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Nowadays, the recognition of emotions in people with sensory disabilities still represents
a challenge due to the difficulty of generalizing and modeling the set of brain signals.
In recent years, the technology that has been used to study a person’s behavior
and emotions based on brain signals is the brain–computer interface (BCI). Although
previous works have already proposed the classification of emotions in people with
sensory disabilities using machine learning techniques, a model of recognition of
emotions in people with visual disabilities has not yet been evaluated. Consequently,
in this work, the authors present a twofold framework focused on people with visual
disabilities. Firstly, auditory stimuli have been used, and a component of acquisition
and extraction of brain signals has been defined. Secondly, analysis techniques for
the modeling of emotions have been developed, and machine learning models for the
classification of emotions have been defined. Based on the results, the algorithm with
the best performance in the validation is random forest (RF), with an accuracy of 85
and 88% in the classification for negative and positive emotions, respectively. According
to the results, the framework is able to classify positive and negative emotions, but
the experimentation performed also shows that the framework performance depends
on the number of features in the dataset and the quality of the Electroencephalogram
(EEG) signals is a determining factor.

Keywords: emotion classification algorithm, brain–computer interface, machine learning, visual disabilities,
affective computing

INTRODUCTION

The recognition of human emotions was proposed long ago as a way for the development of current
computing, with the aim of designing machines that recognize emotions to improve the interaction
between humans and computer systems (Picard, 2003). Besides, it represents a challenge since
this could mean that computers respond in real time and in a personalized way to the affective
or emotional states of a person (Kumar et al., 2016).

Emotions in a person play an important role in non-verbal communication and are essential for
understanding human behavior (Liu et al., 2011). Moreover, some research related to analyzing
emotional behavior and automatic recognition of emotions using machine learning techniques
have generated high expectations. First, emotions have been studied from behavioral signals, named
emotional signals (Ekman and Friesen, 1969) and from the analysis of body posture and movement
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(Ekman et al., 1991). On the other hand, various approaches and
ways have been tested for the classification of emotions in people
under different circumstances, like music (Vamvakousis and
Ramirez, 2015), autism (El Kaliouby et al., 2006), the recognition
of emotions using electrodermal activity sensors (Al Machot et al.,
2019), or e-Healthcare applications (Ali et al., 2016).

Although the human emotional experience has a vital role
in our lives, scientific knowledge about human emotions
is still minimal (Soleymani et al., 2012). Consequently,
emotions classification is a problem considered challenging
since emotional states do not have precisely defined limits,
and often, the perception between users differs. Therefore,
research on the recognition and emotions classification is of
importance in real-life applications (Anagnostopoulos et al.,
2012; Zhang et al., 2020).

Through the recognition of speech and the processing of facial
gestures, it has been possible to classify a person’s emotions, and
commonly these approaches have given good results. However,
it has been detected that people can manipulate these methods.
Therefore, to achieve objectivity in the technique, the source of
the emotion must not be easily manipulated (Ackermann et al.,
2016). Consequently, a new reliable and objective approach is
required to avoid these cases.

In recent years, through the brain–computer interface (BCI),
the behavior and emotions of a person have been studied (Nijboer
et al., 2008; Chaudhary et al., 2016; Pattnaik and Sarraf, 2018).
These studies indicate that BCI technology offers an additional
benefit as it is a method that cannot easily be manipulated
by the person. Therefore, it is possible to obtain valid and
accurate results by analyzing brain signals obtained using a BCI
(Patil and Behele, 2018).

People with any sensory disability often do not have access to
current technology. For this reason, it is necessary to develop new
ways of communication and interaction between the human and
the computer to give support to these people considering their
disability and the degree it affects them. Therefore, the effective
adaptation of a brain–machine interface to the recognition of the
user’s emotional state can be beneficial to society (Picard, 2010).

Commonly, people with total or partial visual disability have
difficulties completing their daily tasks (Leung et al., 2020). This
is associated with dependence when carrying out daily activities,
even in some cases with decreased physical activity (Rubin et al.,
2001). Frequently, people with visual disabilities need to use
support tools that allow them to interact with the environment
around them, so they must alter their behavior according
to their needs. Therefore, changing how people with visual
disabilities communicate, intervene, and express themselves in
their environment through the recognition of their emotions
would improve their quality of life. Besides, this would positively
impact their daily lives since it would put them on an equal
footing in current technology access and use.

In various studies related to the classification of emotions
through biological signals such as brain signals, music has
been used as a source to induce human emotions. Besides,
music is considered capable of evoking a series of emotions
and affect people’s mood (Koelsch, 2010). However, music’s
influence on emotions is often unknown due to individual

preference and appreciation for music (Naser and Saha, 2021).
The action of listening to music and psychological processes
such as perception, attention, learning, and memory are involved.
Therefore, music has been considered a useful tool to help study
the human brain’s functions (Koelsch, 2012). Additionally, music
can provoke strong emotional responses in listeners (Nineuil
et al., 2020). Moreover, it has been shown that music is used
for understanding human emotions and their underlying brain
mechanisms (Banerjee et al., 2016). For these reasons, music
is considered adequate to induce and study various human
emotions, including positive and negative (Peretz et al., 1998).
Taking into account various psychological aspects and the effects
of music on emotions, music has been studied in the regulation of
moods in people (Van Der Zwaag et al., 2013), the effects of music
on memory (Irish et al., 2006), recognition of brain patterns while
listening to music (Sakharov et al., 2005), etc.

