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Abstract

Background: Hepatocellular carcinoma (HCC) is often caused by chronic liver infection or inflammation. Searching
for potential immunotherapy targets will aid the early diagnosis and treatment of HCC.

Methods: Firstly, detailed HCC data were downloaded from The Cancer Genome Atlas database. GDCRNATools was
used for the comprehensive analysis of RNA sequencing data. Subsequently, the CIBERSORT package was used to
estimate infiltration scores of 22 types of immune cells in complex samples. Furthermore, hub genes were
identified via weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network
analysis. In addition, multiple databases were used to validate the expression of hub gene in the tumor tissue.
Finally, prognostic, diagnostic and immunohistochemical analysis of key hub genes was performed.

Results: In the present study, 9 hub genes were identified using WGCNA and PPI network analysis. Furthermore,
the expression levels of 9 genes were positively correlated with the infiltration levels of CD8-positive T (CD8+ T)
cells. In multiple dataset validations, the expression levels of CCL5, CXCR6, CD3E, and LCK were decreased in cancer
tissues. In addition, survival analysis revealed that patients with LCK low expression had a poor survival prognosis
(P < 0.05). Immunohistochemistry results demonstrated that CCL5, CD3E and LCK were expressed at low levels in
HCC cancer tissues.

Conclusion: The identification of CCL5, CXCR6, CD3E and LCK may be helpful in the development of early
diagnosis and therapy of HCC. LCK may be a potential prognostic biomarker for immunotherapy for HCC.

Keywords: Hepatocellular carcinoma, CD8+ T cells, LCK, Weighted gene co-expression network analysis, Diagnosis
and prognosis

Background
Hepatocellular carcinoma (HCC) is a common tumor, ac-
counting for 75–85% of primary liver cancer case, and its in-
cidence is on the rise [1, 2]. HCC is caused by chronic
hepatitis virus infection, aflatoxin contamination of food,
heavy drinking and other factors [3, 4]. The common

therapies for HCC are hepatectomy and liver transplantation
and ablative therapies; however, the risk is high and the
therapeutic effect is unsatisfactory [5]. In recent years, can-
cer research has focused on immunodiagnostics and im-
munotherapy [6, 7].
Previous study has demonstrated that tumor-

infiltrating immune cells (TIICs) can help the host resist
the development of cancer cells and solid tumors [7].
The density and type of TIICs are closely associated with

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: 13676357009@163.com
Department of Gastroenterology, The Second People’s Hospital of Liaocheng
City, No.306 Jiankang Street, Linqing City 252600, Shandong Province, China

Hou and Zhang Diagnostic Pathology           (2021) 16:57 
https://doi.org/10.1186/s13000-021-01118-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13000-021-01118-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:13676357009@163.com


the clinical outcome of the tumor [8–10]. Among
which, CD8-positive T (CD8+ T) cells, account for a
large proportion of immune cells in a number of
cancer types, have been demonstrated to play a key
role in controlling tumor progression [11, 12]. In
addition, previous study has found that
D8+CXCR5+T cells are highly invasive and well in-
filtrated, which enables patients with HCC to have
an improved prognosis [13]. Loss of the immune-
mediated cancer field (ICF) can lead to reduction
and shrinkage of liver tumors [14]. The Gene Set
Enrichment Analysis (GSEA) analysis revealed that
the local immune phenotype of HCC with tumor
protein p53 (TP53) mutation was reduced [15]. Pro-
grammed cell death protein 1 (PD-1) can induce the
immune checkpoint response of T cells and enable
tumor cells to evade immune monitoring. Its inhibi-
tor of receptor PD-L1 can effectively inhibit this
signaling pathway and improve the therapeutic ef-
fect [16]. However, the specific mechanism of their
immunotherapy remains unknown. Therefore, ex-
ploring biomarkers related to immune infiltration
will help detect the HCC immunotherapy response
and identify specific immune mechanisms.
With the development of biological information

technology, a variety of tools can be used to identify
biomarkers. For example, machine learning [17],
weighted gene co-expression network analysis
(WGCNA) [18] and CIBERSORT [19] have been
widely used to search for biomarkers. To explore the
role of the microenvironment and identify potential
biomarkers for HCC, WGCNA and CIBERSORT were
utilized, followed by protein-protein interaction (PPI)

network construction, and hub gene validation and
identification in the present study.

