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Abstract: Depleted uranium (DU) is oxidized readily due to its chemical activities, which limits
its applications in nuclear industry. TiN film has been applied widely due to its good mechanical
properties and its excellent corrosion resistance. In this work, TiN protection films were deposited on
DU by direct current magnetron sputtering (DCMS) and high power pulsed magnetron sputtering
(HPPMS), respectively. The surface morphology and microstructures were investigated by atomic
force microscope (AFM), scanning electron microscopy (SEM), and grazing incidence X-ray diffraction
(GIXRD). The hardness and Young’s modulus were determined by nano-Indenter. The wear behavior
and adhesion was analyzed by pin-on-disc tests and scratch adhesion tests and the corrosion
resistance was evaluated by electrochemical measurements. The results show that the TiN films
that were deposited by HPPMS outperformed TiN film deposited by DCMS, with improvements on
surface roughness, mechanical properties, wear behavior, adhesion strength, and corrosion resistance,
thanks to its much denser columnar grain growth structure and preferred orientation of (111) plane
with the lowest strain energy. Besides, the process of Ti interlayer deposition by HPPMS can enhance
the film properties to an extent as compared to DCMS, which is attributed to the enhanced ion
bombardment during the HPPMS.

Keywords: DU; TiN film; HPPMS

1. Introduction

Uranium is widely used in civilian and military applications due to its unique nuclear
properties. However, it is chemically active and susceptible to corrosion, especially in salty, humid,
and high-temperature environments [1,2]. Surface modification and film techniques have been applied
to improve the corrosion resistance of U, including Ni [3], Al [4], Ti-based [5], Cr-based [6] films,
and Mo+, C+, N+ [7,8] ion-implantation. These films can increase corrosion resistance to a certain
extent. However, it is hard to get a pure surface without oxidation for films deposited on depleted
uranium due to its high chemical activity. Inevitably, an undesirable interface adhesion and loose
structure is induced. Consequently, the spallation failure of films and corrosion of the substrate easily
occur. Thus, there exists an urgent demand for preparing a film with good performance to improve
the serve life of depleted uranium (DU).

TiN films have been commonly used for protective purposes on different kinds of substrate
materials due to its chemical stability and excellent mechanical properties [9–13]. However, the
deposition temperature of TiN is above 300 ◦C in most reported literature [14], which is too high for
DU for the following two facts: (1) the thick and loose uranium oxide layer that is formed at this
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temperature would decrease the interfacial adhesion strength between film and substrate intensively;
(2) when uranium components are subjected to such high temperatures, they may deform and lose
their mechanical properties. Until now, the film deposition under low temperature is still one of the
most critical engineering and scientific problems that challenge the film application on uranium.

Efforts have been attempted to deposit TiN film on DU under low temperature by various
methods including the conventional direct current magnetron sputtering (DCMS) and arc ion
plating (AIP) techniques [5]. However, existing techniques encounter such difficulties as: the films
deposited by DCMS at low temperature often exhibit a loose structure due to the low ionization rate
of less than 1% [15]; AIP has high ionization rate, however, the macroscopic droplets produced
in the film deposition process would result in some void defects and decrease the corrosion
resistance consequently.

High power pulsed magnetron sputtering (HPPMS) is a novel technique in which the power
provides the target with pulses of high power densities of a few kW cm−2. This technology enriched
in metal ion plasma, could deposit dense structures and offer virtually defect free films at a relatively
low temperature [16,17].

In this work, HPPMS technique was utilized to deposit dense TiN films on uranium for the first
time. TiN films were deposited on DU by DCMS and HPPMS. The surface roughness, morphology,
nano-hardness, adhesion strength, and electrochemical properties of these films were characterized in
order to study the differences between conventional DCMS and HPPMS.

2. Materials and Methods

2.1. Sample Preparation

The Ti/TiN films were deposited on DU substrate and silicon (100) wafers, the later ones were
prepared for phase and morphology analysis. The DU samples with a size of Φ15 mm × 3 mm were
grinded using SiC water papers from 500# to 1000# progressively, mechanically polished to minor,
and ultrasonically cleaned in acetone and ethanol, respectively, and then put into a vacuum chamber
immediately when the substrates dried.

