 2008; Hochgrafe et al,
2010). The concordant over-expression of SFRP1 (a secreted
protein that is antagonistic with Wnt) and amplification of FZD6
(a Wnt receptor) suggests a functional role for Wnt signalling in

TNBC that has not previously been appreciated. SFRP1 also has an
important role in mediating TGF-b signalling (Gauger et al, 2011).
Both Wnt and TGF-b signalling have important roles in EMT
(Xu et al, 2009; Gauger et al, 2011). The enrichment of EMT
genes in driver-networks appears specific to the TNBC clinical
subtype. We could not estimate the statistical significance of
this enrichment, as there is no database for a reliable and
comprehensive gene set corresponding to breast cancer EMT,
to the best of our knowledge.

Albeit EGFR is the major hub gene in the TNBC driver-networks,
attempts to inhibit EGFR alone yielded disappointing results in the
clinic (Corkery et al, 2009). Our results suggest that concordant
inhibition of the EGFR and EMT pathways might be interesting
to consider in the future as a new strategy for treating TNBC.

Driver-networks are significantly reproducible

The overlap between driver-networks identified from the two data
sets is statistically significant As we are comparing two similar
but independently acquired data sets, true and biologically relevant
results should be reproducible across data sets. To test whether the
driver-networks are significantly reproducible, we examined the
overlap between subtype-specific driver-networks in the two data
sets. As the overlap will depend on the sizes of both driver-
networks, it should be properly normalised. We computed the
normalised overlap by dividing the number of genes in the
intersection of driver-networks with the number of genes in
their union (Materials and Methods). Using the same formula, we
also calculated the normalised overlap of those genes that
were differentially expressed in at least 50% of the 1000 random
samplings used to infer driver-networks (Supplementary
Table S5), and applied it for control as follows.

To estimate the statistical significance of the reproducibility of
driver-networks, we compared the observed results with the results
obtained from the 1000 randomisations (background distribution).
We used two different types of randomisation for calculating
the background distribution, based on (i) seed randomisation
and (ii) expression randomisation. In seed randomisation, we
randomly selected the same number of seed genes as for
constructing the observed driver-networks. Similar to driver-
network construction, we used exactly the same random seeds
for both data sets, whereas using the original gene expression
data for network expansion. In expression randomisation, we
used the original seed genes in both data sets, but the gene names
were shuffled in both gene expression data sets. This ensures
using the same numbers of differentially expressed genes as for
the original network expansion.

For each of the 1000 seed and expression randomisations, we
calculated the overlap between driver-networks obtained from the
two data sets. As the number of overlapping genes between the
networks will depend on the size of the individual networks, we
again normalised the overlap by the union of the two networks.
The distribution of this normalised overlap from randomisation
was compared with the normalised overlap observed from our
analysis to calculate the significance of the observed overlap. The
significance levels (P-values) for each of the three subtypes are
listed in Table 1. Driver-networks from all three subtypes show
statistically significant overlap based on expression randomisation
(Po0.05). From seed randomisation, the ERþ and TN subtypes
show significant overlap (Po0.05). However, the P-value for the
HER2þ subtype was relatively high (0.08). As mentioned before,
the lack of robustness might have been caused by the fewer
samples available for this subtype.

The advantage of data integration Some of the most important
members of the driver-networks were identifiable through the
network expansion process involving data integration, and could
not have been found by more simplistic approaches. For example,

Table 1 Reproducibility of the driver-networks from independent data
sets and from seed gene- and expression randomisations (mean±s.d.)