Methods
Data
GDCRNATools, a novel R package, was used for the
comprehensive analysis of RNA sequencing (RNA-seq)
data [20]. RNA-seq data and clinical information for
HCC were downloaded from The Cancer Genome Atlas
(TCGA) database (http://cancergenome.nih.gov/) on Au-
gust 27, 2020. A total of 370 HCC samples with survival
data and 50 adjacent non-tumor samples were obtained
by removing patients lack of survival information based
on clinical information [21]. Genes identified by using
RNA expression profiles were annotated based on the
Ensembl gene ID. Genes with missing expression values
in > 20% of samples or patients and genes with 0 expres-
sion values in all samples were excluded. Voom
standardization was performed to screen gene expres-
sion data. In the present study, all data were obtained
from public databases without the approval of an ethics
committee.

Evaluation of TIICs
The “CIBERSORT” package in R was used to estimate
infiltration scores of 22 types of immune cells in com-
plex samples [12]. The processed gene expression matrix
was uploaded to the CIBERSORT (https://cibersort.
stanford.edu/) web tool. LM22 expression signature and
500 permutations were used for the algorithm. Subse-
quently, the percentages of immune cells for each sam-
ple were selected as WGCNA trait data. Wilcoxon
signed-rank test and the “ggplot2” package in R (version

Fig. 1 Difference analysis in immune infiltration between the HCC samples and adjacent non-tumor samples. Normal and cancer indicate
adjacent non-tumor samples and HCC samples, respectively. P < 0.05 was considered to indicate a statistically significant difference. HCC:
hepatocellular carcinoma
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3.1.1) were used to compare 22 types of immune cells
between groups and for visualization, respectively.

Co-expression network construction
The “WGCNA” package in R (http://www.r-project.
org/) was used for WGCNA analysis of genes (the
first 25% of the variation coefficient of gene expres-
sion matrix) in HCC samples from TCGA. Firstly, the
expression levels of single transcripts were converted
into a similarity matrix based on the Pearson’s correl-
ation value between paired genes. Subsequently, the
similarity matrix was converted into an adjacency
matrix. β = 5 was selected as the soft-thresholding
power. When the power of β = 5, the adjacency

matrix was converted into a topological overlap
matrix. Genes were classified into different modules
using the dynamic hybrid cutting method, and the
minimum module size cut-off value was 30.

Identification of hub module
The significance of modules was determined using a
Pearson test (P < 0.05), which calculate the correlation
between module eigengenes and immune infiltrated
cells. Subsequently, the differences of module eigengenes
were further calculated and visualized. A cutting line for
the module tree diagram was selected and some modules
were merged. The module most relevant to the immune
cells of interest was selected and defined as the hub

Fig. 2 Cluster analysis and construction of WGCNA. A Sample clustering. B Sample dendrogram and trait heatmap. In the heatmap, the darker
the color, the higher the degree of cell infiltration. C The scale-free fitting index of different soft threshold power (β). D The average connectivity
of various soft threshold powers. E The horizontal line indicates the module merge threshold. F Clustering results of modules in gene data in
WGCNA analysis. WGCNA: weighted gene co-expression network analysis
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module. CIBERSORT was used to calculate the infiltra-
tion of immune cells of interest in HCC samples and ad-
jacent non-tumor samples in the GSE14520 dataset
(comprising 225 tumor samples and 220 adjacent non-
tumor samples) and the GSE54236 dataset (comprising
81 tumor samples and 80 adjacent non-tumor samples).
The GSE14520 and GSE54236 datasets were obtained
from the Gene Expression Omnibus (GEO) database
[22].

Functional analysis of genes in the hub module
To further explore the biological function of genes, the
online tool Database for Annotation, Visualization and
Integrated Discovery (DAVID) 6.8 (https://david.ncifcrf.
gov/) was used for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomics (KEGG) pathway
enrichment analyses. The “GOplot” package in R

(version 1.0.2) was used for visualization of the enrich-
ment results.