The base pressure was lower than 5 × 10−4 Pa and the chamber temperature was fixed to
180 ◦C. Prior to deposition, the DU samples were sputtered by Ar+ ions (2.0 Pa, applied bias voltage
−800 V) for 30 min to clean the surface contaminations and partially remove the native oxide layer.
After pre-sputtering, the Ti interlayer of approximately 100~300 nm thick was pre-deposited on the
DU substrates to reduce the stress at the substrate interface and to enhance the adhesion between
the film and the substrate. During deposition, the TiN films were deposited on the substrate with
thickness of 4~5 µm.

Three deposition modes were designed to compare the structure and properties of the films
deposited by HPPMS and DCMS, in order to investigate how the high power pulse introduced
into magnetron sputtering process influences performance of the TiN films. Table 1 summarizes
the deposition parameters for TiN film fabricated by DCMS, HP + DC, and HPPMS modes. In the
DCMS mode, both Ti interlayer and TiN film were deposited by DCMS. In the HP + DC mode, the Ti
interlayer was prepared by HPPMS, and then TiN layer by DCMS. However, in the HPPMS mode, both
Ti interlayer layer and TiN film were deposited by HPPMS. The cathode was operated in a vacuum
chamber equipped with a HPPMS power supply by employing the following parameters: frequency of
150 Hz, pulse width of 200 µs, and average power of 2.2 kW. The applied bias voltage of the substrate
was −100 V. The deposition gas pressure was 0.3 Pa.
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Table 1. Deposition parameters for TiN film fabricated by direct current magnetron sputtering (DCMS),
HP + DC, and high power pulsed magnetron sputtering (HPPMS) modes.

Deposition
Mode

Distance to
Targets (mm)

Ratio of
Ar/N2

Ti Inter-Layer TiN Film
Deposition Rate

(nm/min)Time
(min)

Deposition
Mode

Time
(min)

Deposition
Mode

1 150 160/18 5 DCMS 35 DCMS 62
2 150 160/18 5 HPPMS 35 DCMS 67
3 150 160/18 5 HPPMS 70 HPPMS 28

2.2. Film Characterization

The surface and cross-sectional morphology of the samples were observed by scanning electron
microscopy (SEM, FEI 200, FEI, Hillsboro, OR, USA). The phase structure of the TiN films was
characterized by grazing incidence X-ray diffraction (GIXRD, Philips X’Pert Pro, PANalytical B.V.,
Almelo, Netherlands) with Cu Kα radiation and the incident angle of 0.5◦, where the scan range
was from 30◦ to 80◦. The Hardness and Young’s modulus of the deposited films were measured by
a nano-Indenter (Triboindenter, Hysitron 950, Bruker, Billerica, MA, USA) with a Berkovich head.
The test was applied with a load of 1 mN and depth of 90 nm. Then, the surface roughness of the TiN
films was measured by an atomic force microscope (AFM, Hysitron, Bruker, Billerica, MA, USA) fitted
to the indenter. The tribological test of the deposited films was performed on a ball-on-disc tribometer
(Tribo-S-D, CSM, Peseux, Switzerland). In this test, SiN balls (diameter of 6 mm) were selected as
friction pairs. The balls were under a constant normal load of 1 N, while the discs were circumrotated
at a certain speed to generate abrasion of the films (detailed in Table 2). The scratch adhesion tests
were performed on a Micro Combi Tester (Anton Parr, Graz, Austria), where the loading rate was
18 N/min and the progressive speed was 4 mm/min. Then, the scratch length was 3 mm. The tester
was fitted with acoustic emission monitoring equipment, which can detect emission in the vicinity of
100 kHz. Scratches were examined by optical microscopy (OM, VHX-1000C, KEYENCE, Osaka, Japan)
correlated with the acoustic emission observations to determine the cracking behavior and the critical
loads (Lc).

Table 2. Parameters of the tribological test.

