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Research on remote sensing 
classification of fruit trees based 
on Sentinel‑2 multi‑temporal 
imageries
Xin‑Xing Zhou1, Yang‑Yang Li1, Yuan‑Kai Luo1, Ya‑Wei Sun1, Yi‑Jun Su1, Chang‑Wei Tan2 & 
Ya‑Ju Liu1*

Accurately obtaining the spatial distribution information of fruit tree planting is of great significance 
to the development of fruit tree growth monitoring, disease and pest control, and yield estimation. 
In this study, the Sentenel‑2 multispectral remote sensing imageries of different months during the 
growth period of the fruit trees were used as the data source, and single month vegetation indices, 
accumulated monthly vegetation indices (∑VIs), and difference vegetation indices between adjacent 
months (∆VIs) were constructed as input variables. Four conventional vegetation indices of NDVI, 
PSRI, GNDVI, and RVI and four improved vegetation indices of NDVIre1, NDVIre2, NDVIre3, and 
NDVIre4 based on the red‑edge band were selected to construct a decision tree classification model 
combined with machine learning technology. Through the analysis of vegetation indices under 
different treatments and different months, combined with the attribute of Feature_importances_, the 
vegetation indices of different periods with high contribution were selected as input features, and the 
Max_depth values of the decision tree model were determined by the hyperparameter learning curve. 
The results have shown that when the Max_depth value of the decision tree model of the vegetation 
indices under the three treatments was 6, 8, and 8, the model classification was the best. The accuracy 
of the three vegetation index processing models on the training set were 0.8936, 0.9153, and 0.8887, 
and the accuracy on the test set were 0.8355, 0.7611, and 0.7940, respectively. This method could 
be applied to remote sensing classification of fruit trees in a large area, and could provide effective 
technical means for monitoring fruit tree planting areas with medium and high resolution remote 
sensing imageries.

Scientifically, quickly and accurately classifying the main producing areas of fruit trees is the basis for carrying 
out research on the growth of fruit trees, prevention of diseases and insect pests, and yield estimation, and is of 
great significance to agricultural  production1,2. Traditional manual survey methods are inefficient and costly, 
and some subjective factors, such as statistical errors, inconsistent standards in various regions, and different 
measurement tools, will inevitably affect the accuracy of statistical surveys in the statistical process. Remote 
sensing technology has been widely used in the estimation of agricultural planting area and the optimization 
of planting area due to its advantages such as objectivity, timeliness and large-scale implementation, and at the 
same time, it has low economic investment and is not subject to geographical  restrictions3–5.

At present, most researches on fruit trees have been concentrated in the fields of cultivation measures, occur-
rence of diseases and insect pests, and physiology and biochemistry. There were relatively less studies on the 
classification of planting areas using full-time sequence remote sensing imageries to analyze the spectrum of 
fruit trees and combined with machine learning technology, and the classified and extracted of crops were 
mainly concentrated in large-scale crops such as wheat, rice, maize, and etc.6–8. In the past several decades, a 
variety of remote sensing methods that use different types of remote sensing data to discriminate crop types have 
been  developed9. This includes radio detection and ranging (RADAR) data, which is beneficial because it can 
penetrate clouds and thus solve the problem of cloud contamination. However, RADAR data has been shown 
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to have issues with low resolutions, high levels of noise, and high  cost10,11. Hyperspectral imagery has also been 
used for crop discrimination, but due to their prohibitively high cost, there were obstacles in actual produc-
tion  applications12. Limitations associated with RADAR and hyperspectral data led to the moderate resolution 
imaging spectroradiometer (MODIS) and advanced very high-resolution radiometer (AVHRR) being the most 
exploited datasets for crop type  classifications13,14.

Time series remote sensing imageries have not only the spectral information of a single-phase imagery, but 
also a series of time information, which is of great significance in the extraction of crop distribution informa-
tion. Compared with Landsat-8, MODIS and other data, Sentinel-2 satellite imagery has certain advantages in 
temporal and spatial resolution and spectral  information15,16. Based on the excellent spatio-temporal and spectral 
information characteristics of Sentinel-2 satellite imageries, it effectively improved the classification accuracy of 
related crops in the identification of precise crop types in small agricultural  areas17. Relevant studies have shown 
that multi-temporal Sentinel-2 data may significantly improve classification accuracy. The effective combination 
of high spatial–temporal resolution and rich spectral information provides an unprecedented rich data set from 
which crop types can be accurately  distinguished18. It is generally believed that multi-temporal data is important 
for crop type classification. Choosing the most useful imageries from the time series for research usually yields 
more accurate results than using all available imageries. This was supported by some studies show that imageries 
obtained during peak growth are more useful than imageries obtained during low  growth19,20. This was attributed 
to the observation that some crops might be spectrally similar or constitute high levels of soil interference due 
to a lack of growth during certain stages in the growing  season21,22.