Identification of hub genes
Candidate hub genes were selected according to the
module connectivity (MM) and clinical trait relationship
(GS) of each gene in the hub module. Genes with MM
> 0.8 and GS > 0.5 in the module were selected as candi-
date hub genes. Furthermore, the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) data-
base (https://string-db.org/) was used to construct the
PPI network for all genes in the hub module. The confi-
dence between nodes in the PPI network was > 0.7. Sub-
sequently, Cytoscape software (http://www.cytoscape.
org) was used for the visualization of the PPI network.
Genes with degrees > 25 were considered as central
nodes. Online tools were used to perform Venn analysis

Fig. 3 Identification and functional enrichment of hub modules. A Heatmap showing associations between the module characteristic genes and
immune cell infiltration. B CD8+ T cell infiltration in HCC samples and adjacent non-tumor samples from the GSE14520 dataset. Normal and
Tumor indicate adjacent non-tumor samples and HCC samples, respectively. C CD8+ T cell infiltration in HCC samples and adjacent non-tumor
samples from the GSE54236 data set. Normal and Tumor indicate adjacent non-tumor samples and HCC samples, respectively. D Significantly
enriched GO terms. GO: Gene Ontology; BP: Biological process; CC: Cell composition; MF: Molecular function. E Significantly enriched KEGG
pathways. For KEGG analysis, different colors represent different signaling pathways. KEGG, Kyoto Encyclopedia of Genes and Genomes
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(http://www.bioinformatics.com.cn/) on candidate hub
genes and central nodes in the PPI network.

Validation of hub genes
Two immune-related databases based on TCGA but dif-
ferent from the CIBERSORT algorithm were used to val-
idate these hub genes. Firstly, Tumor Immune
Estimation Resource (TIMER) was used to obtain CD8+

T cell content in each HCC sample [23]. The Spearman
correlation between CD8+ T cell and hub genes was cal-
culated, and the “ggplot2” package in R (version 3.1.1)
was used to visualize the results. Subsequently, Tumor
Immune System Interactions Database (TISIDB) was
used to determine the Spearman correlation between
hub genes and TIICs [24]. The heatmap constructed by
the “pheatmap” package in R was used to visualize these
results.

Correlation between hub genes and immune factors
The TISIDB database was used to obtain the Spearman
correlation between hub genes and immunosuppressive
factors, immune-stimulating factors, chemokines and re-
ceptors. Subsequently, the “heatmap” package in R was
used to construct the heatmap. Hub genes and immune
factors with average correlation > 0.5 were selected.
Then, String was used to construct the PPI network for
these immune factors and hub genes. Cytoscape software
was used for the visualization of the PPI network. This
will be helpful to explore the infiltration mechanism of
CD8+ T cell.

Identification of clinical characteristics of hub genes
The RNA expression data in HCC were acquired from
TCGA. The Wilcoxon signed-rank test was used to
analyze the statistically significant differences between

Fig. 4 Identification of hub genes. A Scatter diagram of genes in brown module. Each red circle represents a gene. B PPI network of all genes in
the hub module. The outermost circle is the center node. C Overlapping genes between the PPI network and scatter diagram (module
connectivity > 0.8 and clinical trait relationship > 0.5) were selected as hub genes. D PPI network of the 9 hub genes. PPI,
protein-protein interaction
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adjacent non-tumor samples and tumor samples. In
addition, the “limma” package in R was used to analyze
the differences in all coding genes [25], and the
“ggplot2” package in R was used to draw a volcano plot.
Then, P-value (P) < 0.05 and |log2FoldChange|
(|log2FC|) > 1 was used to identify differentially
expressed genes. Expression validation of hub genes
was performed using the GSE14520 and GSE54236
datasets which were obtained from the GEO database
[22]. The protein expression levels of hub genes were
verified using the Proteomic Data Commons Database
(https://pdc.cancer.gov, comprising 316 tumor samples
and 316 adjacent non-tumor samples). Finally, violin di-
agrams were constructed to demonstrate the correl-
ation between hub genes and clinical stages in TCGA.
A Kruskal-Wallis test was used for the analysis of stat-
istical significance.

Prognosis, diagnostic and immunohistochemical analysis
Gene Expression Profiling Interactive Analysis (GEPIA,
http://gepia.cancer-pku.cn/) is an online tool of gene ex-
pression analysis, which provides data on gene expres-
sion, tumor stage and survival for 33 cancer types,
including HCC [26]. This online tool was used to
analyze the survival ability of key hub genes. Addition-
ally, TCGA data were used for diagnostic and immuno-
histochemical analysis of key hub genes. The Human
Protein Atlas (https://www.proteinatlas.org/) online ana-
lysis software was used to perform immunohistochemi-
cal analysis.

