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Emerging studies in the enigmatic area of bioactive lipids have made many exciting

new discoveries in recent years. Once thought to play a strictly structural role in cellular

function, it has since been determined that sphingolipids and their metabolites perform

a vast variety of cellular functions beyond what was previously believed. Of utmost

importance is their role in cellular signaling, for it is now well understood that select

sphingolipids serve as bioactive molecules that play critical roles in both cancer cell death

and survival, as well as other cellular responses such as chronic inflammation, protection

from intestinal pathogens, and intrinsic protection from intestinal contents, each of which

are associated with oncogenesis. Importantly, it has been demonstrated time and time

again that many different tumors display dysregulation of sphingolipid metabolism, and

the exact profile of said dysregulation has been proven to be useful in determining not only

the presence of a tumor, but also the susceptibility to various chemotherapeutic drugs,

as well as the metastasizing characteristics of the malignancies. Since these discoveries

surfaced it has become apparent that the understanding of sphingolipid metabolism and

profile will likely become of great importance in the clinic for both chemotherapy and

diagnostics of cancer. The goal of this paper is to provide a comprehensive review of

the current state of chemotherapeutic agents that target sphingolipid metabolism that

are undergoing clinical trials. Additionally, we will formulate questions involving the use of

sphingolipid metabolism as chemotherapeutic targets in need of further research.
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INTRODUCTION TO SPHINGOLIPID METABOLISM

Common to all sphingolipids are a sphingoid base and a fatty acid tail or head group attached
to the base; the variations of each of these core components is what determines the ultimate
function of each sphingolipid. For example, ceramides are a sphingolipid with the sphingoid base
sphingosine together with a fatty acid tail, and they play an important function in the structure of
cell membranes, but are also thought to be involved in cellular signaling regulating programmed cell
death as well as cellular proliferation, making this type of sphingolipid an obvious target in treating
cancer (1, 2). Ceramide lies at the intersection of all sphingolipidmetabolism, for it is the addition of
various headgroups that ultimately leads tomore complex sphingolipids. Discussed in greater detail
later in this review, a delicate balance between ceramide and its metabolites plays a crucial role in
cellular fate, thus an understanding of the enzymes involved in the metabolism of sphingolipids is
a critical concept to grasp when discussing targeting this pathway with anticancer agents. Figure 1
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FIGURE 1 | Potential targets in ceramide synthesis (sphingolipid) pathways. De novo ceramide synthesis begins at the endoplasmic reticulum (ER) with the

condensation of serine and palmitoyl-CoA via serine palmitoyltransferase (SPT) forming 3-ketosphingosine, which is subsequently reduced by 3-ketoshinganine

reductase (KSA reductase) to dihydrosphingosine. An acyl group is then linked via an amide bond by ceramide synthase (CerS 1-6) to form dihydroceramide, which is

quickly dehydrated between carbons 4 and 5 by dihydroceramide desaturase (DES) to form ceramide (3). Once synthesized, ceramide may be translocated to the

trans-golgi via ceramide transferase (CERT), at which it may be degraded, or reformed via salvage pathways (4). Alternatively, ceramide may diffuse to the cis-golgi at

which it is converted into glucosylceramide (GluCer), a precursor for important fatty acids such as glycosphingolipids (GSL) and gangliosides (5). The action of

sphingomyelin synthase 1 (SMS1) on ceramide at the trans-golgi results in the production of sphingomyelin (SM), composed of a long-chain sphingoid base, an

amide-linked acyl chain and a phosphorylcholine headgroup (6). The isoenzymes differ in cellular location, SMS1 localized at the golgi whereas sphingomyelin

synthase 2 (SMS2) may be found on the golgi or the plasma membrane (7). Acid sphingomyelinase (SMase) is an enzyme that converts sphingomyelin into ceramide,

thus it is an important component of the rheostat. In response to apoptotic stimuli it is has been shown that phospholipid scrambling moves sequestered

sphingomyelin from the outer leaflet to the cytosolic side of the plasma membrane such that sphingomyelinase may act on it, producing the apoptotic ceramide (8).