In summary, the current research on extracting crop planting distribution in a large area principally includes 
the following aspects. The first is the research on crop recognition ability with remote sensing under the condi-
tions of different remote sensing imageries; the second is the comparative research on crop recognition ability 
and accuracy based on different classification methods; the third is the combination of multi-temporal imageries 
and multi-features to assist crop classification. Generally speaking, there have been more studies on the best 
method and the highest precision under the condition of fully guaranteeing the data  source23–25. However, the 
remote sensing identification of crops has been mainly concentrated on the stable crops, and there were few 
related researches on the remote sensing identification of fruit trees. This study used multiple Sentinel-2 imagery 
spectral data from November 2020 to October 2021, took the Dashahe area of Jiangsu Province as the research 
area, combined machine learning technology to build a decision tree classification model, and conducted detailed 
classification of fruit tree categories in the fruit tree planting area. In this way, the visualized results of the spatial 
layout of fruit tree classification were obtained, which was expected to provide relevant basis for the application 
of medium and high-resolution remote sensing data for fruit tree surveys, and to provide support for fruit tree 
planting subsidies and production layout planning.

Materials and methods
Study region experimental design. As the principal fruit production area in northern part of 
Jiangsu was selected as the study region. The study was conducted in six towns in Feng city, Jiangsu Province 
(116°28′E-121°47′E, 34°28′N-34°42′N) in the 2020 and 2021 fruit tree growing seasons. The experiment was 
carried out around Sunlou Town, Huashan Town, Songlou Town, Dashahe Town, Liangzhai Town and Dashahe 
Forest Farm in the Dasha River Basin (Fig. 1). Fengxian County is located in a warm temperate semi-humid 
monsoon climate zone, with four distinct seasons, abundant sunshine, and an average annual temperature of 
about 15  °C. Its terrain is a yellow river flooded alluvial plain, high-pitched and flat. The rivers in the terri-
tory were originally natural rivers, criss-crossed, and the abandoned tributary of Yellow River was treated and 
introduced into the Yangtze River to form a belt-shaped reservoir in the Dasha River Basin. The Dasha River 
Basin has fertile land and abundant products, with a large area for planting crops, fruit trees, and horticultural 
vegetables. Based on the unique natural conditions, the fruit trees in the Dasha River Basin have been planted 
for decades, and the area is huge, so it has become a well-known fruit production base.

The main field crops in the Dasha River Basin are wheat, corn and rice, as well as horticultural vegetable 
garlic and so on. The fruit trees in the study area are mainly pear trees and apple trees, and some peach trees are 
planted in the area too. All the fruit trees are dormant in winter. The trees germinate from mid-to-late February 
to early March, flower from March to April, then bear fruits one after another, and mature from July to November. 
Figure 2 shows the growth cycle of the main crops and fruit trees in the study area.

Remote sensing imagery data. Sentinel-2 is the second satellite of the "Copernicus Project" in Europe, 
with two satellites in total. As a rising star, Sentinel series of data imageries have received more and more atten-
tion in research and production due to their high-quality temporal and spatial resolution and rich band informa-
tion. Sentinel-2A/B products were downloaded through the data sharing website of the European Space Agency 
(ESA) (download URL: https:// scihub. coper nicus. eu/ dhus/#/ home). The products used in this study were all 
L2A level, i.e., they had undergone geometric correction and atmospheric correction processing, which effec-
tively removed the influence of the atmosphere, clouds and the reflection of ground. At the same time, all bands 
were resampled to 10 m resolution in the SNAP software for fusion. From November 2020 to October 2021, a 
total of 12 imageries were selected for the experiment, and the imagery number was N0300-R032-T50SMD. This 
study selected four 10 m resolution bands and four 20 m resolution red-side bands. The range and resolution of 
each band are shown in Table 1.

