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Natural killer (NK) cells are known to be activated during malaria infection, exhibiting

both cytokine production and cytotoxic functions. However, NK cells are heterogeneous

in their expression of surface activatory and inhibitory receptors which may influence

their response to malaria parasites. Here, we studied the surface marker profile and

activation dynamics of NK cells during a Controlled Human Malaria Infection in 12

healthy volunteers. Although there was significant inter-patient variability in timing and

magnitude of NK cell activation, we found a consistent and strong increase in expression

of the activatory receptor NKp30. Moreover, high baseline NKp30 expression was

associated with NK cell activation at lower parasite densities. Our data suggest that

NKp30 expression may influence the NK cell response to P. falciparum, explaining

inter-patient heterogeneity and suggesting a functional role for this receptor in malaria.
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INTRODUCTION

Malaria infection in humans activates a broad cellular immune response involving monocytes, T
cells, B cells, and NK cells. NK cells may play a functional role in protection against Plasmodium
falciparum, as certain NK cell receptor genotypes are associated with decreases in malaria
susceptibility and pathology [reviewed in (1)]. During the pathological blood stage of P. falciparum
infection, circulating NK cells display a dual functional role, i.e., cytokine production (2–5)
and killing of infected blood cells both via antibody-independent (6–8) and antibody-dependent
cytotoxicity (9, 10). Their relative contribution to protection remains unknown.

NK cells are often considered a homogenous, unchanging population, but multicolored flow
cytometry and mass cytometry have revealed that NK cells actually consist of many distinct
populations, differing in their functionality against specific diseases (11–14). Artavanis-Tsakonas
et al. previously demonstrated that in malaria naïve donors a specific subpopulation of NK
cells expressing the lectin-type receptor NKG2A are the main IFN-γ producers in response
to P. falciparum-infected RBC (15). Most studies determining the NK cell response against P.
falciparum demonstrate that there is large inter-donor variability (16, 17). We hypothesized that
this heterogeneity might at least in part be explained by differences in NK cell phenotype prior
to infection.

To date most data on responsiveness of NK cells to P. falciparum has been obtained from ex
vivo stimulation experiments or case-control studies in endemic areas. We took advantage of the
Controlled Human Malaria Infection model to evaluate the activation and function of different
NK cell subsets at multiple time points during a malaria infection. Our data show in vivo NK cell
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activation in all donors with an upregulation of IFN-γ and
granzyme B production. There was indeed a significant variability
both in the timing and magnitude of the NK cell response, and
increased baseline receptor expression of NKp30 predicted a
more rapid in vivo NK cell activation.

MATERIALS AND METHODS

Clinical Trials
Study 1 was a single-center, open-label clinical trial in
12 malaria naïve individuals conducted at the Radboud
university medical center (Nijmegen, The Netherlands) from
May until June 2018. Study volunteers provided written informed
consent and were screened as described previously (18). The
trial was approved by the Central Committee on Research
Involving Human Subjects (CCMO; NL63552.091.17) of the
Netherlands, performed according to the Declaration of Helsinki
and Good Clinical Practice and prospectively registered at
ClinicalTrials.gov (NCT03454048). Volunteers were infected by
the bites of five P. falciparum 3D7 strain-infected Anopheles
mosquitoes, and followed up for parasitemia twice daily starting
on day 6 post infection. Parasitemia was assessed by thick
blood smear and qPCR. Volunteers were treated with a sub-
optimal dose of piperaquine when parasitemia reached density
detectable by thick blood smear or 5,000 parasites/milliliter
by qPCR, and received curative treatment if recrudescent
parasitemia occurred.

Study 2 was a single-center randomized placebo controlled
malaria vaccine trial (CCMO NL39541.091.12; NCT01728701)
published previously (19). Only study subjects that received
placebo vaccination followed by CHMI were included in
the current analysis. In short, volunteers received bites
from five P. falciparum NF54 strain-infected Anopheles
mosquitoes, and were followed up for parasitemia twice
daily starting on day 5 post infection. Parasitemia was
assessed by thick blood smear and/or qPCR, and volunteers
received curative treatment with atovaquone/proguanil,
either when parasitemia reached levels detectable by
microscopy (n = 5) or after two consecutive qPCRs >500
parasites/milliliter (n= 4).