ER+ HER2+ TN

Normalised overlap of driver-networks 0.49 0.20 0.30
Normalised overlap from seed
randomisation (P-value)

0.36±0.06
(0.01)

0.16±0.04
(0.08)

0.18±0.06
(0.01)

Normalised overlap from expression
randomisation (P-value)

0.12±0.04
(0.00)

0.12±0.03
(0.00)

0.09±0.03
(0.00)

Abbreviations: ER¼ oestrogen receptor; HER2¼ human epidermal growth factor
receptor 2; TN¼ triple receptor-negative. Statistical significance of the reproducibility
(P-value) was estimated by comparing the observed normalised overlap with the
distribution of overlaps obtained from randomisation. The greatest and least
normalised overlap of the driver-networks between the two data sets was observed
for the ER+ and HER2+ subtypes, respectively.
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ESR1 and many of its interacting partners in the driver-network
(e.g., TFF1, XBP1, IGF1R, AR, CELSR1, and RARA) are significantly
over-expressed without amplification. Hence, data integration
algorithms requiring simultaneous CNA and differential expres-
sion as selection criteria would not have identified these genes as
important. Likewise, several seed genes for the ER network,
including APPBP2, ASH2L, BAG4, CCND1, CLTC, DDX5, DEDD,
EPN3, GPAA1, PHB, PRKAR1A, PRKDC, PSMC5, PTK2, RPS6KB1,
SPOP, and YWHAZ were not significantly over- or under-
expressed in ERþ cancers relative to other subtypes but showed
copy number abnormalities. These genes would have been missed
by transcriptional analysis alone or without considering network
interactions. Several of these genes were previously implicated in
the biology of ERþ cancers, further supporting the validity of our
method (Emberley et al, 2002; Song and Santen, 2006; Celebiler
Cavusoglu et al, 2009; Chen et al, 2009). Also, most genes from
TNBC driver-networks could not have been found without
simultaneously projecting the expression and copy number data
onto a comprehensive network space. In fact, none of the genes
from driver-networks are simultaneously over-expressed and
amplified in the TNBC driver-networks.

Driver-networks identified using cancer cell line data

Cancer cell lines are widely used to study cancer biology and to test
potential new drugs. Therefore, it is important to establish to what
extent biological networks that drive human cancers are preserved
in cell lines. We applied our network finding algorithm to gene
expression and copy number data of 40 breast cancer cell lines
(Neve et al, 2006) that we assigned to the ERþ , HER2þ , and
TNBC groups (Supplementary Table S1). This is the largest cell line
data set publicly available with simultaneously collected gene copy
number and gene expression data.

Comparing the membership of driver-networks inferred from cell
lines and patient data For ERþ cells, ESR1 was again in the
centre of a network that included many members also identified in
the patient data-derived networks (Supplementary Figure S2A).
Overall, 11 member genes from the cell line driver-networks were
also present in at least one of the two patient ERþ networks
including TFF1, XBP1, FOXA1, MUC1, ERBB3, PSMC5, SLC9A3R1,
FADD, MYB, and ASH2L (Supplementary Figure S3A). However,
several potentially therapeutically important driver-network
members in the patient data sets (e.g., AR, IRS1, IGF1R, VAV3,
ERBB3, and AP1G1) were not present in the cell line-derived
network. For the HER2þ cell lines, ERBB2, GRB7, GRB2, MED1,
and MED24 remained central nodes (Supplementary Figure S3B).
Similar to patient cohorts, the number of cell lines from the
HER2þ subtype was much smaller compared with other subtypes.
For the TNBC cells, we also found considerable but not complete
overlap of driver-network members between patient data and cell
lines (Supplementary Figure S3C). Both EGFR (Hochgrafe et al,
2010) and LYN (Hochgrafe et al, 2010) were again identified as
important hub genes and several other genes including ANXA1
(Sharp et al, 2008), MET (Hochgrafe et al, 2010), and MSN were
found significant in the TNBC cell line data set. FN1 (Camara and
Jarai, 2010) (fibronectin 1) and CD44 (Brown et al, 2011) were cell
line-specific hub genes. Although they were not present in any of
the driver-networks from patient data sets, both of these genes are
related to cell adhesion and migration (Camara and Jarai, 2010;
Brown et al, 2011). These genes also have important roles in EMT,
a process that was also predominant in TNBC patient driver-
networks. Multiple members of the TGF-beta pathway (Xu et al,
2009) (TGFB1, TGFBI, and TGFBR2) and the Caveolin family
(Elsheikh et al, 2008) (CAV1 and CAV2) were present in TNBC cell
line-specific driver-networks. These genes also have an important
role in EMT, corroborating what we observed in patient data sets
(Elsheikh et al, 2008; Xu et al, 2009). Another interesting and

apparently counter-intuitive similarity with patient data sets was
the strong correlation between ESR1 and EGFR gene expressions.