The vegetation indices are of important indicator to measure the growth of crops and distinguish the crop 
types. In the research of crop classification, normalized differential vegetation index (NDVI), ratio vegeta-
tion index (RVI), plant senescence reflectance index (PSRI) and green normalized differential vegetation index 
(GNDVI), four vegetation indices based on visible light and near-infrared wavebands, were widely  used26–29. On 

https://scihub.copernicus.eu/dhus/#/home
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Figure 1.  Location of study area. The picture on the left shows the map of China and the province map 
where the research area is located. The picture on the right is a false-color image of the study area of the Dasha 
River Basin, which includes the collection points of different features. Map created in ENVI5.3 and ArcMap 
10.7 (ESRI Co., USA (https:// envi. geosc ene. cn/)/(https:// www. esri. com/ softw are/ arcgis/ arcgis- for- deskt op)). 
Boundaries made with free vector data provided by National Catalogue Service for Geographic Information 
(https:// www. webmap. cn/ commr es. do? method= dataD ownlo ad). The satellite imagery data source: Sentinel-2 
(https:// scihub. coper nicus. eu/ dhus/#/ home).

Figure 2.  Growth cycle of main crops and fruit trees in the Dasha River Basin. The top is the growth period of 
the main field crops, and the bottom is the growth period of the main fruit trees. Due to the different cultivars 
and cultivation methods, the growth cycle of the same species in the study area is not completely consistent. This 
diagram reflects the approximate growth cycles of different crops and fruit trees.

https://envi.geoscene.cn/
https://www.esri.com/software/arcgis/arcgis-for-desktop
https://www.webmap.cn/commres.do?method=dataDownload
https://scihub.copernicus.eu/dhus/#/home
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the basis of calculating the existing conventional vegetation indices, the red edge bands of the Sentinel-2 imagery 
were introduced to replace the visible light band or the near-infrared bands of the NDVI, so as to calculate new 
vegetation indices. Normalized difference vegetation index red-edge1 (NDVIre1) used band 5 instead of the red 
band. Normalized difference vegetation index red-edge2 (NDVIre2), normalized difference vegetation index 
red-edge3 (NDVIre3) and normalized difference vegetation index red-edge4 (NDVIre4) used band 8A to replace 
the near-infrared band, and band 5, band 6 and band 7 respectively to replace the red band in  NDVI30–33. The 
calculation method of the relevant vegetation index is shown in Table 2.

Ground spectral data acquisition. Based on the multi-spectral reflectance imageries of multi-temporal 
Sentinel-2, through sample points of field survey (Fig. 1) and visual interpretation combined with Google image-
ries, 210 pear tree sample points, apple tree sample points, peach tree sample points, and forest land sample 
points were selected respectively in the study area for the composition of the training set and test set of the 
decision tree model, and 185 sample points of crop planting areas and 104 sample points of garlic planting areas 
were selected for the classification of field crop planting areas and other vegetation areas (Table 3). Among them, 
buildings and water bodies could be directly removed by supervision classification masks, so this study would 
not discuss them.

Vegetation indices processing and accuracy verification. Different types of vegetation often cannot 
show significant differences in the spectrum of the same period, so it is necessary to combine multi-temporal 
remote sensing data to make judgments. On this basis, the accumulation and subtraction of multi-temporal 
spectral data can fully excavate the multi-temporal data information, amplify the spectral information differ-
ences between vegetation types, and explore the performance of different spectral information processing. In 
order to explore the effect of vegetation indices on fruit tree classification under different treatments, this study 
used single month vegetation indices (SVIs), accumulated monthly vegetation indices (∑VIs), and difference 
vegetation indices between adjacent months (∆VIs) to analyze  separately34,35. The SVIs was the vegetation index 
constructed from the spectral information extracted from the imagery corresponding to that month. The ∑VIs 

Table 1.  Band and resolution information of Sentinel-2 imagery in this research.

Sentinel-2 band Central wavelength (um) Resolution (m)

Band 2-Blue 490 10

Band 3-Green 560 10

Band 4-Red 665 10

Band 5-Vegetation Red Edge 705 20

Band 6-Vegetation Red Edge 740 20

Band 7-Vegetation Red Edge 783 20

Band 8-Near Infrared 842 10

Band 8A-Vegetation Red Edge 865 20

Table 2.  Vegetation index calculation formula.