Tribology Pair Load (g) Speed (r/min) Radius of Balls (mm)

Φ6 mm SiN 100 160 4

The corrosion behavior of DU and TiN coated DU samples were studied by potentiodynamic
polarization techniques on an electrochemical workstation (PARSTAT2263, Ametek, San Diego, CA,
USA). All of the electrochemical measurements were conducted using a conventional three-electrode
electrochemical cell in aerated neutral NaCl solution with 50 µg/g Cl− at room temperature with
the specimen as working electrode, a platinum plate as counter electrode, and a saturated calomel
electrode (SCE) as reference. The scan rate of potentiodynamic polarization was 0.2 mV/s.

3. Results and Discussion

3.1. Surface Morphology and Microstructure

The surface morphologies of TiN film by different deposition modes are shown in Figure 1.
The TiN film that was deposited by DCMS mode shows large micro particles with voids between
each particle. While the film fabricated by HP + DC mode appears flattened and it interconnects
with no presence of voids. In the case of HPPMS mode, the film presents the most compact and
smoothest surface.
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Figure 1. The surface morphology of TiN film by different deposition modes: (a) DCMS (b) HP + DC 
(c) HPPMS. 

Further, AFM was used to characterize the surface morphology of the deposited TiN films 
(Figure 2), and the averaged surface roughness (Ra) of the samples was calculated accordingly (Table 3). 
The grain size of TiN decreased gradually from DCMS mode (~0.4 μm) to HPPMS mode (~0.3 μm). 
HPPMS mode will create a high ionization degree of target materials, which causes increased adatom 
energy and mobility on the substrate surface, and subsequently promotes the small grain migration 
to the grain boundaries and grain boundary migration to hence the refining grain sizes. The TiN film 
by DCMS mode has the roughest surface with Ra of 46.65 nm, while the film by the HPPMS mode 
presents the smoothest surface with Ra of 25.89 nm. This evolution can be attributed to the enhanced 
ion bombardment and subsequently higher surface energy of the growing films. Besides, the larger 
quantity of Ar+ ion bombardment at higher bias voltage also resulted in enhanced etching of the 
asperities and thus smoothing the surface. 

 

Figure 1. The surface morphology of TiN film by different deposition modes: (a) DCMS (b) HP + DC
(c) HPPMS.

Further, AFM was used to characterize the surface morphology of the deposited TiN films
(Figure 2), and the averaged surface roughness (Ra) of the samples was calculated accordingly (Table 3).
The grain size of TiN decreased gradually from DCMS mode (~0.4 µm) to HPPMS mode (~0.3 µm).
HPPMS mode will create a high ionization degree of target materials, which causes increased adatom
energy and mobility on the substrate surface, and subsequently promotes the small grain migration to
the grain boundaries and grain boundary migration to hence the refining grain sizes. The TiN film
by DCMS mode has the roughest surface with Ra of 46.65 nm, while the film by the HPPMS mode
presents the smoothest surface with Ra of 25.89 nm. This evolution can be attributed to the enhanced
ion bombardment and subsequently higher surface energy of the growing films. Besides, the larger
quantity of Ar+ ion bombardment at higher bias voltage also resulted in enhanced etching of the
asperities and thus smoothing the surface.
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Figure 2. Atomic force microscope (AFM) images of TiN film by (a) DCMS; (b) HP + DC; and,
(c) HPPMS mode.

Table 3. Surface roughness (Ra), hardness and Young’s modulus of TiN film by different
deposition modes.