Previously, this paper’s authors analyzed the research that
proposes the classification of emotions in people with visual
disabilities (López-Hernández et al., 2019). The results showed
that new approaches that specifically consider people with visual
disabilities and the study of their emotions are still required.
Based on these results, the design of a system that classifies the
affective states of people with visual disabilities was proposed
by identifying a person’s emotional responses when they are
auditory stimulated.

For the reasons mentioned above, this research’s main
motivation is to provide an integrated framework for
acquiring brain signals through a BCI, characterizing brain
activity models, and defining machine learning models for the
automatic classification of emotions, focused on people with
visual disabilities.

This study expects to obtain new evidence on the application
of BCIs, affective computing, and machine learning, oriented
toward the development of communication and interaction
alternatives between systems and people with visual disabilities.

Likewise, the challenges associated with this research are the
analysis and evaluation of emotional behavior as well as the
perception of the responses to an auditory stimulus of people with
visual disabilities.

RELATED WORK

Next, a review of related works on applying a BCI for the
recognition and classification of people’s emotions using machine
learning algorithms is presented.

An EEG signal-based system for automatic recognition
of emotions was proposed to examine different methods of
extracting EEG features, channel locations, and frequency bands
(Ackermann et al., 2016). Machine learning algorithms such
as support vector machines (SVMs), random forests (RFs),
and decision trees (DTs) were evaluated with pre-processed
data for the analysis of emotions, based on physiological data
provided during the training and testing tasks. In their results
and experimental findings, the authors report that the RF
algorithm behaves better in recognition of emotions from signals
coming from the EEG. Likewise, they mention that although it
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is possible to recognize human emotions from other sources,
the most reliable way is through EEG signals due to this
approach’s objectivity.

Another study proposes the identification of four emotions
through the analysis of EEG and the exploration of machine
learning algorithms such as Multiclass SVM for the emotion
classification task (Patil and Behele, 2018). The results indicate
that the model obtains a 91.96% precision in the classification
of emotions. Likewise, it is mentioned that an EEG is a more
reliable data source for the study of emotions since the subject
cannot alter the data.

An approach to the acquisition and processing of the EEG
signals obtained using the Emotiv Epoc+ device and the
evaluation of a neural network model for the classification of
emotional states of people without disabilities reports results of
85.94, 79.69, and 78.13% for valence, excitement, and dominance,
respectively (Sánchez-Reolid et al., 2018).

A model for identifying human emotions using EEG signals
and Multi-Feature Input Deep Forest Model has been used
as an alternative to classifying five emotions, neutral, angry,
sad, happy, and pleasant (Fang et al., 2021). In this study,
EEG signals from a public dataset for emotion analysis (DEAP)
are used. Data processing involves dividing the EGG signals
into several frequency bands, processing the power spectral
density, the differential entropy of each frequency band, and the
original signal as features of the model. Results show that the
MFDF model achieves 19.53% more precision with the compared
algorithms (RF, SVM, and KNN).

The detection of emotions from EEG signals is also studied
by Ramirez and Vamvakousis (2012). The paper describes an
automatic approach to emotion detection based on brain activity
using the Emotiv Epoc+ headset. In this study, a group of men
and women were stimulated auditorily with 12 sounds from the
IADS database. During the extraction of features, alpha waves
(8–12 Hz) and beta waves (12–30 Hz) were considered, using
a bandpass filter and the Fourier analysis of frequency. Linear
Declining Analysis (LDA) and SVM algorithms were evaluated
for the two-class classification task. Finally, the results indicated
that the best classification results for excitation and valence were
83.35 and 86.33%.

A new normalization method of features named stratified
normalization is studied to classify emotions from EEG signals
(Fdez et al., 2021). In this research, the SEED dataset is used,
and the data on the effects of three independent variables
(labeling method, normalization method, and feature extraction
method) are recorded. This method proposes an alternative
for the normalization of features to improve the precision
of the recognition of emotions between people. The results
indicate 91.6% in the classification of two categories (positive
and negative) and 79.6% in the classification of three categories
(positive, negative, and neutral).

Other research shows the analysis and evaluation of machine
learning, SVM, and K-nearest neighbors (KNN) methods to
classify a person’s emotions while observing a visual stimulus
(Mehmood and Lee, 2015). In this research, five people (without
disabilities) participated in the experiment, and the EEG
data were recorded through the Emotiv Epoc+ headset. The

processing of the EEG signals was through the EEGLAB toolbox
applying the Independent Component Analysis (ICA) technique.
The best result of the application of the automatic learning
methods for the classification of emotions was 61% accuracy for
KNN, as opposed to SVM, which obtained 38.9% accuracy.

K-nearest neighbors algorithm and its functioning to classify
emotions are described by Kaundanya et al. (2015). This proposal
is a method for EEG signal acquisition tasks, pre-processing,
feature extraction, and emotion classification. Several subjects
were stimulated for the emotions of sadness–happiness, and the
data acquisition was performed with the ADInstruments device.
The recorded EEG signals were processed by applying a bandpass
filter (3–35 Hz) to remove the signals’ noise. The results indicated
that the KNN algorithm is viable for the classification task.