Vegetation index English full name Calculation formula

NDVI Normalized Differential Vegetation Index Band8−Band4

Band8+Band4

PSRI Plant Senescence Reflectance Index Band4−Band2

Band8

GNDVI Green Normalized Differential Vegetation Index Band8−Band3

Band8+Band3

RVI Ratio Vegetation Index Band8

Band4

NDVIre1 Normalized Differential Vegetation Index red-edge1 Band8−Band5

Band8+Band5

NDVIre1 Normalized Differential Vegetation Index red-edge2 Band8A−Band5

Band8A+Band5

NDVIre1 Normalized Differential Vegetation Index red-edge3 Band8A−Band6

Band8A+Band6

NDVIre1 Normalized Differential Vegetation Index red-edge4 Band8A−Band7

Band8A+Band7

Table 3.  The number of samples of different types.

Types of 
samples Pear orchard Apple orchard Peach orchard Forest land

wheat & corn 
rotation

wheat & rice 
rotation

Garlic 
growing area

Number of 
samples 210 210 210 210 138 47 104
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was the sum of the vegetation indices constructed from the spectral information extracted from the correspond-
ing imageries of the month and all previous month (Eq. (1)). The ∆VIs was the difference between the vegetation 
indices constructed from the spectral information extracted from the corresponding imageries of the month and 
the previous month (Eq. (2)).

where n is the month corresponding to the vegetation index.
Classification accuracy is an important indicator used to measure the advantages and disadvantages of clas-

sification model. Common metrics include user accuracy, mapping accuracy, and Kappa  coefficient36,37. In this 
paper, user accuracy, mapping accuracy, and Kappa coefficient were selected as accuracy evaluation indicators 
based on the confusion matrix calculation. The accuracy of the classification method was comprehensively 
evaluated as follows:

User accuracy of the i th class of data ( Pui),

Mapping accuracy of the j th class of data ( PAJ),

Kappa coefficient

where pii represents the number of correct classifications of the sample type in the i throw and i th column of 
the confusion matrix, The pjj is the same. Pi+ = �

n
i=1

pij is the sum of the number of i th class pixels in the clas-
sification result. P+j = �

n
i=1

pij is the sum of the j th class pixels in the measured data. P is the total number of 
samples, and n is the number of classes.

Decision tree classification based on machine learning technology. The software tool used in this 
study for data processing and construction of decision tree models was Python2.738. Among them, the Scikit-
learn module, also written as Sklearn, is an open source machine learning toolkit based on the Python language. 
Through numerical computing modules such as NumPy, Pandas, SciPy and Matplotlib, efficient algorithm appli-
cations can be realized, and it covers almost all  algorithms39. The decision tree model used in this article was also 
selected from the Sklearn machine learning module. Before starting the construction of the decision tree model, 
it is of great significance to determine the appropriate input features for the final classification result and the 
complexity of the model. Based on this, the Feature_importances_ attribute in the model could be combined to 
obtain the feature importance value, and unimportant features could be filtered out before model fitting, in order 
to obtain better stability and accuracy. At the same time, there was a very important parameter in the decision 
tree classification model as the Max_depth parameter which function was to limit the maximum depth of the 
tree. The best Max_depth value could make the decision tree model have better performance.

Technical route. This study was based on the fruit tree planting area of the Dasha River Basin, combined 
with field surveys and satellite remote sensing imageries for spectral data acquisition. Eight vegetation indices 
were constructed separately from spectral data, the vegetation indices change trend under different treatments 
was analyzed, and the machine learning feature screening technology was combined to determine the optimal 
vegetation indices. At the same time, the large NDVI difference between the field crop planting area and the 
non-field crop planting area in the imageries of May and June was used to eliminate the crop planting area, and 
the raster imagery part of the maize, wheat, rice, and garlic planting areas was eliminated. The specific technical 
route is shown in the Fig. 3.