Results
Infiltration of immune cells
CIBERSORT calculated the infiltration of immune cells
in HCC samples and adjacent non-tumor samples.

Fig. 5 Validation of hub genes. A Association between the expression levels of 9 hub genes and CD8+ T cell infiltration levels in TIMER database.
B Association between LCK expression and CD8+ T cell infiltration levels in TIMER database. C Association between the expression levels of the 9
hub genes and tumor-infiltrating immune cells (TIICs) in TISIDB database. Red indicates a high correlation and green indicates a low correlation.
TIMER: Tumor Immune Estimation Resource
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Compared with adjacent non-tumor samples, the degree
of infiltration of B cells naive (P = 0.036), T cells regula-
tory (Tregs) (P = 4.1e-10) and Macrophages M0 (P =
2.2e-05) in tumor tissues was significantly increased,
whereas the degree of infiltration of Plasma cells (P =
1.1e-07), NK cells resting (P = 1.1e-03), Monocytes (P =
6.2e-12) and Macrophages M2 (P = 3.0e-04) was signifi-
cantly decreased (Fig. 1). This indicated that the occur-
rence and development of HCC are closely associated
with immune cells.

Construction of WGCNA
To identify the hub genes, 3750 genes were selected to
construct the WGCNA. Firstly, cluster analysis was car-
ried out on the samples and no outliers were found
(Fig. 2a). A dendrogram and trait heatmap of 370 sam-
ples were constructed (Fig. 2b), and darker color indi-
cates a higher degree of infiltration. When the

parameter value of the weight coefficient is 5, it approxi-
mates a scale-free topology. β = 5 was regarded as soft-
thresholding power to construct a scale-free network
(Fig. 2c, d). The dynamic tree cutting method was used
to merge the modules with a difference < 25%. Finally, 8
modules were identified (Fig. 2e, f).

Identification and enrichment analysis of hub module
To determine the hub module, the correlation be-
tween the characteristic genes of the module and im-
mune infiltrated cells was calculated using a Pearson
test (P < 0.05). Eight modules, the brown module was
highly related to CD8+ T cells (R2 = 0.5, P = 3e-25),
and the yellow module was related to Macrophages
M0 (R2 = 0.35, P = 8e-12) (Fig. 3a). The present study
particularly focused on CD8+ T cells. In TCGA data-
base, no significant difference (P = 0.067) in the per-
centage of CD8+ T cells infiltration was observed

Fig. 6 Association between 9 hub genes and immune factors. A Heatmap of association between 9 hub genes and immune stimulating factors.
B Heatmap of association between 9 hub genes and immunosuppressive factors. C Heatmap of association between 9 hub genes and
chemokines. D Heatmap of association between 9 hub genes and receptors. E Protein-protein interaction (PPI) network of 9 hub genes and
immune factors. The average correlation between 32 immune-related factors and 9 hub genes was > 0.5
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between HCC samples and adjacent non-tumor sam-
ples. Therefore, the immune infiltration of CD8+ T
cells in HCC samples and adjacent non-tumor sam-
ples in GEO was further verified. Compared with ad-
jacent non-tumor samples, the percentage of CD8+ T
cells infiltration was markedly decreased in HCC sam-
ples (Fig. 3b, c).
The present study focused on the brown module re-

lated to CD8+ T cells and considered it as a hub
module. To further explore the biological functions of
genes in the hub module, the online tool DAVID 6.8
was used for enrichment analysis. According to GO
analysis, most of the genes were distributed on the
plasma membrane or membrane surface, and partici-
pate in the immune response and the activation of
leukocytes, lymphocytes, T cells and other immune
cells (Fig. 3d). In addition, based on KEGG analysis,
most of the genes were involved in cytokine-cytokine

receptor interaction, chemokine signaling pathway, T
cell receptor signaling pathway and other signaling
pathways related to the immune response (Fig. 3e).