Decision tree classifiers for EEG signals have been used in
different research works. A fast and accurate DT structure-
based classification method is used for classifying EEG data with
computer cursor up/down/right/left movement images (Aydemir
and Kayikcioglu, 2014). The detect epileptic seizure in EEG
signals uses a hybrid system based on DT classifier and fast
Fourier transform (FFT) (Polat and Güneş, 2007). DT and a
BCI have also been used to assist patients who are nearly or
entirely “locked-in,” i.e., cognitively intact but unable to move or
communicate (Kennedy and Adams, 2003).

In summary, several approaches have been proposed to
classify emotions, from voice recognition or facial expressions
to BCI, to extract brain signals (EEG). Although these methods
have been tested in different settings and their results are
correct, the literature mentions that the most reliable method
is the use of brain signals (EEG) due to its objectivity in
reading the data. Additionally, the classification of emotions
for the development of new systems that respond to the
emotional states of a person has been analyzed in different
research works. In addition, machine learning models, previously
labeled datasets and different scenarios have been explored,
and the results demonstrate the viability of the proposals.
However, the authors consider that new scenarios must be
evaluated, considering the classification of affective states in
people with disabilities.

The remainder of this article is organized as follows:
In section “Related Work,” the related works are discussed,
and section “Materials and Methods” presents the methods
and materials used in this research. In section “Proposed
Framework,” the proposed framework is described, highlighting
its principal features. Section “Results” shows the results obtained
from the experimentation after the implementation of the
proposed model. Possible causes of the results are discussed in
section “Discussion.” Finally, section “Conclusion” presents the
conclusions and future works related to the implementation of
systems capable of recognizing and responding in real time to the
emotions of a person with disabilities.

MATERIALS AND METHODS

This section describes the tools and methods used during the
experimental phase of this research.
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Headset Emotiv Epoc+

Emotiv Epoc+ is a high-resolution portable EEG device, which
is used to record brain signals. This device has 14 electrodes for
reading brain signals and two CML/DRL reference electrodes.
It is designed to operate quickly during the tasks of acquisition
and processing of brain signals (Emotiv Epoc, 2019). The
configuration of the device Emotiv Epoc+, for the acquisition of
the EEG signals, is supported by the sensors: AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. Figure 1 shows the
electrode locations for Emotiv Epoc+.

Participants
The present study was developed in collaboration with the
ONCE social group from Madrid, Spain. This group involves
the National Organization of the Spanish Blind (ONCE) and
other related entities. ONCE supports people with needs derived
from blindness or a severe visual impairment by providing of
specialized Social Services.

This study involved seven participants, five men and two
women, from whom the ONCE social group invited four people
to participate in the study. The age of the participants is between
40 and 55 years old. Previously, all participants reported having
normal hearing, and before the experiment, they gave their
consent in a confidentiality document to process personal data
and participate in the study. Likewise, they were informed of the
procedure and of their right to suspend the study. Considering
the participants, the experiment was carried out following the
principles of the Declaration of Helsinki.

Stimuli
For the experimentation of this study, two classical music audios
with different musical styles were selected, the first being joy–
happiness and the second being fear–suspense. From these, 40
stimuli (audios) with 5 s each have been generated and selected.
The purpose of using stimuli of different musical styles is to
induce different affective states (emotions) in the participants.

PROPOSED FRAMEWORK

The related work has exposed different research works for the
identification of a person’s emotional responses when they are
auditory stimulated. As it has been stated, despite the number of
works in this area, future research is needed for developing high-
performance BCI systems to allow people with needs to perform
activities of daily living (Yuan and He, 2014).

Furthermore, due to the advancement of computational tools,
the task of recognition and classification of human emotions
based on machine learning models has generated interest (Asghar
et al., 2019). For this reason, in this research, different machine
learning models are evaluated looking for the one with the best
performance in this problem.

This manuscript presents a new framework focused on people
with visual disabilities, taking into account those findings. The
framework is composed of different components and stages:

(A) Data acquisition: EEG signals data acquisition by a BCI
interface and brain activity models characterization.

(B) Pre-processing: Analysis of brain activity models and EEG
data signals for feeding the training and test process of the
machine learning models.

(C) Machine Learning: Definition and evaluation of different
machine learning models.

(D) Classification: Automatic classification of basic emotions
(positive or negative).

The different components and stages of the framework are
shown in Figure 2 and detailed in the following subsections.

Data Acquisition
The first step of the proposed framework is data acquisition and
collection. During the presentation of a stimulus, the Emotiv
Epoc+ device is used to read and record real-time people’s brain
activity. These sensors are placed on the participants as shown
in Figure 1, following the guidelines of the international 10–20
standard for electrode positioning (Sharbrough et al., 1991).

Experiments
Before starting the experimentation stage, the participant is
informed of the data recording procedure and the process to
evaluate each stimulus. Subsequently, the participant performs
a test with the Emotiv Epoc+ headband to ensure the
correct reading of the data; in addition, volume tests with
the audio device were carried out to validate that the
participant is comfortable.

During each test, the task of inducing different affective states
or emotions in the participants was presented using auditory
stimulation. Each participant listens to 40 previously selected
auditory stimuli, divided into four groups of 10 stimuli, where
each stimulus is presented for 5 s. Between each stimulus,
the participant has 3 s to rate the stimulus heard and 5 s of
silence to evoke a neutral emotional state in the participant.
The experimentation process is divided into four stages that are
described below.