Results and analysis
Cultivated land and forest land division. The planting structure of the Dasha River Basin is relatively 
complex. Conventional field crops have a great impact on the extraction and classification of fruit tree planting 
areas. Therefore, the prerequisite for the detailed classification of fruit trees is to effectively remove the cultivated 
land area. Combining the vegetation growth cycle in this area (Fig. 2), it could be found that the period between 
May and June was the period of planting and harvesting of multiple crops, and this stage was the growth stage 
of fruit trees. Therefore, based on this situation, the differences in NDVI between cultivated land and orchards 
in May and June were analyzed. As shown in Fig. 4, starting from May, the NDVI value of some cultivated land 
areas was much smaller than the NDVI value of the orchard area, the NDVI value of the cultivated land area was 
mainly maintained between 0.24–0.36, and the NDVI value of the orchard area was generally higher than 0.6. 
By June, the difference was even more remarkable. Therefore, based on the huge NDVI difference, the cultivated 
land area could be eliminated well.

(1)�VI =

n∫

1

VIdt

(2)�VI = VIn − VIn−1

(3)Pui = pii
/
pi+

(4)PAJ = pjj
/
p+j

(5)Kappa =
P
∑n

i=1
pii −�

n
i=1

(
pi + p+j

)

P2 −�
n
i=1

(
pi + p+j

)



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11549  | https://doi.org/10.1038/s41598-022-15414-0

www.nature.com/scientificreports/

Feature selection. The selection of input features in the decision tree model is particularly important. In 
this study, a very important attribute of the decision tree, Feature_importances_, could be used to determine 
the importance of features. The importance of each feature was different, the greater the contribution to the 
decision tree, the greater the feature importance value. In the case of ensuring the accuracy of the decision 
tree model and reducing the complexity as much as possible, the top 20 features of the importance value were 
selected and inputted to the decision tree model. As shown in Fig. 5, the vegetation indices under the three treat-
ments were analyzed to obtain the feature importance ranking. In the SVIs selection, the top 10 features were 3_
NDVIre3, 4_PSRI, 9_NDVIre4, 6_NDVIre3, 11_NDVIre1, 2_GNDVI, 10_GNDVI, 7_NDVIre2, 5_NDVI, and 
10_NDVIre4; in the ∑VIs selection, the top 10 features were ∑3_GNDVI, ∑4_RVI, ∑9_NDVIre4, ∑11_NDVIre4, 
∑11_NDVIre2, ∑2_PSRI, ∑11_RVI, ∑3_NDVI, ∑2_NDVI, and ∑4_NDVIre2; in the ∆VIs selection, the top 10 
The characteristics were ∆5_NDVI, ∆11_NDVI, ∆1_NDVI, ∆9_PSRI, ∆11_NDVIre2, ∆6_RVI, ∆8_GNDVI, 
∆8_NDVIre2, ∆9_GNDVI, and ∆12_NDVIre3. The importance score of each feature was shown in the figure. 
The number before the vegetation index represented the month, that was, the vegetation index calculated on the 
imagery of that month.

Decision tree depth selection. Without restrictions, the decision tree will grow until the indicator of 
impurity is the best, or there are no more features available. Such decision trees tend to overfit, i.e., they perform 
well on the training set, but perform poorly on the test set. The sample data collected in the research cannot be 
completely consistent with the overall situation. Therefore, when the decision tree has too excellent interpretabil-
ity for the training data, the rules it finds must include the noise in the training samples and cause insufficient fit 
of the unknown data. In order to make the decision tree have better generalization, the correct pruning strategy 
is the core of optimizing the decision tree algorithm. Among them, Max_depth is the most widely used prun-
ing parameter, which can be judged in conjunction with the hyperparameters learning curve. The study used 
the decision tree model combined with the Matplotlib.pyplot module in Python to draw the learning curve. As 
shown in the Fig. 6, A, B, and C are the hyperparameter learning curves with SVIs, ∑VIs and ΔVIs as input vari-
ables after feature screening, respectively. D, E, and F are the hyperparameter learning curves of SVIs, ∑VIs, and 
∆VIs as input variables without feature filtering, respectively. Through comparison, it could be found that when 
all the features are used as input variables, the phenomenon of model overfitting is aggravated on the features 
under the three treatments. In SVIs, the test set achieved an excellent result when the Max_depth parameter 
value reached 6, the accuracy rate exceeded 80%, the generalization ability of the model was the best, and it 
performed well on the training set and the test set. The ∑VIs and ∆VIs both reached the best results in the test set 
when the Max_depth parameter value reached 8. It is obvious that the performance of the ∑VIs and ∆VIs values 

Figure 3.  Technical route map. This figure shows the main methods and processes in this study.
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on the test set was worse than the SVIs, and the difference between the training set and the test set was large. 
After the Max_depth parameter value exceeded 5, there was a certain over-fitting situation.