Deposition Mode DCMS HP + DC HPPMS

Ra (nm) 46.65 ± 11.27 37.14 ± 6.65 25.89 ± 5.29
Hardness (GPa) 15.75 ± 0.41 20.56 ± 0.76 22.09 ± 0.39
Modulus (GPa) 163.62 ± 2.21 200.37 ± 4.17 220.21 ± 2.33
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Figure 3 presents the cross-sectional morphology of TiN film obtained by different deposition
modes. The thickness of the as-deposited film was 4~4.7 µm. The film morphology was evaluated
using the well-known structure zone models (SZM) (Figure 4) [18]. The film by DCMS mode presents
a porous columnar morphology, which is the typical model of ZONE I. Due to the limited surface
diffusion, the atoms that were deposited on the substrate failed to diffuse into the bulk. Hence, the film
is consisted of uninterrupted fibrous columns, which exhibits porous and rough morphologies [19].
The HPPMS deposited film exhibits a rather denser columnar morphology identified by model of
ZONE T. A high level energy of ion bombardment will enhance the surface diffusion, which gives
rise to a different crystallographic orientation of grains, and therefore leads to a competitive growth.
The structure mode of HP + DC deposited film is between the modes of ZONE I and T. The abundance
of Ti+ ions in the Ti interlayer deposition flux during the HPPMS deposition will improve the transfer
to the growth surface to a certain extent. However, in the subsequent DCMS mode where the majority
of the ion flux consists of the much lower energy Ar+, the surface diffusion was limited.Materials 2018, 11, x FOR PEER REVIEW  6 of 13 
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GIXRD measurements were performed on TiN films and the corresponding XRD patterns are
shown in Figure 5. Figure 5a exhibits a strong (200) orientation, weak (220) orientation, and scarce (111)
orientation. Figure 5b presents a mixture of more pronounced (200) orientation with less (111) and (220)
orientation. Figure 5c exhibits (111) preferred orientation. It is proposed that the competition between
surface energy and strain energy during film growth might contribute to the changes in preferred
orientation [20]. The preferred orientation of film has an important effect on its performance [21].
As reported, the preferred orientation of (111) plane is the most closely packed and it exhibits the
lowest strain energy, while (200) exhibits the lowest surface free energy [22,23]. In the DCMS mode,
the applied substrate temperature is so low (Ts = 453 K) that the surface energy controlled the growth of
the TiN film and the (200) preferred orientation favors [22]. In the case of HPPMS mode, the abundance
of Ti+ ion bombardment increased the adatom mobility and diffusivity, thereby improving the strain
energy, which facilitated the preferred orientation of (111) [23].
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3.2. Hardness (H) and Young’s Modulus (E)

Hardness and Young’s modulus values of the film deposited by different modes are listed
in Table 3. The hardness of HPPMS film (H = 20.56 GPa) was higher as compared to that of
DCMS film (H = 15.75 GPa), and the hardness of HP + DC film (H = 22.09 GPa) was between them.
The Young’s modulus exhibits a similar tendency. The enhanced hardness was attributed to both a
dense microstructure without inter-columnar voids that were prepared during film growth in HPPMS
discharge [24] and the fact that (111) is the hardest orientation in TiN [25].
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3.3. Wear Behavior

The wear behavior of the TiN films was evaluated by pin-on-disc tests. Figure 6 plots the
film friction coefficient against sliding time, and then Table 4 shows the corresponding average
tribology coefficient (µ) of TiN film. It can be identified that the DCMS TiN has the highest wear
coefficient (µ = 0.56). The film by HP + DC mode exhibits a reduced friction coefficient (µ = 0.42).
While, the HPPMS deposited one has a further improved wear resistant (µ = 0.34) when compared to
the two modes described above.

Table 4. The average tribology coefficient of three deposition modes.

Deposition mode 1 2 3
Average tribology coefficient 0.56 0.42 0.34
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The HP + DC mode provides high energy ion bombardment during the Ti interlayer growth,
which shows a certain improvement in surface roughness, porosity, hardness, and adhesion strength,
as compared to DCMS mode. Further, HPPMS-deposited TiN films show superior performance in
structure and mechanical performance, therefore resulting in enhanced tribology resistance.