The reverse of this process occurs via sphingomyelin synthase, thus to alter the rheostat to favor cell death, chemotherapeutic agents aim to induce

sphingomyelinase and inhibit sphingomyelin synthase. Figure 1 has enzymes colored green and red to represent druggable targets that if inhibited, alter the rheostat

to promote a pro-survival or pro-apoptotic cellular state respectively. C1P, ceramide-1-phosphate; C1PP, ceramide-1-phosphate phosphatase; CDase, ceramidase;

CerK, ceramide kinase; GCase, glucocerebrosidase; GCS, glucosylceramide synthase; nCDase, neutral ceramidase; nSMase, neutral sphingomyelinase; S1P,

Sphingosine-1-phosphate; Sph, sphingosine; SphK, sphingosine kinase.

illustrates an abbreviated summary of some of the most
relevant enzymes and sphingolipids involved in controlling
the rheostat, therefore including many of the most promising
chemotherapy targets (3–8). Figure 2A illustrates the molecular
structures of many of the important lipids and metabolites
being discussed.

Bioactive—Ceramide, S1P Rheostat
Sphingosine-1-phosphate (S1P) and ceramide are bioactive lipids
that are well known for their opposing roles on determining
the fate of a cell. S1P plays a pro-survival role in cellular fate,
while ceramide is known to be an apoptotic cellular messenger
(3); the ratio of cellular levels between these two lipids is known
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FIGURE 2 | Metabolic pathways of sphingolipids and chemical structures of inhibitors of the pathways. (A) Major synthetic and metabolic pathways of sphingolipids.

Increased ceramide leading to cytotoxicty comes from de novo synthesis resulted from stimulation of serine palmitoyltransferase and/or dihydroceramide synthase, or

by degradation of sphingomyelins via spingomyelinases. The formation of ceramide-1-phosphate or glucosylceramide is considered shunting pathways to less toxic

forms of sphingolipids. (B) The structures of small molecules that are currently under clinical investigation in cancer patients are shown.
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FIGURE 3 | Rheostat of sphinglipid. The balance between cell survival and death (apoptosis) in sphingolipids is controlled by four enzymes: sphingosine kinase

(SphK), sphingosine-1-phosphate phosphatase (S1PP), ceramidase, and ceramide synthase. The increase in ceramide turns up the rheostat toward apoptosis, and

the increase in apoptotic precursors [e.g., sphingosine-1-phosphate (S1P)] toward cell survival.

as the sphingolipid rheostat, and this concept is illustrated
in Figure 3.

While much of the focus in anticancer drug development
targeting sphingolipid metabolism falls on the rheostat, the
ratio of ceramide to S1P is not the only important balance of
sphingolipids in cellular proliferation or death. As mentioned
previously in the discussion of ceramide degradation and
synthesis, metabolites such as glucosylceramide and ceramide-1-
phosphate (C1P) are also critically balanced in cell fate, making
the involved enzymes potential therapeutic targets, but these are
only a few of many sphingolipid ratios that have been implicated
in cancer pathogenesis. For example, studies have shown that
the ratio of sphingosine to sphinganine may be involved in
the pathogenesis of certain cancers, for this ratio has found
to be altered in favor of sphinganine in rat nephromas (9)
among others. Figure 2B shows the molecular structures of small
molecules that are studied in clinical trials, which are discussed
later in this review.

Various Biomarkers in Cancer
A compelling verification in favor of the potential
chemotherapeutic use of targeting sphingolipid metabolism
are the numerous studies performed that have identified
sphingolipid dysregulation in various malignancies. An
interesting finding is that even though ceramide is directly
converted to S1P, a small conversion in cellular ceramide
exponentially increases the level of S1P, thus the rheostat is a
critical, delicate balance controlling cellular fate (2). In prostate
cancer patients, levels of both S1P and (sphingosine kinase
1) SphK1 have been identified as highly sensitive and specific
biomarkers. Increased circulating plasma levels of S1P and
increased activity of SphK1 correlated significantly with both
the grade diagnosis of prostate cancer as well as the prognosis
(10). Patients with hepatocellular carcinoma were shown to have
increased SphK1/2 when compared with non-cancerous patients
and increased SphK1 specifically was associated with a poorer
prognosis (11). A similar finding was observed in hepatocellular
carcinoma (HCC) patients’ ceramide levels; ceramide levels in
HCC tissue was lower than disease free tissue (12), but ceramide
with a 16-carbon fatty acid chain (C16) and S1P was elevated in
cancerous tissue when compared to cirrhotic liver tissue (13).
Furthermore, C16 and C24 (with a 24-carbon fatty acid chain)
ceramide levels were both shown to be elevated in pancreatic