Whole Blood NK Cell Phenotyping
In study 1, 100 µL fresh EDTA blood was stained directly
with a pre-prepared and antibody mixture containing:
CD3-AlexaFluor700 (Biolegend; clone OKT3), pan-γδTCR-
PE (Beckman Coulter; clone IMMU510), CD56-Brilliant
Violet(BV)421 (Biolegend; clone HCD56), CD16-APC-
eFluor780 (eBiosciences; clone CB16), CD69-PerCP-Cy5.5
(Biolegend; clone FN50), NKp30-APC (Biolegend; clone
P30-15), NKG2D-Brilliant Violet(BV)510 (Biolegend; clone
1D11), NKG2A-PEVio770 (Miltenyi Biotec; clone REA110),
and CD57-FITC (Biolegend; clone HCD57). A single mixture
was prepared one day before the first time point, aliquotted
per time point and stored in the dark until use. Samples were
stained at 4◦C in the dark for 30min, followed by erythrocyte
lysis with 1mL FACS Lysis buffer (BD Biosciences) for
exactly 5min. Samples were centrifuged and then washed

with 0.5% Bovine Serum Albumin (BSA) in PBS. Cell
pellets were resuspended in 100 µL 1% paraformaldehyde
(PFA) and analyzed on a Gallios flow cytometer (Beckman
Coulter). At each time point, staining and fixation was
completed within 4 h of blood draw and flow cytometry
was performed the same day using identical acquisition
settings and a standardized protocol. CD69 was used as a
marker for lymphocyte activation after CHMI, as described
earlier (20, 21).

PBMC Isolation and Cryopreservation
In study 2, blood samples for peripheral blood mononuclear
cell (PBMC) isolation were taken pre-challenge, 3 days after
antimalarial treatment and 35 days after challenge infection.
Isolation and cryopreservation was performed as described
previously (22). In short, PBMCs were isolated from citrate
anti-coagulated blood using vacutainer cell preparation tubes
(CPT; BD Diagnostics) by density gradient centrifugation.
Cells were washed four times in ice-cold phosphate buffered
saline (PBS), counted using 0·1% Trypan blue with 5% Zap-
o-Globin II Lytic Reagent (Beckman Coulter), cryopreserved
at a concentration of 10 × 106 cells/ml in ice-cold fetal
calf serum (Gibco)/10% DMSO (Merck), and stored in
vapor-phase nitrogen.

PBMC Thawing and Re-stimulation
Immediately prior to use, cells were thawed and washed
twice in Dutch-modified RPMI 1640 (Gibco/Invitrogen). Cell
viability was assessed by counting in 0·1% Trypan blue
with 5% Zap-o-Globin II Lytic Reagent (Beckman Coulter)
to assess cell viability. PBMCs were cultured at 2.5 ×

106 cells/ml in RPMI 1640 (Dutch Modification; Gibco)
with 5 mg/ml gentamycin (Centraform), 100mM pyruvate
(Gibco), 200mM glutamax (Gibco), supplemented with 10%
heat-inactivated pooled human A+ serum (obtained from
Sanquin Bloodbank, Nijmegen, The Netherlands) at a final
volume of 200 µL in 96-wells plates. Cells were stimulated
with purified Plasmodium falciparum NF54 schizonts or
uninfected red blood cells at a concentration of 5 × 106

RBC/ml. After 3 h, Brefeldin A (10µg/mL; Sigma-Aldrich) and
monansin (2µM; eBioscience) were added to culture. After
another 3 h (6 h total stimulation) cells from two stimulation
replicates (1.0 × 106 cells total) were combined, washed
and stained with Fixable Viability Stain 700 (BD Biosciences)
for 30min. After washing with PBS, cells were stained
with extracellular antibodies, CD3-AlexaFluor700 (Biolegend;
clone OKT3), CD56-PE (Biolegend; clone HCD56), CD16-
APC-eFluor780 (eBiosciences; clone CB16), NKG2A-PEVio770
(Miltenyi Biotec; clone REA110), and CD57-APC (Biolegend;
clone HCD57) for 30min at 4◦C in the dark. Cells were
washed and fixed with Foxp3 fixation/permeabilization buffer
(eBioscience). After washing with permeabilization buffer
(eBioscience) cells were stained for intracellular cytokines
with IFN-γ-PE-Dazzle (Biolegend; clone 4S.B3) and granzyme
B-FITC (Biolegend; clone GB11). After another wash with
permeabilization buffer, cells from two staining replicates (2.0 ×
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106 cells total) were taken up in 200 µL 1% paraformaldehyde
(PFA) and analyzed on a Gallios flow cytometer (Beckman
Coulter) the next day.