Overall, these results suggest that some of the key biological
processes are preserved but others are reconfigured in cancer cell
lines, possibly due to cell culture conditions (Fidler, 2003).
Alternatively, the variable network membership may reflect
differences in statistical power (driven by the sample size) between
the patient and cell line data sets. Also, the patient samples,
particularly surgical data sets such as Chin et al (2006), contain
variable amounts of stromal cells that may affect the mRNA
expression and CNA data.

Experimental validation of the functional importance
of TNBC driver-network members in breast cancer
cell lines

As no targeted therapy is currently available for TNBC patients, the
identification of potential new therapeutic targets is of clinical
importance. Therefore, we selected genes from our TNBC driver-
networks for functional validation in vitro. Out of 92 genes that
were present in any of the three driver-networks (union of the
patient- and cell line-specific driver-networks) from TNBC
subtype, we randomly selected 30 genes (‘driver-network mem-
bers’) that were not previously linked to breast cancer biology. To
test whether the integrated network analysis can functionally
prioritise the candidates, we compared the performance of the
‘driver-network members’ with differentially expressed genes
selected as follows. As the numbers of differentially expressed
genes for each of the datasets are quite large (205, 230 and 191
from Neve et al (2006); Chin et al (2006) and Andre et al (2009),
respectively), we had to select a small subset of these genes for
functional validation. Genes that were significant in all three data
sets should be the strongest candidate for validation. Hence, we
identified 18 genes that were differentially expressed in all three
data sets. Four genes from this list were also present in the ‘driver-
network genes’ and were left out. Out of the remaining 14 genes,
we randomly selected 10 for functional validation (‘differential
expression members’). Each of the selected genes (30þ 10) were
knocked down with four different siRNAs in 13 different breast
cancer cell lines (n¼ 9 TNBC, n¼ 4 ERþ or HER2þ ) (Materials
and methods). We considered a gene functionally validated if X2
siRNAs reduced cell viability significantly compared with control
siRNA (Materials and Methods). For each gene we calculated the
fraction of cell lines where the gene significantly reduced cell
viability in TNBC compared with non-TNBC cell lines. Finally, we
averaged these numbers over all the genes to get two representative
numbers from TNBC and non-TNBC groups (‘viability score’). The
higher the ‘viability score’, the greater the functional importance of
that gene. As the ‘viability score’ depends on the significance
threshold, we calculated it for a wide range of thresholds. The
‘viability scores’ of ‘driver-network members’ were consistently
higher in TNBC cell lines compared with non-TNBC cell lines
(Figure 3). In TNBC cell lines, ‘driver-network members’ had
higher ‘viability score’ compared with ‘differential expression
members’ (Figure 3). Together, these observations imply that
(i) driver-network genes have functional importance specific to
the TNBC subtype and (ii) integrated analysis was able to reveal
candidates that were functionally more important than what
could be obtained using the strongest candidates from differential
expression analysis alone.