Experiment 1
In this test, 10 trials’ data are recorded presenting 10 stimuli
(in that order): five of Joy–Happiness and five of Fear–
Suspense. Likewise, the participant will rate each stimulus as
positive (pleasant) or negative (unpleasant) according to their
musical preferences.

Experiment 2
During this test, 10 trials are carried out from presenting 10
stimuli (in random order): five of joy–happiness and five of
fear–suspense. In this test, the participant rates each stimulus
according to their musical preferences, positive (pleasant), or
negative (unpleasant), respectively.

Experiment 2
For this test, data from 10 trials are saved by an orderly
presentation of five joy–happiness stimuli and five fear–suspense
stimuli. Each participant rates each stimulus according to their
musical preferences (positive or negative).
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FIGURE 1 | Location of the electrodes in Emotiv Epoc+ headset.

Experiment 4
In this last test, a random order is considered for recording the
data of 10 trials using five stimuli of joy–happiness and five of
fear–suspense, respectively. Each stimulus is rated positive or
negative, depending on each participant.

Finally, the data obtained from the signal’s EEG are digitized
into a file for each user. The file contains all the information
related to the experiment: type of stimulus, the time interval the
stimulus was presented, the wave magnitude for each electrode,
and the participant’s evaluation for each stimulus.

Pre-processing
This component of the framework processes the source data
of the EEG signals of each participant obtained in the data
acquisition stage. A component of the framework extracts the
signal from each sensor, applies FFT, and filters the signal using a
filter band pass between 0.5 and 30 Hz. The result of this task is
the conversion of the data into the signal frequencies, delta (0.5–
4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–30 Hz), and an

average wave magnitude of each electrode, reducing the amount
of data generated and therefore improving its understanding.

Machine Learning
The machine learning component of the framework includes
eight machine learning classifiers: RF, logistic regression (LR),
multilayer perceptron (MLP), KNN, Linear Discriminant
Analysis (LDA), Naive Bayes (NB), DT, and neural networks
(NNs) where different experiments are configured, altering the
main parameter for each algorithm.

The KNN method is a popular classification method in
data mining and statistics because of its simple implementation
and significant classification performance. KNN classifier is a
type of instance-based learning or non-generalizing learning:
it does not attempt to construct a general internal model
but simply stores instances of the training data. Classification
is computed from a simple majority vote of the nearest
neighbors of each point: a query point is assigned to the data
class, which has the most representatives within the nearest
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FIGURE 2 | Framework for the classification of emotions in people with visual disability.

neighbors of the point. However, it is impractical for traditional
KNN methods to assign a fixed k value (even though set
by experts) to all test samples (Zhang et al., 2017, 2018).
Considering this, for the KNN classifier, the number of neighbors
(n_neighbors) parameter is modified in the experimentation
(moving from 1 to 20).

Random forest classifier is an ensemble classifier that produces
multiple DTs, using a randomly selected subset of training
samples and variables. Over the last two decades, the use of the
RF classifier has received increasing attention due to the excellent
classification results obtained and the speed of processing (Belgiu
and Drǎgu, 2016). RF algorithm is a meta estimator that fits a
number of DT classifiers on various subsamples of the dataset and
uses averaging to improve the predictive accuracy and control
over-fitting. The subsample size is always the same as the original
input sample size, but the samples are drawn with replacement
in this case. The number of trees (NT) in the RF algorithm for
supervised learning has to be set by the user. It is unclear whether
the NT parameter should be set to the largest computationally
manageable value or whether a smaller NT parameter may be
enough or, in some cases, even better (Cutler et al., 2012; Probst
and Boulesteix, 2018). RF is an algorithm that has been shown
to have excellent performance for classification tasks. It uses a
set of trees (n_estimators), which are based on the technique of
sampling the data (Vaid et al., 2015). Taking this into account, for

the RF classifier, the NT parameter (n_estimators) is modified in
the experimentation (moving from 1 to 25).

Decision trees are a non-parametric supervised learning
method used for classification and regression. The goal is to
create a model that predicts the value of a target variable by
learning simple decision rules inferred from the data features.
Many systems have been developed for constructing DTs from
collections of examples (Quinlan, 1987). The study for the
number of features to consider when looking for the best split
has been under research for many years (Kotsiantis, 2013; Fratello
and Tagliaferri, 2018). Taking this into account, for the DT
classifier, the number of features (max_features) for the best split
is modified in the experimentation (moving from 1 to 14).

Linear Declining Analysis algorithm is a classifier that works
with a linear decision limit. However, it is also considered a
technique for feature extraction and dimensionality reduction.
LDA projects the data in a vector space with a covariance matrix
and an average vector of lower dimensions. Finally, the samples
are classified according to the closest average vector (Torkkola,
2001; Ye et al., 2005). Furthermore, LDA has been used to reduce
the number of dimensions in datasets, while trying to retain as
much information as possible.

Logistic regression is a statistical method that examines the
relationship between a dependent variable (target) and a set of
independent variables (input), which is applied in regression
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problems, binary classification, and multiclassification. The LR
algorithm technique is based on finding a prediction function
and a loss function and identifying the parameters that minimize
the loss function. In LR classification problems, you first create
a cost function and then apply an iterative optimization process
to identify the optimal model parameters (Tsangaratos and Ilia,
2016; Fan et al., 2020).