Identification of hub genes
After identifying the hub module, the hub genes in the
hub module were further explored. Based on cutoff
values of MM > 0.8 and GS > 0.5 as cutoff values, 38
genes were selected (Fig. 4a). In the PPI network, 45
central nodes (degree > 25) were screened out (Fig. 4b).
In the Venn analysis, 9 intersection genes were screened
out (Fig. 4c), and these were considered to be hub genes
(CCL5, CD2, CD3D, CD3E, CD3G, CTLA4, CXCR3,
CXCR6, LCK). A PPI network was constructed for 9 hub
genes (Fig. 4d). The results demonstrated showed that
these 9 hub genes were interrelated. This suggested that
these 9 hub genes may interact with each other to in the
development of HCC.

Fig. 7 Verification of hub genes expression in HCC samples and adjacent non-tumor samples using the TCGA database. A-I Differential expression of
CXCR3, CTLA4, CD3D, CD2, CD3E, CD3G, CCL5, CXCR6 and LCK in normal and tumor samples. Normal and Tumor indicate adjacent non-tumor
samples and HCC samples, respectively. P < 0.05 was considered to indicate a statistically significant difference. J Volcano plot of differentially
expressed genes in the adjacent non-tumor samples and HCC samples. Red dots, blue dots and black circles represent up-regulated genes, down-
regulated and hub genes, respectively. P < 0.05 and |log2FC| > 1 was used to identify differentially expressed genes. HCC: hepatocellular carcinoma
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Validation of hub genes
To study the relationship between these hub genes
and CD8+ T cells, the expression data of hub genes
in the TIMER database were analyzed. The analysis
results revealed that the expression levels of 9 hub
genes were positively associated with the infiltration
levels of CD8+ T cells (Fig. 5a). For example, a cor-
relation scatter plot between LCK expression and the
infiltration levels of CD8+ T cells is shown (Fig. 5b).
Additionally, the association between the abundance
of TIICs and hub gene expression were explored.
Analysis based on the TISIDB database showed that
hub genes were positively associated with numerous
TIICs (Fig. 5c).

Immune and clinical characteristics
The Spearman correlation between the expression
levels of 9 hub genes and immune factors was
searched in the TISIDB database. A total of 14
immune-stimulating factors, 10 immunosuppressive
factors, 5 chemokines and 8 receptors were identi-
fied (Fig. 6a-d). Among them, the average correlation
between the 32 immune-related factors and 9 hub

genes was greater than 0.5. The STRING database
was used to construct an immune infiltration inter-
action network to explore the infiltration mechanism
of CD8+ T cells (Fig. 6e). Expression levels of 9 hub
genes in adjacent non-tumor samples and tumor
samples were obtained from TCGA. The expression
levels of CXCR3 and CTLA4 were higher in tumor
tissues than those in normal tissues (P < 0.05) (Fig. 7a,
b). Compared with normal control tissues, the ex-
pression level of CD3D and CD2 in tumor tissues
were not significantly different (Fig. 7c, d), while the
expression levels of CD3E, CD3G, CCL5, CXCR6
and LCK in tumor tissues were lower than those in
normal tissues (P < 0.05) (Fig. 7e-i). In addition, the
volcano map revealed that the expression levels of
CCL5, CXCR6, CD3E and LCK were up-regulated in
tumor tissues, and CTLA4 expression was down-
regulated in tumor tissues compared with in normal
tissues (Fig. 7j) based on screening criteria of P <
0.05 and |log2FC| > 1.
Further expression verification of these 5 hub

genes was performed in GSE14520 and GSE54236.
Compared with normal control tissues, the