cancer patients with positive regional lymph node metastasis
when compared to levels in patients with non-metastatic
pancreatic cancer. Additionally, it was shown that sphingosine
was elevated in pancreatic cancer patients compared to those
without cancer, especially inmore aggressive and advanced forms
of cancer (14). Similar patterns of sphingolipid dysregulations
used as biomarkers have been identified in HNSCC, gliomas,
colon cancer breast cancer, and ovarian cancer; each of which
implicates S1P, ceramides, SphK1, or the S1P receptor (S1PR) as
an aberrant molecule that may be involved in the pathogenesis
of each malignancy (15, 16).

Exceptions to Rheostat
What has been presented thus far is an oversimplification of the
rheostat involvement in tumorigenesis. For example, excessive
ceramide accumulation has been found in both breast cancer
(17) as well as highly invasive forms of pancreatic cancer (18).
These contradictory findings may best be explained with a
more detailed explanation of the varying enzymes responsible
for generating ceramides with varying chain lengths. CERS1-
6 are a set of six enzymes responsible for generating varying
lengths of ceramide fatty acyl chains. Specifically, CERS1 and
CERS 4 preferentially generate C18-20 ceramides, CERS5-6
generates C14-16 ceramides and CERS2 generates only C22-C24
ceramides. Finally, CERS3 synthesizes C28-32 ceramides which
are exclusively expressed in skin and testes (19). C16 in HNSCC
cells has been shown to act in a protective manner, preventing
these cells from ER stress-mediated apoptosis (20), while C16
has also been shown to be responsible for radiation-mediated
apoptosis in HeLa cells.

These findings suggest that the tissue specificity plays a role
in not only the expression of the various ceramide-generating
enzymes and the subsequent chain length of the generated
ceramides, but also that the function in cellular proliferation is
a tissue specific phenomenon. Therefore, when targeting these
enzymes with chemotherapeutics, one must consider the cellular
specificity of the drug, the target, and the acyl length of the
ceramide species in question.

Sphingolipid Involvement in Cellular Fate
Apoptosis may be initiated in a cell via one of two pathways.
The first pathway, known as both the intrinsic pathway and
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the mitochondrial death pathway, utilizes the B-cell lymphoma-
2 (Bcl-2) regulator proteins located on the outer mitochondrial
membrane to signal for a cell to undergo apoptosis once a proper
stimulus is detected. This signal cascade ultimately results in an
increased permeability of the mitochondrial membrane, allowing
a cascade of the caspase proteins, ending with caspase 3 and
caspase 7 destroying the cell from within. The second pathway,
known as both the extrinsic pathway and the death receptor
pathway, utilizes a TNF death receptor protein found on the
surface of cells that is encoded by the FAS gene. The extrinsic
pathway also causes a caspase cascade that ultimately results in
apoptosis via caspase 3.

Ceramide is a critical mediator of both intrinsic and extrinsic
mechanisms of apoptosis. Ceramide’s role in the extrinsic
pathway is achieved by mimicking the cytotoxicity of TNF
(21). Ceramide’s many roles in apoptosis are a heavily studied
and controversial area of research, but the best described
proapoptotic mechanism involves the intrinsic pathway of cell
death. Intrinsic apoptotic stimuli have been show to modify
enzymes involved in the synthesis and degradation of ceramide,
ultimately leading to increased ceramide levels, which can then
go on to function as a second messenger in the intrinsic pathway
downstream of Bcl2 via a variety of actions (22). Ceramide
aggregates can also form channels on the outer mitochondrial
membrane independent of the BCL2 proteins, directly leading
to OMM permeability, signal cascade, and ultimately cell death
(23). S1P directly opposes the proapoptotic effects of ceramide
by binding to S1PR, which stimulates downstream cleavage of
caspase-3, halting the signal cascade (24).