Construction of decision tree model. After the input parameters of the model were determined based 
on the above operation, the decision tree model was constructed, and the final model evaluation was obtained 
through the Score interface, which the evaluation indicator used the Accuracy coefficient. The scores of the 
decision tree models of the vegetation indices under the three treatments on the training set and the test set are 
shown in the Table 4. The results have shown that the SVIs had the best effect on constructing the decision tree 
model, and its training set and test set scores were 0.8936 and 0.8355, respectively; followed by the ∆VIs, with the 
test set result reaching 0.7940; The ∑VIs had the worst effect, and the gap between the training set and the test set 
was the largest. Therefore, the SVIs was selected as the variable input of the decision tree model.

Figure 4.  Comparison of NDVI of ground vegetation in May and June. The two figures A and B on the left 
are the visualization results of the NDVI value in May and June in the study area. The two figures C and D on 
the right are the NDVI value intervals between the features in May and June in the study area. Map created in 
ENVI5.3 and ArcMap 10.7 (ESRI Co., USA (https:// envi. geosc ene. cn/)/(https:// www. esri. com/ softw are/ arcgis/ 
arcgis- for- deskt op)). The satellite imagery data source: Sentinel-2 (https:// scihub. coper nicus. eu/ dhus/#/ home).

https://envi.geoscene.cn/
https://www.esri.com/software/arcgis/arcgis-for-desktop
https://www.esri.com/software/arcgis/arcgis-for-desktop
https://scihub.copernicus.eu/dhus/#/home
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The visualization of the decision tree model used the Graphviz module and the Tree.export_graphviz class, as 
shown in Fig. 7. Based on the decision tree model under the machine learning technology, the Sentinel-2 imagery 
of each month was selected, and the ENVI5.3 software was used to perform band calculations to generate the 
single-band raster imagery of the vegetation index of the model input. The above decision tree model results 
were established and executed on ENVI5.3 software respectively, combined with ArcGIS 10.7 software to real-
ize the drawing of classification thematic maps, and the results shown in Fig. 8 were obtained. The results have 
shown that the main planting areas of fruit trees were basically around the two banks of the Dasha River, and 
most of them were continuous planting. The plots of fruit tree planting in the east and northwest were relatively 
fragmented. Among them, pear trees were mostly located on both sides of the Dasha River, apple trees were 
mainly distributed in Dashahe Town and Liangzhai Town, peach trees were scattered, and relatively more in 
Huashan Town. The results of the spatial distribution monitoring were basically consistent with the field surveys.

Classification accuracy verification. In order to objectively and quantitatively evaluate the effect of the 
fruit tree classification of the decision tree model, this study used the confusion matrix method to evaluate the 
accuracy. Random verification points were created in the study area, a total of 600 random points, combined 
with high-resolution imageries and field surveys, each random point was visually interpreted, and compared 
with the remote sensing classification results, and a confusion matrix was made. Then the user accuracy, map-
ping accuracy and Kappa coefficient were calculated separately (Table 5). The user accuracy of pear orchard, 
apple orchard, peach orchard, and forest land were 83.33%, 82.71%, 78.57%, and 80.64%, respectively. The map-
ping accuracy were 82.78%, 81.35%, 77.46%, and 79.71%, and the Kappa coefficient was 0.8140. The results have 
shown that the classification results of peach trees were relatively poor, but the overall error rate and miss rate 
were low. The two accuracy verification results based on the scores of the test set and the training set and the 
confusion matrix verified that the remote sensing classification model of fruit tree planting areas in this study 
had high recognition accuracy, and could realize the remote sensing monitoring of the spatial distribution of 
fruit trees in the area.