3.4. Adhesion

To observe and quantify the adhesion strength of TiN film by different deposition modes,
progressive micro-scratch tests were performed under the same condition (applied normal load
increased linearly from 0 to 10 N). The optical micrographs of scratches TiN film by different modes
after scratch test are shown in Figure 8 and the generated acoustic emission signals during scratch test
are shown in Figure 9. It suggests that TiN films that were deposited with mode 1 and 2 experienced
similar failure modes [26]. In DCMS TiN, the angular cracks were clearly observed initiating from
the edge of scratch at a very low load of 4 N. Then, some new angular cracks were constantly being
produced along the edge of scratch as the load progressed. The angle between the angular crack and
the forward direction of the diamond scribing head was almost maintained at 45◦. At the load of
5.5 N, the signs of chipping appeared at the area between the angular crack and the edge of scratch
from film-substrate interface. The results show that the film-substrate interface close to the edge
of scratch was damaged with the appearance of angular crack and failed at a critical load of 5.5 N.
While, the pre-deposition treatment of Ti interlayer using HP has a positive effect on adhesion strength
of the TiN film by improving the critical load to almost 8 N. The TiN film that was produced by
HPPMS mode shows completely different failure modes under the same conditions. There were no
angular cracks observed in Figure 8c. The semi-circular brittle cracks formed at the rear of the indenter
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(Figure 8c) in response to the tensile stresses that are generated during sliding, which played as typical
failure throughout the remaining process until spalling occurs at the load of 16 N. Obviously, the HP
deposition mode improved the scratch resistance of TiN film significantly, which may also attribute to
the enhanced ion bombardment during the HPPMS mode, which may make metal ions implanted and
incorporated in the substrate, and hence has an enhancement on interface.Materials 2018, 11, x FOR PEER REVIEW  10 of 13 
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3.5. Corrosion Resistance

Figure 10 presents the potentiodynamic polarization curves of DU and the DU coated with TiN
by different modes in aerated 50 ug/g NaCl solution and Table 5 summarizes the corresponding
electrochemical corrosion parameters. A highly active dissolution behavior with regard to the bare DU
was observed in curve a. Above the corrosion potential (Ecorr), the anodic current density increased
sharply and it finally reached the limiting current density of approximately 3.4 × 10−6 A/cm2.
TiN films could prevent DU from rapid corrosion, as demonstrated by curve b, c, d. Especially,
all of the TiN films were characterized by a passive region. However, the current density (icorr)
of HPPMS TiN (2.6 × 10−8 A/cm2) was lower by an order of magnitude than that of HP + DC
TiN (2.7 × 10−7 A/cm2) and two orders of magnitude than that of DCMS TiN (5.1 × 10−7 A/cm2),
respectively. As reported, the electrochemical resistance of film is strongly related to the microstructure
and surface morphology [11,27]. The relatively lower corrosion resistance of the DCMS TiN film is
mainly due to its porous columnar structure so that the solution can easily reach the DU substrate via
the pinholes. The denser structure in HP + DC TiN films contributes to the enhanced electrochemical
resistance as compared to DCMS TiN. In addition, HPPMS TiN provides a competitive growth structure
with few defects and the lowest porosity, which accounts for the best corrosion resistance.
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Table 5. The electrochemical corrosion parameters of DU and DU coated with TiN by different modes:
(a) DCMS, (b) HP + DC, and (c) HPPMS in aerated 50 ug/g NaCl solution.

Deposition Mode Ecorr (mV) Icorr (A/cm2)

DU −773 ± 97 3.4 ± 0.7 × 10−6

DCMS −230 ± 21 5.1 ± 3.8 × 10−7

HP + DC −113 ± 14 2.7 ± 1.4 × 10−7

HPPMS −87 ± 19 2.6 ± 1.1 × 10−8

4. Conclusions

In this study, TiN film has been deposited on DU under low temperature by direct current
magnetron sputtering (DCMS) and high power pulsed magnetron sputtering (HPPMS), respectively.

The experimental results shown in this work demonstrate that the HPPMS deposited TiN film
exhibited a compact and smooth surface as compared to DCMS that was deposited TiN. The DCMS
deposited TiN films exhibited porous columnar structure, which corresponds to zone I in the
well-known structure zone model (SZM); while, the HPPMS counterpart shows competitive texture
growth, which corresponds to zone T in SZM. The preferred orientation of DCMS produced TiN films
changed from (200) to (111) with HPPMS. The HPPMS fabricated TiN film reveals a high hardness of
22.09 GPa, Young’s modulus of 220.21, low friction coefficient of 0.34, high adhesion of Lc 16 N, and an
improved corrosion resistance. Besides, the process of Ti interlayer deposition by HPPMS can enhance
the film properties as compared to DCMS, which is attributed to the enhanced ion bombardment
during the HPPMS.

In summary, the results that are shown in this work prove that the TiN film deposited by HPPMS
on DU could significantly improves its mechanical, tribological and corrosion performance and
therefore serves as a promising surface protective coating for DU.
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