Fig. 8 Differential expression of CTLA4, CD3E, CCL5, CXCR6 and LCK in HCC samples and adjacent non-tumor samples. A-E Differential expression
of genes, including CTLA4 (A), CD3E (B), CCL5 (C), CXCR6 (D) and LCK (E) in HCC samples and adjacent non-tumor samples in the GSE14520 and
GSE54236 datasets. F Differential expression of proteins, including CD3E, CCL5 and LCK in HCC samples and adjacent non-tumor samples from
the Proteomic Data Commons data set. Normal and Tumor indicate adjacent non-tumor samples and HCC samples, respectively. P < 0.05 was
considered to indicate a statistically significant difference. ****, P < 0.0001. HCC: hepatocellular carcinoma
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expression level of CTLA4 in tumor tissues was not
significantly different (Fig. 8a). Notably, the expres-
sion levels of CD3E, CCL5, CXCR6 and LCK in
tumor samples and adjacent non-tumor samples
were markedly different (Fig. 8b-e), and the results
were consistent with the results of the analysis using
TCGA. In addition, the protein expression levels of
hub genes were further verified using the Proteomic
Data Commons Database. It is a pity CXCR6 is not
found in the Proteomic Data Commons Database.
Therefore, only the protein expression levels of
CCL5, CD3E, and LCK were verified. The expression
levels of CCL5, CD3E, and LCK were lower in tumor
tissues samples than those in adjacent non-tumor
tissue samples (Fig. 8f), which is consistent with the
results of transcriptomics. The expression levels of
these 4 hub genes in different pathological stages
and tumor grades of HCC were investigated. In gen-
eral, gene expression levels decreased with the in-
crease in pathological stage (Fig. 9). However, there

was no significant difference between tumor grades
(Supplementary Fig. 1).

Prognosis, diagnostic and immunohistochemical analysis
Further analysis was performed to explore the impact of
the 4 hub genes on survival and diagnosis. GEPIA was
used for survival analysis of CCL5, CXCR6, CD3E and
LCK (Fig. 10a-d). The present study demonstrated that
survival prognosis of patients in the LCK low expression
group was poor (P < 0.05) (Fig. 10d). Therefore, the
present study used LCK as a prognostic biomarker for
further analysis. Additionally, the TCGA data were used
to analyze the diagnostic ability of CCL5, CXCR6, CD3E
and LCK (Fig. 10a-d). In the receiver operating charac-
teristic (ROC) curve analysis, the area under curve
(AUC) of CCL5 and CXCR6 were 0.691 and 0.660, re-
spectively (Fig. 10e, f), which is close to 0.7. This indi-
cated that CCL5 and CXCR6 may be potential
diagnostic gene biomarkers in HCC. CXCR6 was not
found in online immunohistochemistry analysis, so only

Fig. 9 Differential expression of CD3E (A), CCL5 (B), CXCR6 (C) and LCK (D) in different pathological stages. P < 0.05 was considered to indicate a
statistically significant difference. A Kruskal-Wallis test was used to analyze the statistical significance among stage I, stage II and stage III-IV
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CCL5, CD3E and LCK were used for analysis. The im-
munohistochemistry results demonstrated that the stain-
ing intensity of CCL5, CD3E and LCK in HCC cancer
tissues ended to be decreased compared with those in
normal tissues (Fig. 11). This was consistent with the
previous protein validation results (Fig. 8f).

Discussion
HCC is a relatively common outcome of chronic liver
infection or inflammation [27]. CD8+ T cells are essen-
tial effector cells in anti-tumor immunity [28]. Highly in-
filtrating CD8+ T cells are beneficial for tumor therapy
of most tumors [29–31]. CD8+ T cells are key partici-
pants in the anti-tumor response of HCC [32].

Furthermore, intratumoral CD8+ T cells are associated
with improved prognosis in patients with HCC after re-
section [33, 34]. In the present study, 9 hub genes
(CCL5, CD2, CD3D, CD3E, CD3G, CTLA4, CXCR3,
CXCR6 and LCK) related to the levels of CD8+ T cells
infiltration were identified. Expression verification re-
vealed that the expression levels of CCL5, CXCR6,
CD3E and LCK decreased with the increase in patho-
logical stage (Fig. 9). Notably, patients with low LCK ex-
pression had a poor survival prognosis (Fig. 10d).
Therefore, LCK was considered as a potential prognostic
marker and target.
LCK proto-oncogene, Src family tyrosine kinase (LCK)