Naive Bayes classifier is a probabilistic algorithm known for
being simple and efficient in classification tasks. From a set of
training data, it estimates a joint probability between the features
(X) and the targets (Y) (Tsangaratos and Ilia, 2016). NB learns
the parameters separately for each attribute, which simplifies
learning, even in large datasets (Mccallum and Nigam, 1998).

Multilayer perceptron is a type of NN frequently used in
pattern recognition problems. Due to its ease of implementation
and adaptability to small datasets (Subasi, 2007). The MLP
implementation consists of three sequential layers: input (s),
hidden (s), and output (s). The hidden layer processes and
serves as an intermediary between the input and the output layer
(Orhan et al., 2011).

A NN is a model that has been studied in supervised learning
approaches. These models are composed of a large number
of interconnected neurons, on which parallel calculations are
performed to process data and obtain certain knowledge. The
learning of a NN is based on rules that simulate biological
learning mechanisms. For classification tasks, NN models are
important for their ability to adapt and fit the data (Subasi, 2007;
Naraei et al., 2017).

Taking this into account, Table 1 shows the configuration
of each algorithm and the parameters that have been modified
during experimentation.

Classification
At this stage and taking into account the main insights obtained
from the related work, machine learning classifiers are trained,
evaluated, and validated through cross-validation and different
precision metrics. Figure 3 describes the workflow adopted to
validate the results of the classification models using cross-
validation and to obtain a comparison of the best results in the
model’s evaluation process.

All the data recorded from the trials that have been collected
during the experimentation stage have been included in two
different approaches, looking for the machine learning model
with the best fit for the recognition and classification of emotions.
The evaluations of users include negative samples (stimuli
that the user qualified as unpleasant), neutral samples (periods
when the user did not hear any stimuli), and positive samples
(stimuli rated as pleasant by the user). Approach A includes
negative (unpleasant) and neutral cases. Instead, approach B
contains neutral and positive cases. The purpose of generating
these approaches is to identify and recognize the difference
between cases with different emotional state using machine
learning models.

The percentage of samples for training and testing, the
dimensionality of the feature vector, and the number of classes
to evaluate the machine learning models’ performance are
presented in Table 2. The features are extracted from each

TABLE 1 | Classifiers configuration.

Algorithm Parameter Value Comment

K-nearest
neighbors
(KNN)

Algorithm “Auto” KNN will attempt to
decide the most
appropriate algorithm
based on the values
passed to fit method:
Ball tree, K-d tree or
brute-force search

Leaf_size 10 to 30 Leaf size passed to
BallTree or KDTree
algorithms

Metric “Minkowski”

n_neighbors From 1 to 20 Number of neighbors to
use by default for
queries

P 2 Power parameter for
the Minkowski metric.
When p = 2, metric is
Euclidean_distance

Random
forest (RF)

Max_depth None The maximum depth of
the tree

Max_features “Auto” The number of features
to consider when
looking for the best split

Max_leaf_nodes Unlimited Grow trees in best-first
fashion. Best nodes are
defined as relative
reduction in impurity

Min_impurity_split 1e−7 Threshold for early
stopping in tree growth.

n_estimators From 1 to 1000 The number of trees in
the forest

Decision tree
(DT)

Max_features From 1 to 56 The number of features
to consider when
looking for the best split

Max_depth None The maximum depth of
the tree. If none, then
nodes are expanded
until all leaves are pure
or until all leaves
contain less than
min_samples_split
samples

Min_samples_split From 2 to 5 The minimum number
of samples required to
split an internal node

Splitter best It defines the strategy
to choose the split at
each node

Linear
Discriminant
Analysis
(LDA)

Solver Svd, lsqr, and eigen Solver that will use the
algorithm

Tol 0.0001, 0.001, and
0.01

Threshold for Solver
Range Estimation (SVD)

n_components None Number of
components, for
dimensionality
reduction

Store_covariance False Allows to calculate the
class covariance matrix

(Continued)
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TABLE 1 | Continued

Algorithm Parameter Value Comment

Logistic
regression
(LR)

Max_iter From 100 to 2,000 Maximum number of
iterations taken for the
solvers to converge

Solver Liblinear, lbfgs Algorithm to use in the
optimization problem.

Multi_class Ovr, auto “ovr,” for a binary
problem

Tol 1e-4, 1e-3, and 1e-2 Tolerance for stopping
criteria

Penalty L1 and L2 Used to specify the
norm used in the
penalization

Naive Bayes
(NB)

Priors Prior probabilities of the
classes

Var_smoothing 1e-9, 1e-7, and 1e-5 Portion of the largest
variance of all features
that is added to
variances for
calculation stability

Multilayer
perceptron
(MLP)

Hidden_layer_sizes From 28 to 56 The ith element
represents the number
of neurons in the ith
hidden layer

Max_iter 5,000 Maximum number of
iterations

Early_stopping True Whether to use early
stopping to terminate
training when validation
score is not improving

Activation Relu Activation function for
the hidden layer

Alpha 0.0001 and 0.001 L2 penalty
(regularization term)
parameter

Neural
network (NN)

Input_dim From 28 to 56 Number of neurons in
the input layer

Kernel_initializer Uniform Initializers define the
way to set the initial
random weights of
layers

Activation Relu and tanh Activation function for
the hidden layer

Loss Binary_crossentropy The purpose of loss
functions is to compute
the quantity that a
model should seek to
minimize during training

Optimizer Adam Adam optimization is a
stochastic gradient
descent method that is
based on adaptive
estimation of first-order
and second-order
moments

sensor’s EEG signal spectrum as a potential feature to feed the
machine learning model.