DISCUSSION

Conclusions

Data generated from different high-throughput genomic analysis
platforms contain different types of noise and biases inherent to
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the individual technologies. Integrated approaches utilising multi-
ple data types in combination with prior biological knowledge may
help the separation of functionally important findings from noise
and data set-specific biases. We present a new computational
method for integrating mRNA expression and DNA copy number
data in the context of comprehensive biological networks. Our
method identifies local network neighborhoods with gene expres-
sion anomalies that are anchored around DNA copy number
alterations. We consider these aberrantly expressed or amplified/
deleted genes that are connected in the local network space as
members of ‘driver-networks’. We applied this method to two
human breast cancer data sets where both gene expression and
DNA copy number data were available and found that different
breast cancer clinical subtypes had different driver-networks. At
the same time, the driver-networks from the same clinical subtype
were significantly reproducible across independent data sets. The
driver-networks were not only able to recapitulate existing
biological knowledge, but also provided helpful insight that can
pave the way to the development of novel therapeutic strategies.
For example, we observed TNBC driver-networks predominantly
associated with EMT, whereas ERþ driver-networks contained
apoptosis-related genes responsible for tamoxifen resistance.
Hence, driver-networks aid the development of rational combina-
torial therapies in a subtype-specific manner. We validated the
subtype specificity of the driver-networks and tested the value of
the integrated analysis by knocking down 30 driver-network genes
and comparing the results with knockdowns of 10 differentially
expressed, non driver-network genes in a panel of breast cancer
cell lines.

Novelty of the network expansion algorithm Previous studies
either use differential expression or differential co-expression for
overlaying expression data on biological networks. Although
differential expression-based analysis focuses on the properties
of network nodes, differential co-expression interrogates the edges
of a network. We defined differential expression based on the
inter-subtype variability of expression, whereas for calculating
differential co-expression we used correlation within a specific

subtype. Hence, these two types of information are orthogonal
to each other and could provide independent biological insight.
Although most of the members of driver-networks were selected
based on differential-expression, associations of Bcl-2 family
members and Beclin1 with ERþ breast cancer were revealed
by differential co-expression. Another interesting observation
was the strong correlation of EGFR and ESR1 expression in
TNBC in both patient and cell line data sets (Chin et al, 2006;
Neve et al, 2006).

Driver genes vs driver-networks The objective of many previous
studies was to identify driver genes, from a long list of amplified
genes. Here, we shifted the focus to identifying driver-networks.
The strategy of finding driver-networks instead of driver-genes has
multiple advantages. First, driver-networks not only include driver
genes, but also reveal the associated networks/pathways that are
deregulated. Second, targeting individual driver genes is often
difficult as not all driver genes are appropriate drug targets.
Instead, we argue that finding a suitable drug target from members
of a driver-network might be more feasible. Finally, based on the
topology and membership of the driver-networks, one could
propose rational combinatorial therapies, which might not be
possible by only analysing a list of driver genes.

Validation of TNBC driver-networks using a high-throughput
approach Experimental validation of the driver-network genes
has shown the functional importance of the results. We selected
TNBC for functional validation as pathway deregulation is least
understood in TNBC, and hence, no targeted therapy exists
for this subtype. The objective of the validation was to show
that driver-network genes, identified from our analysis, are
functionally important and subtype specific. If only a few genes
are cherry picked for detailed validation, the results will be
heavily biased towards the genes that are selected. Hence, we
adopted a high-throughput approach for validation involving
a comparatively large set of 40 genes in 13 cell lines (four siRNAs
and three replicates per gene), rather than cherry-picking a
few genes and studying them in more detail. Still, extensive
experimental studies are required for each of these genes to
understand the mechanistic details of their action and the
associated therapeutic potential, which is beyond the scope of
this manuscript.