AGENTS TARGETING SPHINGOLIPID
PATHWAYS

Inhibitors of Ceramide Degradation
FTY720
FTY720 (Fingolimod) is a sphingosine analogue that is an FDA
approved immunosuppressant for the treatment of MS but
has since been shown to have some efficacy as an antitumor
medication (25). Unlike its use as an immunosuppressant, when
used as an anticancer medication, FTY720 does not require
the phosphorylation via SphK2 (26). Instead, FTY720 utilizes a
myriad of mechanisms to ultimately promote cell death such as
inhibition of SphK1 and S1PR internalization, leading to complex
downstream effects.

While Fingolimod has shown potential both in vivo and in
vitro for treating various malignancies, the immunosuppressive
properties it possesses likely restrict its practical applications
in the clinic and thus its entrance into clinical trials as a
monotherapy for cancer. However, there are several potential
methods proposed to overcome this hurdle. One such method is
to prevent the phosphorylation of this drug via the development
of a synthetic derivative which may not be phosphorylated and
therefor may not display any immunosuppressive properties.
OSU-2S (27) is a derivative of FTY720 that is immune
to phosphorylation via SphK2, thus this drug warrants
further research. Another method is to carefully control tissue

specific delivery of FTY720 via the development of liposomal
carriers such that the drug cannot have its phosphorylated
form enter the peripheral circulation (28). Alternatively, the
immunosuppressive functions of FTY720 may be exploited in
certain patient populations such as patients with posttransplant
malignancies in which immunosuppression would be a favorable
complement to anticancer therapy. Additionally, studies are
investigating Fingolimod with radiation and temozolomide in
treatment of high-grade glioma to reduce radiation-related
lymphopenia. In this application FTY720 functions to induce
lymphopenia prior to the beginning of radiation treatment
such that inadvertent radiation of circulating lymphocytes is
reduced, allowing a reversible lymphopenia after discontinuing
FTY720 (NCT02490930). This study has recently completed
Phase I clinical trials. Table 1 summarizes the agents targeting
sphingolipid pathway that are currently under development in
preclinical or clinical studies (27, 29–64).

ABC294640
ABC294640 is a competitive inhibitor of SphK2 thus it alters
the rheostat in favor of pro-apoptotic ceramide, and depletion
of pro-survival S1P thereby promoting both autophagy as
well as apoptosis (65). Unexpectedly, cells that are treated
with ABC294640 show increased dihydroceramides, suggesting
that this drug also inhibits dihydroceramide desaturase (66).
In preclinical studies, ABC294640 demonstrated excellent
activity in xenograft models of hepatocellular carcinoma and
reduced plasma S1P by up to 50% at tolerable doses (67).
These studies also concluded a satisfactory oral bioavailability,
and found few adverse reactions associated with even the
highest doses administered. Phase I clinical trials expanded
further on the safety of this drug and found adverse effects
to be mild at therapeutic doses, although some patients
experienced neuropsychiatric symptoms that were reversible
with discontinuation of the therapy (30).

ABC294640 is a novel therapeutic that is among the first
drug of any kind to target sphingolipid metabolism. Phase I
trials demonstrated tolerability of the drug, established dosing,
and proved efficacy of antitumor properties. Preclinical studies
have shown its potential in treating lung, prostate, liver, ovarian
and colorectal cancers thus we can expect many clinical
trials to further explore ABC294640. Phase II studies are
currently ongoing for using ABC294640 to treat large B-cell
lymphoma (NCT02229981), multiple myeloma (NCT02757326),
cholangiocarcinoma (NCT03414489), as well as hepatocellular
carcinoma (NCT02939807), with each study in various stages
of completion.