The number of features of each dataset depends on the type
of waves included. Approaches A1 and B1 use 56 features for

the binary classification of “unpleasant – neutral” and “neutral –
pleasant,” respectively, extracted from 14 sensors (56 = 14 ∗ 4
{delta, theta, alpha, and beta}). Instead, approaches A2 and B2
employ 28 features for binary classification of “unpleasant –
neutral” and “neutral – pleasant,” respectively, obtained from 14
sensors (28 = 14 ∗ 2 {alpha and beta}). In A2 and B2 approaches, it
has been chosen to evaluate the alpha and beta frequencies since
it is known from the literature that these frequencies reflect active
mental states. Therefore, it is proposed to evaluate the importance
of this type of frequencies in emotion classification tasks.

During classification tasks, first, the precision of each machine
learning algorithm is validated using cross-validation (10 folds).
Subsequently, each algorithm is evaluated by training a new
model and with a set of samples reserved for its validation. The
percentages of samples assigned in each step of the process have
been described in Table 2. The results of the accuracy, precision,
recall, and F1 score metrics will indicate the ability of the model
to generalize new cases. Additionally, it is essential to validate that
the model does not present a classification bias toward one of the
problem classes.

RESULTS

In this section, the results of the proposed framework are
presented. First, the percentage of samples evaluated as
negative or positive per participant is reported. Later, machine
learning algorithms for classifying affective states in people
with visual disabilities are compared. Finally, each algorithm’s
performance is analyzed, and precision analysis of the proposed
models is presented.

Pre-processing: Dataset Analysis
First, an analysis of each experiment’s responses reveals the
percentage of samples that have been evaluated negatively or
positively by all participants. Table 3 reports these results, ID
Participant, Stimuli evaluated, % of negative samples, and % of
positive samples associated with the evaluation by all participants.

Once the EEG signals have been extracted and the average
wave values processed from the 14 electrodes of the Emotiv
Epoc+ headband, data analysis for inspecting, cleaning, and
transforming data to highlight useful information has been
performed. For visualizing this process, two boxplot diagrams
have been defined. The usefulness of the boxplot diagram is
that it offers, by simple visual inspection, a rough idea of the
central tendency (through the median), dispersion (through
the interquartile) of the symmetry of the distribution (through
the symmetry of the graph), and possible outliers in each
classifier. The rectangular part of the plot extends from the
lower quartile to the upper quartile, covering the center half
of each sample. The center lines within each box show the
location of the sample medians. The whiskers extend from
the box to the minimum and maximum values in each
sample, except for any outside or far outside points, which
will be plotted separately (Gonzalez-Carrasco et al., 2014;
Molnar, 2019).
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FIGURE 3 | Workflow for cross-validation in model training and evaluation.

TABLE 2 | Dataset specification.

Dataset (Approach) Number of samples Number of features
(Features = sensors *
waves)

Class

Cross-validation Training Test

A1 100% 85% 15% 56 features = 14 sensors *
4 waves {delta, theta,
alpha, and beta}

Unpleasant (-1) Neutral (0)

A2 100% 85% 15% 28 features = 14 sensors *
2 waves {alpha and beta}

Unpleasant (-1) Neutral (0)

B1 100% 85% 15% 56 features = 14 sensors *
4 waves {delta, theta,
alpha, and beta}

Neutral (0) Pleasant (1)

B2 100% 85% 15% 28 features = 14 sensors *
2 waves {alpha and beta}

Neutral (0) Pleasant (1)

The detection of these outliers is crucial for understanding
possible causes and implications of their presence
(Cousineau and Chartier, 2010; Leys et al., 2013). Moreover,
the importance of outliers has been studied in different domains
and problems (Felt et al., 2017; Iwata et al., 2018; Peiffer and
Armytage, 2019).

Figure 4 depicts the variability of the distribution of brain
signal values in positive and negative emotions for the 14
electrodes of the BCI. Based on the visual analysis of the dataset,
there are some outliers for the electrodes in the distribution of the

values (median around 4200 µV). In the same way, the behavior
of the signals is quite similar for positive and negative emotions.
For this reason, it is essential to mention that the existence of
outliers could determine the reaction and behavior of the brain
to a given stimulus. Therefore, for the experimentation of this
research, these outliers have been taken into account.

Machine Learning
As mentioned above, the goal of the framework is to predict
the basic emotions, positive or negative, of the participants.
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TABLE 3 | Percentages of samples negatives and positives evaluated by
each participant.

ID participant Number of Stimuli evaluated Negatives (%) Positives (%)

1 40 25.0% 75.0%

2 40 50.0% 50.0%

3 40 42.5% 57.5%

4 40 40.0% 60.0%

5 40 50.0% 50.0%

6 40 50.0% 50.0%

7 40 50.0% 50.0%

For this reason, at the machine learning stage, several machine
learning algorithms and two approaches were evaluated to
obtain the best performance. This section shows the process

of evaluation and validation performed to determine the
contribution of the research.