Data Analysis and Statistics
Flow cytometry data was analyzed using Flow Jo software
(version 10.0.8 for Apple OS). Statistical analysis was
performed using GraphPad Prism (version 5.03 for
Windows). Gating strategy and representative plots are
shown in Supplementary Figure 1 (whole blood) and
Supplementary Figure 3 (PBMCs).

RESULTS

Heterogeneity in NK Cell Activation After
CHMI
After malaria infection, NK cell activation as defined by
upregulated CD69 expression was determined daily from day
6 post-infection until 3 days after antimalarial treatment
(Supplementary Figure 1). In study #1 the first activation of NK
cells in a number of volunteers was observed 1 day after the first
appearance of parasitemia detectable by qPCR (Figure 1).

In the absence of parasitemia, up to 3.5% of NK cells expressed
CD69, therefore >3.5% CD69 expression was considered

FIGURE 1 | Kinetics of parasitemia and NK cell activation during Controlled Human Malaria Infection. NK cells were analyzed by flow cytometry daily in whole venous

blood from 12 volunteers undergoing Controlled Human Malaria Infection. Antimalarial treatment was initiated when parasite densities reached levels detectable by

microscopy. Each graph shows the activation of NK cells (defined by CD69 surface expression) from day 6 post infection until day 3 after antimalarial treatment (blue

line, left axis). The same graph shows parasitemia measured by qPCR from day 6 after infection, until day 3 after antimalarial treatment (red line, right axis). NK cell

activation is first seen 1–2 days after the first appearance of parasitemia. Each graph represents the data gathered for a single volunteer (n = 12).
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significant NK cell activation above background (Figure 2A).
There was indeed a significant heterogeneity in the timing
of first NK cell activation, ranging from 1 day after the first
appearance of parasitemia (i.e., volunteer 5) to 5 days after
parasitemia (volunteer 7). This may be partially explained by
differences in starting parasite density. Parasitemia (prior to
the initiation of antimalarial treatment) correlated strongly
with the degree of NK cell activation (Spearman p = 0.0017;

Figure 2A). However, this does not explain the diversity

entirely, as some volunteers have significant NK cell activation

(defined as CD69 expression >3.5%) at very low circulating
parasitemia, such as volunteer 5, while others require very
high parasitemia before NK cells become activated, such
as volunteer 7. This circulating parasite density prior to
NK cell activation was highly variable between volunteers
(mean 4,798 Pf/ml, range 25–26,152 Pf/ml), suggestive for a
host-dependent factor.

Baseline NKp30 Expression Predicts
Activation After CHMI
NK cell activation is dependent on a delicate balance between
activatory- and inhibitory receptors, and the expressed
receptor profile may relate to the observed heterogeneity
during CHMI. Therefore, we next determined whether
the expression of activatory receptors NKp30 or NKG2D,
the inhibitory receptor NKG2A or the differentiation
marker CD57 predicted an individual’s response to
CHMI. Indeed, higher baseline NK cell NKp30 expression
correlated with activation at lower parasitemia (linear
regression p = 0.047; Figure 2B). NKp30 and NKG2D were
expressed on nearly 100% of NK cells for all volunteers
(Supplementary Figure 1).

NKp30 was strongly upregulated during CHMI (pre-challenge
vs. day of antimalarial treatment: mean MFI 3,145 vs. 4,913,
Wilcoxonmatched-pairs signed rank test p= 0.0010; Figure 2C),

FIGURE 2 | NKp30 predicts rapid NK cell activation during CHMI. (A) The graph shows NK cell activation correlated with parasitemia in all post-challenge but

pre-treatment blood samples, where each color represents the samples from an individual volunteer. Blood samples without parasites showed up to 3.5% NK cell

CD69 expression. (B) For each volunteer (n = 12) the maximum parasitemia measured by qPCR in prior to or at the moment of first NK cell activation measured in

whole blood was determined. Increased baseline NK cell NKp30 surface expression determined by Mean Fluorescent Intensity correlated with NK cell activation at

lower parasitemia. Line and p-value are the result of a linear regression analysis. (C) Surface expression of the activatory receptors NKp30 and NKG2D determined on

total NK cells for each volunteer prior to malaria infection (open circles) and on the day of antimalarial treatment (closed circles). P-values are the result of Wilcoxon

matched-pairs signed rank test; *p < 0.05; ***p < 0.001. (D) The fold change in NKp30 expression (determined by MFI) between measurements at baseline and

antimalarial treatment for each volunteer were correlated to NK cell CD69 expression at on the day of antimalarial treatment. Line and p-value are the result of a linear

regression analysis.
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while the upregulation of NKG2D was marginal (pre-challenge

vs. day of antimalarial treatment: mean MFI 5,268 vs. 5,916,

Wilcoxon matched-pairs signed rank test p = 0.043; Figure 2C).