4HPR (Fenretinide)
Fenretinide is a synthetic retinoid that has been shown to
possess apoptotic effects in a variety of malignant cells including
leukemia, neuroblastoma, lung cancer, cervical carcinoma,
bladder cancer, HNSCC, and prostate cancer cells (68). While the
mechanism of action is yet to be fully understood, several targets
have been identified. Of the most relevant mechanisms proposed,
in neuroblastoma, cell death independent of caspase cascade
was observed via an increase in de novo ceramide synthesis
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TABLE 1 | Antineoplastic agents targeting sphingolipids that are in development.

Agents in Clinical Trials

Antineoplastic Target Developing Company Clinical Trial Status Cancer treated References

FTY720 (Fingolimod) S1PR, SphK1 Novartis Phase 1a completed,

not recommended to

progress

Glioma NCT02490930

Sonepcizumab

(Asonep)

S1P Lpath Therapeutics,

Inc.

Phase II completed Refractory renal cell

carcinoma

(29)

Phase II terminated advanced solid tumors NCT01762033

ABC294640 (Yeliva) SphK2, DES RedHill Biopharma Phase II in progress Cholangiocarcinoma NCT03377179

Phase II in progress Adv HCC NCT02939807

Phase I completed Adv Solid Tumors (30)

Phase I withdrawn Diffuse large B-cell

Lymphoma

NCT02229981

Phase I terminated Multiple Myeloma NCT02757326

fenretinide targets being

investigated**

CerRx, Inc. Phase II in progress Relapsed peripheral

T-cell lymphoma*

NCT02495415*

Desipramine

(Norpramin)

Acid Ceramidase Novartis Phase IIa terminated SCLC/high-grade

neuroendocrine tumors

NCT01719861

n/a Multiple myeloma NCT01899326

Nanoliposome

ceramides

n/a Keystone Nano, Inc Phase I in progress Advanced solid tumors NCT02834611

Safingol (Kynacyte) PKC, SphK1 South Plains Oncology

Consortium

Phase I in progress Relapse malignancies NCT01553071

Metastatic solid tumors NCT00084812

KW2871

(Ecromeximab)

GD3 Kyowa Hakko Kogyo

Co., Ltd

Phase I complete Metastatic melanoma (31)

Phase II terminated Advanced metastatic

melanoma

NCT00199342

Fluphenazine ASMase Phase II completed, no

results posted

Multiple Myeloma NCT00335647

Antineoplastic Target Developing

Company

Clinical Trial

Status

Cancer models in vitro/

in vivo

References

Agents in Preclinical Studies

B13 Acid Ceramidase n/a preclinical Melanoma,

pancreatic cancer,

metastatic colon

cancer, prostate

in vitro (32)

LCL204 Acid Ceramidase n/a preclinical Prostate in vitro (33)

LCL385 Acid Ceramidase n/a preclinical Prostate in vitro (34)

AD2646 Acid ceramidase n/a preclinical Prostate,

melanoma

in vitro (35)

AD2687 Ceramide

analogue

n/a preclinical Leukemia in vitro (36)

LCL464 Acid ceramidase n/a preclinical Breast in vitro (37)

n-

oleoylethanolamine

Acid ceramidase n/a preclinical Hepatoma in vivo (38)

D-MAPP Acid ceramidase

Neutral

ceramidase

n/a preclinical Squamous cell

carcinoma

in vitro (39)

Dimethylsphingosine Sphingosine

kinase

n/a preclinical Leukemia,

pheochromocytoma

in vitro (40)

Trimethylsphingosine PKC n/a preclinical Melanoma in vitro (41)

Dihydroxyaurone SphK1 n/a preclinical Breast in vitro (42)

BML-258 (SK1-I) SphK1 n/a preclinical Leukemia in vivo (43)

D609 Sphingomyelin

synthase

n/a preclinical Leukemia in vitro (44, 45)

(Continued)
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TABLE 1 | Continued

Antineoplastic Target Developing

Company

Clinical Trial

Status

Cancer models in vitro/

in vivo

References

C18 Pyridinium Exogenous

ceramide

n/a preclinical HNSCC in vitro (46)

PDMP Glucosylceramide

synthase

n/a preclinical in vitro (47)