Classification
Approach A
Firstly, the models’ performance for approaches A1 and A2
with 56 and 28 features, respectively, is presented in Figure 5.
The configuration to evaluate the performance contemplates
cross-validation with 10 folds for all models. Subsequently, the
comparison of the performance of each model for approaches
A1 and A2 is presented in Table 4. The first part describes each
model’s results with the precision achieved during the cross-
validation, the average, standard deviation, and the precision
minimum and maximum. Next, the evaluation of the models is
detailed; this includes the accuracy result for training and test
tasks and the metrics obtained in precision, recall, and F1 score.

FIGURE 4 | Variability of data and typical values in positive and negative emotions.
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FIGURE 5 | Behavior of classifiers in approach A1 and A2 with 56 and 28 features.

TABLE 4 | Performance of classifiers for training and validation tasks in approach A.

Approach A

A1 (56 features) A2 (28 features)

Dataset Cross-validation (10 folds)

Cross-validation (100%) Run RF LR MLP KNN LDA NB DT NN RF LR MLP KNN LDA NB DT NN

1 0.87 0.56 0.69 0.80 0.76 0.80 0.78 0.67 0.82 0.60 0.60 0.84 0.73 0.69 0.78 0.67

2 0.89 0.58 0.47 0.69 0.65 0.76 0.73 0.51 0.87 0.62 0.69 0.67 0.64 0.78 0.67 0.65

3 0.82 0.67 0.55 0.85 0.67 0.75 0.76 0.65 0.84 0.55 0.55 0.75 0.67 0.78 0.78 0.65

4 0.94 0.69 0.59 0.72 0.63 0.85 0.74 0.50 0.93 0.61 0.61 0.78 0.74 0.83 0.65 0.76

5 0.80 0.63 0.57 0.65 0.67 0.67 0.80 0.65 0.89 0.63 0.56 0.80 0.70 0.78 0.74 0.65

6 0.93 0.69 0.67 0.83 0.72 0.70 0.85 0.65 0.74 0.52 0.69 0.69 0.76 0.70 0.76 0.72

7 0.91 0.52 0.61 0.72 0.69 0.78 0.63 0.67 0.80 0.70 0.46 0.74 0.85 0.72 0.81 0.65

8 0.87 0.52 0.61 0.78 0.72 0.70 0.85 0.65 0.96 0.61 0.52 0.80 0.67 0.76 0.74 0.63

9 0.80 0.52 0.65 0.74 0.69 0.70 0.76 0.61 0.89 0.67 0.69 0.76 0.76 0.85 0.80 0.61

10 0.85 0.63 0.67 0.69 0.70 0.70 0.80 0.59 0.76 0.57 0.57 0.78 0.65 0.76 0.76 0.57

Avg 0.87 0.60 0.61 0.75 0.69 0.74 0.77 0.62 0.85 0.61 0.59 0.76 0.72 0.77 0.75 0.66

Std 0.05 0.07 0.07 0.07 0.04 0.06 0.06 0.06 0.07 0.05 0.08 0.05 0.07 0.05 0.05 0.05

Min 0.80 0.52 0.47 0.65 0.63 0.67 0.63 0.50 0.74 0.52 0.46 0.67 0.64 0.69 0.65 0.57

Max 0.94 0.69 0.69 0.85 0.76 0.85 0.85 0.67 0.96 0.70 0.69 0.84 0.85 0.85 0.81 0.76

Models evaluation

Training 85% Acc 1.0 0.70 0.61 0.88 0.77 0.74 1.0 0.75 1.0 0.68 0.65 0.87 0.78 0.77 1.0 0.69

Validation 15% Acc 0.83 0.56 0.55 0.70 0.72 0.70 0.72 0.63 0.85 0.51 0.61 0.67 0.78 0.77 0.74 0.60

P −1 0.63 0.21 0.36 0.45 0.48 0.45 0.48 0.38 0.77 0.30 0.29 0.54 0.79 0.71 0.62 0.36

0 0.94 0.71 0.90 0.86 0.84 0.84 0.84 0.80 0.90 0.62 0.64 0.73 0.78 0.79 0.83 0.65

R −1 0.86 0.23 0.86 0.68 0.59 0.64 0.59 0.55 0.83 0.28 0.07 0.48 0.52 0.59 0.72 0.17

0 0.82 0.68 0.43 0.70 0.77 0.72 0.77 0.67 0.87 0.64 0.90 0.77 0.92 0.87 0.75 0.83

F1 −1 0.73 0.22 0.51 0.55 0.53 0.53 0.53 0.44 0.80 0.29 0.11 0.51 0.62 0.64 0.67 0.23

0 0.87 0.69 0.58 0.77 0.80 0.77 0.80 0.73 0.88 0.63 0.75 0.75 0.84 0.83 0.79 0.73

Acc, accuracy; P, precision; R, recall; and F1, F1 score.
Bold and Italic values represent the highlight relevant values.