Discussion
Currently, the acquisition of plant information at the remote sensing level has mainly based on optical satellite 
data. In optical remote sensing research, the distribution of crops is usually determined by analyzing the changes 
in the spectral reflectance and vegetation index of the current image. The limitation is that in the same period, 

Figure 5.  Importance scores of vegetation indices under the three treatments.( A, B, and C) are the scores of 
SVIs, ∑VIs, and ∆VIs, respectively.
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there is a phenomenon of "same spectrum with different objects" between fruit trees and other plants. There-
fore, simply based on the single-phase imagery and spectral characteristics cannot distinguish various  objects40. 
In addition, the remote sensing imageries used in the plant classification were mainly originated via MODIS, 
NOAA/AVHRR, etc.41,42. These imageries were difficult to apply to high-precision fruit tree remote sensing 

Figure 6.  Hyperparameter learning curve of vegetation indices under the three treatments. A, B, and C are the 
hyperparameter learning curve of the top 20 features of SVIs, ∑VIs, and ∆VIs, respectively. D, E, and F are the 
hyperparameter learning curves of SVIs, ∑VIs, and ∆VIs without feature screening, respectively.

Table 4.  The performance of the training set and test set of the vegetation indices under the three treatments.

Treatments Accuracy of Training set Accuracy of Test set

SVIs 0.8936 0.8355

∑VIs 0.9153 0.7611

∆VIs 0.8887 0.7940
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Figure 7.  Decision tree model. This figure is a visualization result achieved after the construction of a decision 
tree model based on SVIs. The depth of the decision tree model is 6, and the final tags are reflected in each 
branch.

Figure 8.  Results of remote sensing classification of fruit tree planting area. The figure shows the spatial 
distribution of pear orchards, apple orchards, peach orchards, and forest land. Map created in ENVI5.3 and 
ArcMap 10.7 (ESRI Co., USA (https:// envi. geosc ene. cn/)/(https:// www. esri. com/ softw are/ arcgis/ arcgis- for- deskt 
op)). The satellite imagery data ). source: Sentinel-2 (https:// scihub. coper nicus. eu/ dhus/#/ home.

https://envi.geoscene.cn/
https://www.esri.com/software/arcgis/arcgis-for-desktop
https://www.esri.com/software/arcgis/arcgis-for-desktop
https://scihub.copernicus.eu/dhus/#/home
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classification in small areas because of low spatial resolution. On the other hand, the high-resolution imageries 
such as Quickbird, SPOT, IKONOS were  costly43. The medium-resolution TM imageries had revisiting periods 
of 16 days, making it difficult to obtain high-quality data in time. This limited continuous fruit tree monitoring 
and made it inappropriate to classify the species of  tree44. As a rising star, the ESA sentinel series of data has been 
continuously improved and was provided free of charge to users. This has created a convenient data platform for 
remote sensing classification of regional crop’s distribution. The experimental area of the present research has 
been located in yellow river flooded alluvial plain in northern Jiangsu Province. The cultivated land and orchard 
have been fragmented and as a result the planting structure was complex. The time resolution of the selected 
Sentinel-2 imagery was 4 d, and the scanning width of the single scene imagery was 290 km. These characteristics 
could meet the classification demands for the actual regional type of fruit tree.

In this study, the Sentinel-2 time series imageries covering the whole growth period of fruit trees were used to 
explore its influence on the classification of fruit trees by constructing SVIs, ∑VIs, and ∆VIs, and the vegetation 
indices of the relevant period were calculated as the input feature. Combining the machine learning technology 
under the Python framework to construct the best decision tree model, it achieved a higher-precision effect 
of distinguishing fruit tree types, effectively extracted different fruit tree planting areas, with a higher overall 
accuracy. The red edge band is the region between 680 and 750 nm and is considered the most significant sign 
of green vegetation. Because it has the point where the reflectance rises the fastest, this point is also known as 
the maximum value of the first derivative of the plant spectrum in this wavelength  range45. It is obvious that the 
improved normalized vegetation index based on the red edge band as an input feature has a significant role in 
the classification model. Either in the feature selection or in the visualization results of the decision tree model, 
it is apparent that the improved vegetation index constructed by the red edge band has a significant imagery 
factor for the classification model, which is consistent with the research of Luo et al.46.