C16-serinol Exogenous

ceramide

n/a preclinical in vitro (48)

4,6-ketone-diene-

ceramide

Exogenous

ceramide

n/a preclinical Breast, ovarian in vitro (49)

5R-OH-3E-C8-

ceramide

Exogenous

ceramide

n/a preclinical Breast in vitro (50)

Adamantly-

ceramide

Exogenous

ceramide

n/a preclinical Breast in vitro (50)

Benzene-c4-

ceramide

Exogenous

ceramide

n/a preclinical Breast in vitro (50)

C6-pyridinium-

ceramide

(LCL29)

Exogenous

ceramide

n/a preclinical HNSCC

insulinoma

in vivo (46, 51)

LCL-30 Exogenous

ceramide

n/a preclinical Colorectal in vivo (52)

JTE-013 S1PR n/a preclinical Glioma in vivo (53)

AB1 S1PR2 n/a preclinical Glioma

glioblastoma

in vivo (53)

PF543 SphK1 n/a preclinical Colorectal in vivo (54)

VPC03090 S1PR n/a preclinical Breast in vivo (55)

F-12509A SphK1 n/a preclinical Acute myeloid

leukemia

in vitro (56)

LCL146 SphK1 n/a preclinical Colon in vitro (57)

LCL351 SphK1 n/a preclinical Colon in vitro (57)

SKI-178 SphK n/a preclinical Acute myeloid

leukemia

in vivo (58)

PF-543 SphK1 n/a preclinical Colorectal, gastric in vitro (59)

C8-

cyclopropenylceramide

Dihydroceramide

desaturase

n/a preclinical neuroblastoma in vitro (60)

NVP-231 CerK n/a preclinical Breast, lung in vitro (61)

LCL521 Acid Ceramidase n/a preclinical Breast

adenocarcinoma

in vitro (62)

LCL204 Acid ceramidase n/a preclinical Prostate in vivo (33)

GW4869 Neutral

sphingomyelinase

2

n/a preclinical Breast in vitro (63, 64)

OSU-2S S1PR n/a preclinical HCC in vitro (27)

*Multiple clinical trials ongoing, found at https://www.drugbank.ca/drugs/DB05076.

** Summary of fenretinide mechanism of action https://www.ncbi.nlm.nih.gov/pubmed/25069047.

(69). However, many other proposed mechanisms exist including
generation of reactive oxygen species (ROS) (70), activation of c-
Jun N-terminal kinase signaling, and inhibition of expression of
COX-2 causing diminished prostaglandin synthesis (71).

Phase I clinical trials studying fenretinide were carried
out in 31 adults and 50 children. The group of children
presented with adverse effects such as increased intracranial
pressure, hypoalbuminemia, hypophosphatemia, and elevated
transaminases. In adults, adverse effects include dry skin,
nyctalopia, hepatic dysfunction, among some less severe

symptoms such as nausea and vomiting. While phase II clinical
trials failed to prove the efficacy of fenretinide in bladder cancer
(72) low bioavailability has been limiting its therapeutic potential,
which may be addressed via inhibition of oxidizing liver enzymes
such as CYP3A4 with drugs such as ketoconazole (73).

Desipramine
Desipramine is an FDA approved tricyclic antidepressant that
is used to treat a decrease in the bioavailability of monoamines
by inhibiting synaptic reuptake, with evidence also pointing to
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a decrease in the production of neuronal TNF-α (74). In 2006,
studies provided evidence that desipramine also has antitumor
properties in multiple cancer cell lines via a dose-dependent
downregulation of acid ceramidase, increasing ceramide levels,
and inducing apoptosis (75). With prior FDA approval and
preclinical evidence of antitumor activity, primarily in the
exceedingly fatal disease small-cell lung cancer, researchers
were eager to proceed with clinical trials to quickly move this
drug from the laboratory to the clinic. Despite demonstrated
tolerability of the drug and promising preclinical efficacy, phase
IIa clinical trials were terminated when desipramine failed to
prove efficacious in treating small-cell lung cancer and other
neuroendocrine tumors (NCT01719861).