is one of the key molecules that regulate T cell function

Fig. 10 Prognostics and diagnostic analysis of CCL5, CXCR6, CD3E and LCK. A Survival curve of CCL5; B Survival curve for CXCR6; C Survival curve
for CD3E; D Survival curve for LCK. P < 0.05 was considered to indicate a statistically significant difference. E ROC curve for CCL5; F ROC curve for
CXCR6; G ROC curve for CD3E; H ROC curve for LCK. ROC, receiver operating characteristic; AUC: area under curve
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[35], and is involved in the immune response or lympho-
cyte activation [36]. LCK is a strong predictor of survival
in high grade serous ovarian cancer (HGSOC), and im-
munoglobulin and B-cell related genes are highly
expressed in samples with high LCK expression [37].
High LCK protein expression (a T-cell marker) is associ-
ated with improved patient survival in primary and/or
metastatic melanoma [38]. In addition, LCK serves an
essential role in cell migration and stemness gene ex-
pression [39]. In the present study, the expression levels
of LCK exhibited a high correlation with the infiltration
levels of CD8+ T cells (Fig. 5). Furthermore, LCK expres-
sion decreased with the increase of pathological stage
(Fig. 9d). Notably, patients with low LCK expression had
a poor survival prognosis (Fig. 10d). Therefore, it is hy-
pothesized that LCK may be an important prognostic
marker and immunotherapy target in HCC.
C-C motif chemokine ligand 5 (CCL5) is a chemokine

produced by immune cells, and acts by binding to the
corresponding receptor [40, 41]. Reduced CCL5 expres-
sion leads to desertification of tumor-infiltrating lym-
phocytes [42]. The disease-free survival of patients with
early breast cancer with high CCL5 expression is im-
proved compared with that of patients with low CCL5
expression [40]. Down-regulation of CCL5 has been

detected in HCC tissue samples [43]. C-X-C motif che-
mokine receptor 6 (CXCR6) belongs to the CXC chemo-
kine receptor family [44]. Previous studies regarding the
effect of CXCR6 on liver cancer have revealed that after
injection of diethylnitrosamine, the tumor load of
CXCR6-deficient mice is markedly higher than that of
wild-type mice, and tumor progression is increased. Fur-
thermore, the number of natural killer T (NKT) and
CD4+ T cells was decreased in the liver [45]. Notably,
NKT and CD4+ T cells have been reported to pro-
mote senescence hepatocyte clearance to prevent
hepatocarcinogenesis, and this process requires
CXCR6 [45, 46]. CD3e molecule (CD3E) is a member
of the CD3 complex, and deficiency can lead to im-
mune deficiency [47]. Additionally, CD3E is a typical
genetic marker associated with tumor-infiltrating lym-
phocytes [48]. Previous study has revealed that pa-
tients with head and neck squamous cell carcinoma
(HNSCC) with low CD3E expression have a poor
prognosis [49]. In the present study, the expression
levels of CCL5, CXCR6 and CD3E exhibited a high
correlation with the infiltration levels of CD8+ T cells
(Fig. 5a, d), and the expression levels in HCC samples
were lower than those that in adjacent non-tumor
samples (Fig. 7 and Fig. 8). Furthermore, CCL5,
CXCR6 and CD3E expression decreased with the in-
crease of pathological stage (Fig. 9a-c). Therefore, it is
hypothesized that CCL5, CXCR6 and CD3E may also
be important regulatory genes and immunotherapeutic
targets in HCC.
In summary, the present study suggested that CCL5,

CXCR6, CD3E and LCK may be potential immunotherapy
targets for HCC. LCK has been identified as a potential
prognostic biomarker for immunotherapy in HCC. CCL5
and CXCR6 may be potential diagnostic gene biomarkers
in HCC. The identification of these genes may be helpful
in the development of early diagnosis and therapy of
HCC. However, a certain degree of limitation exists in this
experiment. To the best of our knowledge, the molecular
mechanism of the identified genes in HCC is unclear, and
further research is required.

Conclusion
In the present study, 9 hub genes were identified using
WGCNA and PPI network analysis. Furthermore, the
expression levels of 9 genes were associated correlated
with the infiltration levels of CD8+ T cells. In multiple
dataset validations, CCL5, CXCR6, CD3E and LCK were
identified to be down-regulated in cancer tissues. In
addition, survival analysis demonstrated that patients
with LCK low expression had a poor survival prognosis.
The identification of CCL5, CXCR6, CD3E and LCK
may be helpful in the development of early diagnosis

Fig. 11 Immunohistochemical analysis of CCL5 (A), CD3E (B) and
LCK (C). Normal and Tumor indicate adjacent non-tumor samples
and HCC samples, respectively. HCC: hepatocellular carcinoma
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and therapy of HCC. LCK may be a potential prognostic
biomarker for immunotherapy in HCC.
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