The increase in NKp30 expression was proportional to total NK
cell activation at antimalarial treatment (linear regression p =

0.041; Figure 2D).
NK cells can be divided into distinct populations representing

levels of differentiation based on their expression of CD56,

CD16, NKG2A, and CD57 (11), and a previous study

suggested NKG2A+ NK cells are more responsive to P.

falciparum in vitro (15). We sought to determine whether
this may result from differential expression of NKp30.

However, while baseline expression of NKp30 varied between
CD56dimNKG2A+ and CD56dimNKG2A– subsets (Figure 3A;
Supplementary Figure 2), all NK cell subsets showed an
upregulation of NKp30 (Figure 3A). Furthermore, we did not
see any differences in activation as defined by CD69 upregulation
between the CD56dim subsets, though there was significantly
more activation of the CD56dim subset compared to the
CD56bright subset (Figures 3B,C).

NK Cell Subsets Upregulate CD69, IFN-γ,
and Granzyme B During CHMI
As there appears to be little activation of the CD56bright
NK cell subset during the course of infection, we wanted
to determine the ability of both the CD56brightCD16–
and CD56dimCD16+ subsets to produce granzyme B and
IFN-γ and degranulate during infection, using isolated and
cryopreserved peripheral blood mononuclear cells (PBMCs)
from study #2 (Supplementary Figure 3). We found that both
subsets increase production of granzyme B and IFN-γ and
show improved degranulation during infection (Figures 4A–C;
Supplementary Figure 4).

DISCUSSION

These data show that NKp30 is a marker for the NK cell response
during a Controlled Human Malaria Infection, and suggests a
possible functional role in the response to infected red blood cells.
We demonstrate that the expression of this receptor at baseline
relates to individual NK cell responses to P. falciparum in vivo.

FIGURE 3 | NKp30 expression and activation kinetics on NK cell subsets. NK cells were analyzed by daily flow cytometry in whole venous blood from 12 volunteers

undergoing Controlled Human Malaria Infection. Antimalarial treatment was initiated when parasite densities reached levels detectable by microscopy. (A) Total NK

cells were divided into five subpopulations based on their surface expression of CD56, CD16, NKG2A, and CD57: CD56brightCD16– (orange),

CD56dimCD16+NKG2A+CD57– (dark blue), CD56dimCD16+NKG2A+CD57+ (light blue), CD56dimCD16+NKG2A-CD57– (green), and

CD56dimCD16+NKG2A-CD57+ (purple). Surface expression of NKp30 for each NK cell subset prior to malaria infection (open circles) compared with NKp30

expression on each NK cell subset on the day of antimalarial treatment (closed circles). P-values are the result of Wilcoxon matched-pairs signed rank test; **p < 0.01;

***p < 0.001. (B) The graph shows the mean and error of NK cell CD69 surface expression on each subset per day in 12 volunteers. (C) Surface expression of CD69

was determined for each NK cell subset prior to malaria infection (open circles) and on the day of antimalarial treatment (closed circles). P-values are the result of

Wilcoxon matched-pairs signed rank test; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4 | IFN-γ, granzyme B, and degranulation responses per NK cell subset. Cryopreserved PBMCs from nine volunteers taken before challenge (open circles)

and 3 days after antimalarial treatment (closed circles) were thawed and stimulated for 6 h with Pf-infected red blood cells (PfRBC) or uninfected RBC (uRBC). Total

NK cells were divided into two subpopulations based on their surface expression of CD56 and CD16. (A) Intracellular granzyme B content (% cells positive)

determined by flow cytometry in unstimulated NK cells (those incubated with uninfected RBC cultures) at both time points. (B) Intracellular IFN-γ production (% cells

positive) in response to PfRBC stimulation at both time points, IFN-γ production after PfRBC stimulation was corrected for production in response to uRBC.

(C) CD107a staining (% cells positive) in response to PfRBC stimulation at both time points, CD107a staining after PfRBC stimulation was corrected for production in

response to uRBC. For all three graphs open circles are pre-infection time points and closed circles are day 3 post antimalarial treatment. P-values are the result of

paired samples t-test; *p < 0.05; **p < 0.01; ***p < 0.001.