Safingol
Sphingosine and lysosphingolipids are potent inhibitors of
protein kinase C (PKC), a component of numerous signal
transduction pathways that promote cell activation and
tumorigenesis (76). Safingol is a saturated derivative of
sphingosine that competitively inhibits PKC via binding at the
phorbol-binding domain (77). Additionally, Safingol may have
SphK inhibition properties as well, promoting the accumulation
of ceramide and inhibiting the generation of S1P; cumulatively
these effects lead to a caspase independent cell death via
autophagy due to downstream disruption of PI3k/mTOR
pathway and the MAPk pathway (77).

Multiple clinical trials have been completed evaluating
the safety profile of Safingol, each of which included an
accompanying antineoplastic. A phase I clinical trial of Safingol
with Cisplatin for treating advanced solid tumors found both
the drug combination as well as Safingol monotherapy to be
relatively safe, with reversible, dose-dependent hepatotoxicity
being the most severe adverse effect observed (78). An ongoing
Phase I clinical trial is being conducted to determine the
safety of combining Safingol with Fenretinide (NCT01553071),
a promising drug combination due to the synergistic effects
shown in preclinical studies, owing to Safingol’s ROS generating
properties (79).

Agonists of Ceramide Synthesis
Fluphenazine
Fluphenazine is a phenothiazine antipsychotic approved by
the FDA to treat schizophrenia and psychotic symptoms
such as delusions and hallucinations. As an antipsychotic, the
mechanism of action of Fluphenazine is thought to be via an
interruption of dopamine neurotransmission in the brain, but off
target effects include inhibition of acid sphingomyelinase causing
an accumulation of sphingomyelin (80). The accumulation of
sphingomyelin is particularly pronounced in hypoxic tumors, a
common site of resistance to antiproliferative chemotherapeutics
(81), thus Fluphenazine may be useful in treating solid tumors
that are typically resistant to chemotherapy. Interestingly,
multiple myeloma tumor progression induces hypoxic
conditions in bone marrow, activating proteins involved in
the epithelial-mesenchymal transition and ultimately promoting
metastasis of multiple myeloma cells (82). Accordingly, clinical

trials involving fluphenazine investigated this drug’s usefulness
in treating multiple myeloma (NCT00821301).

Molecular Mimics/Endogenous
Sphingolipids
Nanoliposomal Ceramide
Introducing exogenous ceramides into cells has long been
proposed as a method to induce apoptosis in cancerous
cells. However, being a long acyl chain containing molecule,
endogenous ceramides pose significant issues in the route of
administration, owing to their inherent hydrophobicity and
insolubility. This first limitation was recognized in a phase II
clinical trial utilizing a topical C6 ceramide cream to treat breast
cancer; a lack of efficacy shelved the topical use of ceramides
but verified their lack of toxicity (NCT00008320). Nanoliposome
ceramides overcome this hurdle by utilizing a short chain
ceramide, C6, carried in pegylated nanoliposomes (83). First
shown to be effective in slowing the growth of hepatic tumors in
mice (84), nanoliposomal ceramide has since begun a currently
ongoing phase I clinical trial for patients with advanced solid
tumors (NCT02834611).

Sphingolipids as Targets
Sonepcizumab
Sonepcizumab is an anti-S1P Ab drug therapy that has completed
phase I clinical trials (NCT00661414) and has recently had
terminated Phase II (NCT01762033) clinical trials for treating
refractory renal cell carcinoma. High specificity has been
demonstrated for S1P, even over other bioactive lipids such
as sphingosine. This high specificity is due to its preferential
recognition of a phosphorylated amino-alcohol carried via the
head of a sphingosine base, thus not even other substitutions
for the phosphate such as D-galactose will trigger binding
of sonepcizumab. As one would expect, the neutralization
of S1P has been shown to decrease cancer progression via
tumor angiogenesis inhibition, starving the cancerous cells of
nutrients necessary for proliferation. For example, in mice
models sonepcizumab inhibited xenograft angiogenesis even
though mice have plasma S1P significantly higher than that of
humans, suggesting that even when antigen is abundant, therapy
with this drug still was able to inhibit angiogenesis in tolerable
doses (85).