Satellite subnetworks In all of the driver-networks, we found that
most of the genes were either directly or indirectly connected to
each other, creating a main component. However, we also observed
a few satellite subnetworks, which were not connected to the main
component. For example, the MYB-ASH2L and CLTC-AP1G1
satellite subnetworks were present in ERþ driver-networks from
both patient data sets (Figure 2A and D). It is debatable whether
these satellite subnetworks are biologically informative and
whether we should retain them in the final driver-network. On
several occasions, a satellite subnetwork from one patient data set
was part of the main component in the other data set. For example,
in the TNBC subtype, FZD6-SFRP1 and EIF3E-NDRG1-PABPC1
were satellite subnetworks in the Andre et al (2009) data set
(Figure 2F), but became parts of the main component in the Chin
et al data set (Figure 2C). They possibly appeared as satellite
subnetworks in Figure 2F because the genes that could connect
them to the main component were not differentially expressed in
the Andre et al (2009) data set. Hence, even when the satellite
networks are not linked to the main component, they could be
biologically related. For some genes of the satellite subnetworks,
there is earlier evidence indicating their association with the
disease subtype. For example, MYB (Gonda et al, 2008) and
NDRG1 (Sharp et al, 2008) are related to ERþ breast cancer and
TNBC, respectively. Hence, we decided to retain the satellite
subnetworks in the final driver-networks.
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Figure 3 Functional relevance of the triple-negative breast cancer
(TNBC) driver-networks. ‘Driver-network samples’ correspond to the
thirty genes randomly selected from TNBC driver-networks and
‘differential expression samples’ correspond to 10 genes differentially
expressed in all the data sets. Each of these genes was knocked down with
four different siRNAs in eight TNBC and four non-TNBC cell lines. Viability
score represents the average knockdown of all the genes in all the cell lines
(see the Materials and Methods and the text for details). Functional
validation showed that genes from driver-networks had subtype-specific
effect on viability. The driver-network members were also functionally
more important compared with the strongest candidates from differential
gene expression analysis.
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Clinical relevance of driver-network genes Development of anti-
oestrogen resistance is one of the impediments in the treatment of
ERþ breast cancer. Tamoxifen, the most commonly used anti-
oestrogen drug, competes with oestrogen to bind ERa, and thereby
blocks the growth-promoting action of ERa in breast cancer cells.
Yet, a subset of ERþ patients have intrinsic resistance to the
therapy, and even those patients who respond, can eventually
develop drug resistance (Schoenlein et al, 2009). The ERþ driver-
networks have several members involved in anti-oestrogen
resistance. For instance, IGF1R and IRS1 were identified as
predictive markers of tamoxifen response in patients with early
breast cancer (Migliaccio et al, 2009). Second, autophagy and
apoptosis-related genes from ERþ driver-networks provide
further links to anti-oestrogen resistance. As autophagy provides
a key cell survival mechanism during anti-oestrogen therapy,
blocking autophagosome formation can help reduce the anti-
oestrogen resistance in ERþ breast cancer (Schoenlein et al,
2009). Finally, several receptors emerged as dominant and
consistent members of ERþ driver-networks including the AR,
IGF1R, and ERBB3. Each of these targets is druggable and
combined blockade of these receptors may be synergistic with
anti-oestrogen therapy. IGF1R and AR inhibitors are currently
tested separately in the clinic in this context, whereas ERBB3 has
not previously been linked to the biology of ERþ breast cancer.
Hence, driver-networks identified from our analysis can provide
clues on potential biomarkers that can suggest novel combinatorial
therapies to circumvent anti-oestrogen resistance.

In TNBC, our analysis identified the LYN kinase as an important
hub of the main driver-network in addition to EGFR in both data
sets. Although EGFR was identified as the main hub gene and
has been shown to inhibit the growth of TNBC cell lines, EGFR

inhibitors alone or combined with carboplatin chemotherapy
showed very little activity in the clinic (Corkery et al, 2009).
Our network analysis suggests potential combination therapy
approaches, such as inhibiting LYN and other network partners
of EGFR in order to improve efficacy. Numerous small satellite
networks that we describe implicate several biologically important
genes as possible drivers of TNBC that were not previously linked
to this disease. We also noted important driver-network differ-
ences between patient cancers and cell lines. This suggests that
some network anomalies not consistently seen in cell lines, but
observed in human data may not be readily studied in the current
cell line-based experimental models and hence their therapeutic
potential may be overlooked.
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