Furthermore, we show that NK cell activation during the course
of infection is linked to an increase in NKp30 expression.

Both NKp30 and NKG2D have been shown to increase
expression during NK cell activation (14, 23), however, during
CHMI the magnitude of NKp30 upregulation of is particularly
pronounced compared to NKG2D. It has previously been
demonstrated in vitro that NKp30 binds to the P. falciparum
protein PfEMP1 leading to NK cell activation (24). This supports
our finding that NK cells with higher resting NKp30 expression
are more sensitive to activation at lower parasitemia. However,
it is important to note that other in vitro studies suggest that
PfEMP1 may be dispensable (25) and that MDA5 signaling may
be essential (26) for NK cell activation in response to PfRBC.
Therefore, multiple mechanisms may be involved in NK cell
activation during malaria.

This is the first study with longitudinal daily samples from
the initial phase of a malaria infection as parasites emerge from
the liver that suggests an important role for NKp30. We thereby
measured CD69 expression directly in patient blood samples,
without re-stimulation, remaining close to the induced in vivo
phenotype of an early natural infection. Furthermore, we show

that baseline NKp30 expression is linked to a more rapid NK cell
activation during subsequent infection.

Population based studies conducted in sub-Saharan Africa
have identified a single nucleotide polymorphism (SNP) in
the promoter for the NCR3 gene that encodes NKp30 that is
associated with an increased number of clinical, uncomplicated
malaria episodes in individuals over 5 years old (27–29). The
combined data are highly suggestive for a potential functional
role of NKp30-mediated NK cells in malaria. In our study we
do not detect differences in time to parasitemia, maximum
parasitemia, or parasite multiplication rate between those with
high NKp30 expression and those with low NKp30 expression
(data not shown). However, an important limitation of this study
is that it was not designed tomeasure an effect on control of blood
stage parasite replication. Even in volunteers with very rapid NK
cell activation, this occurred only 2 days before the initiation of
antimalarial treatment. This period between NK cell activation
and drug treatment would be too short to measure an effect
on parasite multiplication. Instead, cohort studies in endemic
areas are better suited to answer this question. Future studies in
endemic areas could determine NKp30 expression on NK cells
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at the beginning of a malaria season and during follow-up visits,
and correlate this with number of clinical malaria episodes.

Broad inter-donor variability in the activation of NK cells
in response to P. falciparum has been described in multiple
studies (16, 17, 21). Our current finding suggest that baseline NK
cell phenotype can play a role in this diversity. However, other
immunological factors, including other activatory and inhibitory
receptors not studied here, interactions with other immune cells
and cytokine production likely also contribute to the NK cell
response. Furthermore, parasitological factors, such as the initial
starting parasitemia and parasite multiplication rate may also
affect host response.

The phenotypic diversity of NK cells has been a topic of
extensive study during the last decade (12, 14). Since the first
discovery of NK cell memory in murine CMV infection (30),
specific NK cell phenotypes have been identified as the main
responders in human EBV (13), CMV (31), and HIV infection
(14, 32) as well. Similarly, studies suggested that NKG2A+ NK
cells, specifically respond to P. falciparum (15, 16). Interestingly,
this does not appear to be the case during controlled human
malaria infection in vivo.

Nevertheless, the finding that NKp30 expression predicts the
response to CHMI, underscores the potential importance of NK
cell phenotype in our susceptibility to disease. The diversity of
the NK cell repertoire has been implicated in the risk of HIV
acquisition (14, 33), and viral infections in turn have been shown
to change its composition (34–37). Our study suggests that NK
cell phenotype affects the response to a P. falciparum infection.

The current study was limited to analysis of CD56,
CD16, NKG2A, CD57, NKp30, and NKG2D. In contrast,
data from studies on other diseases using cytometry by
time-of-flight (CyTOF) have suggested there may be more
than 100,000 NK cell phenotypes, each characterized by a
distinct combination of surface receptors (12). Furthermore, the
expression of diverse killer cell immunoglobulin-like receptors
(KIRs) plays an important role in NK differentiation and
function (11). Therefore, it is likely that additional receptors,
or combinations of inhibitory and activatory receptors, are
also important for the interaction between NK cells and P.
falciparum parasites. Future studies looking at a larger number
of receptors and cytokines could unravel both these effects in
more detail.

In conclusion, this study is the first to identify the expression
the NK cell activatory receptor NKp30 as a marker that predicts a

rapid NK cell response to parasitemia and suggest a potential role
for this receptor in NK cell functionality against P. falciparum.
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