Targeting dysregulated S1P is a common goal of many
of the chemotherapeutics discussed in this review, but few
have shown to work with such specificity, efficacy, and
safety as does sonepcizumab’s early clinical trials suggest.
Despite sonepcizumab’s failure to meet progression-free survival
endpoints in treating RCC, the safety and overall survival rate
demonstrated in this trial suggests the need for future studies of
this drug in combination with other antineoplastic medications.
As future studies proceed to completion, it is likely that this drug
will be among the first monoclonal antibodies against a bioactive
lipid to be utilized in the clinic.

Ecromeximab (KW2871)
KW2871 is a monoclonal antibody targeting the GD3
ganglioside, a prominent cell surface antigen on malignant
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melanoma cells (86). Clinical trials combining KW2871 with
interferon-α2b, a protein antineoplastic, were recently completed
in 2018. Despite phase I trials demonstrating an acceptable safety
profile with few adverse events, phase II trials of this drug
combination failed to prove the efficacy in treating metastatic
melanoma (NCT00679289). However, other combinations with
this drug will likely be tested in clinical trials, as KW2871
showed excellent activity in preclinical studies by extrapolated
studies from the mouse GD3 monoclonal antibody R24 (87),
and better drugs such as immune checkpoint inhibitors (88) are
being developed and are thought to have potential synergism
with KW2871.

EXISTING ANTICANCER DRUGS FOUND
TO INVOLVE SPHINGOLIPIDS

Numerous existing anticancer agents have been shown to
induce increased levels of endogenous ceramides, which may
be involved in their mechanism of promoting cancer cell death.
Cytarabine, a drug used to treat acute myeloid leukemia, has been
shown to increase ceramide levels via de novo synthesis (89).
The classic chemotherapy drugs anthracyclines, etoposide and
paclitaxel have each been shown to induce acid sphingomyelinase
(90), leading to increased ceramide from the hydrolysis of
sphingomyelin. However, it is unclear whether or not the
activation of sphingomyelinase in each of these instances is
responsible for inducing apoptosis, but rather may just be a
response to cellular stress (91).

Tamoxifen, a well-known anticancer agent for Her2 breast
cancer, has been an attractive agent as an adjuvant for
ceramide-based therapies, for it has been identified as a
glucosylceramide synthase inhibitor (92). P-glycoprotein is
a drug efflux transporter found to be overexpressed in
numerous multidrug resistant cancers, particularly to ceramide-
based therapies and to the drugs paclitaxel, vinblastine,

vincristine, daunorubicin, doxorubicin, and etoposide (93). In
a complex interplay between ceramide glycosylation, ceramide
induced apoptosis, and p-glycoprotein, studies have shown that
expression of p-glycoprotein confers resistance to ceramide
toxicity (94), and that overexpression of glucosylceramide
synthase and P-glycoprotein in cancer cells selected for resistance
chemotherapy (95). These findings imply that GCS inhibitors
such as Tamoxifen, vincristine, doxorubicin, and Taxol will likely
function as a sensitizer to drug resistant cancers (90). Indeed,
this topic has been studied extensively with many completed and
ongoing clinical trials in various stages of progression.

CONCLUSIONS

In healthy cells, sphingosine and ceramide play a significant role
in cellular apoptotic machinery while S1P accumulation leads to
cell proliferation, angiogenesis, and mediates the inflammatory
response. But in cancerous cells, both over and under expression
of enzymes involved in the metabolism of sphingolipids induces
aberrant expression of sphingosine kinases, ceramide degrading
enzymes, or S1PRs ultimately altering cellular fate to favor
mitogenic, pro-survival states. These pathways are believed to
be potentially important therapeutic targets in the goal of
treating cancer, but with new targets come new risks and new
questions that need to be answered. Without a comprehensive
understanding of the metabolic processes, feedback regulation,
and downstream targets of sphingolipid metabolism, targeting
sphingolipid metabolism is a still only a conjecture in the
ultimate goal, which may nonetheless prove to be worthwhile.
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