In the past research on ground object classification based on remote sensing, the main method was to describe 
plant growth characteristics, and based on artificial experience, data analysis and threshold division were carried 
out to draw decision  trees47–49. For optical remote sensing, the target extraction is performed by analyzing the 
spectral reflectance of different fruit trees and other plants and constructing a vegetation index. The limitation 
is that the canopy spectral information changes slightly, and the complex farmland environment also increases 
the difficulty of spectral information extraction and threshold division. Therefore, this type of decision tree 
model has good readability and simplicity, it is difficult to achieve the most ideal state in classification accuracy. 
Traditional remote sensing extraction methods have been difficult to meet the current needs of agricultural 
high-precision extraction. With the development of machine learning technology, the application of feature 
engineering technology has sprung up, and effective feature screening can play an important role. At the same 
time, the hyperparameters learning curve is of great significance in exploring the application of the maximum 
potential of the model. Hence, it is necessary to introduce machine learning ideas to improve the accuracy of 
decision tree classification models in scientific research or production.

Although the overall accuracy of the detailed classification of fruit trees in this study was relatively high, there 
were also cases where the classification accuracy of some categories was relatively poor. Among them, the clas-
sification results of pear trees and apple trees were better than peach trees. The reason was that the local peach 
tree planting structure was relatively complicated, and there were a large number of early and late varieties. Apples 
were mainly late-maturing Fuji varieties, and pears were mainly early-maturing varieties. In consequence, the 
classification model had a better effect on fruit tree types with a more consistent growth cycle, but it was naturally 
less effective in a group with a more chaotic growth cycle. At the same time, forest land had a great influence 
on the classification results of fruit trees. Due to the same tree types, the annual growth cycle of forest land and 
fruit trees overlapped more. There were many types of forest land trees, and the corresponding vegetation indi-
ces ranges in the same period were quite different. Therefore, in view of the errors and misclassifications in the 
process of fruit tree classification, the proportion of forest land was relatively large.

In the study, it was found that the more variables used to construct the decision tree model is not the better. 
Models built from variables without feature selection tend to perform equally well on the training set, but perform 
poorly on the test set. The redundancy of data and the interference of noise will lead to the development of the 
model in the direction of overfitting, so effective feature screening is very necessary. Regarding the performance 
of the three vegetation indices in the classification model, it could be found that the SVIs as an input variable 
has the best effect. Its scores on the training set and test set were 0.8936 and 0.8355, respectively. (Fig. 6). While 
∑VIs and ∆VIs are used as input variables, the scores of the models constructed by them on the test set are both 
less than 0.8. The reason may be that the processing of accumulation and difference between vegetation indices 
cannot effectively amplify the spectral information differences between target vegetation types, resulting in 
unsatisfactory classification results.

Table 5.  Classification accuracy results.

Classes User accuracy Mapping accuracy Kappa coefficient

Pear orchard 83.33% 82.78%

0.8140
Apple orchard 82.71% 81.35%

Peach orchard 78.57% 77.46%

Forest land 80.64% 79.71%
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The planting structure in the study area is complex, and there is a certain phenomenon of "same spectrum 
with different objects". It is difficult to identify and extract objects using single-phase remote sensing data. Multi-
temporal remote sensing data sources can effectively reduce the impact of this phenomenon. In the follow-up 
research work, the focus will be on combining more types of remote sensing data sources and introducing other 
features to improve its impact. The present study did not compare the decision tree model with other classification 
models such as random forest (RF), support vector machine (SVM), etc. The main research content focused on 
the performance of multi-temporal remote sensing data combined with feature engineering technology under 
the decision tree model. Other classification algorithms combined with the idea of feature engineering techniques 
in this study may yield better results and needed further study.

Conclusion
In the present research, four conventional vegetation indices and four improved vegetation indices based on the 
red edge band were used to classify fruit tree planting areas. SVIs, ∑VIs, and ∆VIs were analyzed respectively, 
and selection of features and parameters of decision tree model were carried out by machine learning technology. 
The result was that the accuracy of the decision tree model constructed by the vegetation index under the three 
treatments were 0.8936, 0.9153, and 0.8887 on the training set, and the accuracy on the test set were 0.8355, 
0.7611, and 0.7940, respectively. The decision tree model based on SVIs could meet the remote sensing classifica-
tion of fruit trees in a large area and provide effective technical means for remote sensing imagery monitoring of 
fruit tree planting areas. However, at the same time, it should be considered that there are many rainy weather 
conditions in the study area, which makes it difficult to obtain optical images. Future work will use more types of 
remote sensing data sources (such as synthetic aperture radar) and other features (such as texture information) 
to explore the application of different classification methods.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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