In the results for approach A1 with 56 features, it is observed
that RF is the model that best adapts to the problem of
recognition of Negative and Neutral emotions. RF achieves
a mean accuracy of 87%. Moreover, the performance of the
KNN, NB, and DT models is very similar, reaching between 74
and 77%. Otherwise, the remaining LR, MLP, LDA, and NN
models’ average performance is less than 70% mean accuracy. The

evaluation of approach A1 with 56 features shows that the best
model is RF with an average precision of 87% and a minimum
accuracy of 80%, and a maximum of 94%. KNN behavior
indicates an average of 75%, besides a minimum and maximum
accuracy of 65 and 85%, respectively. On the other hand, NB
averages 74% accuracy, with 67% as the minimum level and
85% as the maximum level. Meanwhile, the DT model achieves

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2021 | Volume 15 | Article 642766

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-642766 May 3, 2021 Time: 16:57 # 12

López-Hernández et al. Emotions Classification and Visual Disabilities

TABLE 5 | Performance of classifiers for training and validation tasks in approach B.

Approach B

B1 (56 features) B2 (28 features)

Dataset Cross-validation (10 folds)

Cross-validation
(100%)

Run RF LR MLP KNN LDA NB DT NN RF LR MLP KNN LDA NB DT NN

c 0.90 0.56 0.44 0.74 0.70 0.62 0.80 0.59 0.89 0.52 0.61 0.74 0.66 0.70 0.70 0.51

2 0.90 0.57 0.46 0.70 0.72 0.79 0.66 0.62 0.89 0.56 0.54 0.66 0.67 0.74 0.82 0.62

3 0.82 0.61 0.46 0.84 0.67 0.69 0.77 0.59 0.84 0.54 0.56 0.61 0.66 0.74 0.75 0.46

4 0.84 0.66 0.48 0.79 0.74 0.64 0.80 0.52 0.92 0.57 0.56 0.75 0.69 0.70 0.70 0.54

5 0.93 0.61 0.52 0.72 0.56 0.67 0.74 0.62 0.84 0.64 0.46 0.74 0.67 0.64 0.77 0.56

6 0.85 0.59 0.52 0.74 0.79 0.75 0.79 0.70 0.89 0.46 0.62 0.72 0.67 0.67 0.80 0.54

7 0.84 0.57 0.59 0.69 0.59 0.75 0.77 0.56 0.90 0.59 0.54 0.79 0.72 0.75 0.77 0.59

8 0.85 0.57 0.56 0.79 0.57 0.72 0.75 0.51 0.92 0.57 0.62 0.75 0.62 0.69 0.80 0.61

9 0.80 0.53 0.55 0.77 0.67 0.67 0.82 0.45 0.83 0.48 0.53 0.63 0.67 0.77 0.83 0.58

10 0.85 0.62 0.58 0.67 0.58 0.67 0.78 0.58 0.85 0.55 0.55 0.70 0.65 0.83 0.73 0.50

Avg 0.86 0.59 0.52 0.74 0.66 0.70 0.77 0.58 0.87 0.55 0.56 0.71 0.67 0.72 0.77 0.55

Std 0.04 0.03 0.05 0.05 0.08 0.05 0.05 0.07 0.03 0.05 0.05 0.06 0.03 0.05 0.05 0.05

Min 0.80 0.53 0.44 0.67 0.56 0.62 0.66 0.45 0.83 0.46 0.46 0.61 0.62 0.64 0.70 0.46

Max 0.93 0.66 0.59 0.84 0.79 0.79 0.82 0.70 0.92 0.64 0.62 0.79 0.72 0.83 0.83 0.62

Models evaluation

Training 85% Acc 1.0 0.67 0.55 0.86 0.69 0.70 1.0 0.75 1.0 0.61 0.58 0.81 0.69 0.74 1.0 0.62

Test 15% Acc 0.88 0.62 0.52 0.79 0.71 0.77 0.79 0.52 0.88 0.60 0.57 0.74 0.66 0.73 0.80 0.60

P -1 0.91 0.70 0.59 0.80 0.74 0.79 0.82 0.62 0.94 0.64 0.58 0.75 0.68 0.73 0.89 0.60

0 0.84 0.51 0.35 0.77 0.65 0.74 0.74 0.41 0.81 0.52 0.25 0.72 0.63 0.72 0.72 0.57

R -1 0.89 0.66 0.70 0.88 0.80 0.86 0.84 0.54 0.85 0.72 0.94 0.83 0.81 0.85 0.76 0.94

0 0.86 0.56 0.25 0.67 0.56 0.64 0.72 0.50 0.92 0.42 0.03 0.61 0.45 0.55 0.87 0.11

F1 -1 0.90 0.68 0.64 0.84 0.77 0.82 0.83 0.58 0.89 0.68 0.72 0.79 0.74 0.79 0.82 0.73

0 0.85 0.53 0.29 0.72 0.60 0.69 0.73 0.45 0.86 0.46 0.05 0.66 0.52 0.63 0.79 0.18

Acc, accuracy; P, precision; R, recall; and F1, F1 score.
Bold and Italic values represent the highlight relevant values.

an average accuracy of 77%, with a minimum performance of
63% and a maximum of 85%. The average performance of the
LR, MLP, LDA, and NN models is less than 70%, with minimal
accuracy ranging from 44% up to a maximum accuracy of 76%.

Finally, the results of the validation of each model are
shown. These indicate that RF achieves the best result for the
classification of new cases; it obtains 83% accuracy. Additionally,
the F1 score metric reports 73% for negative cases and 87%
for neutral cases.

The performance of the models of approach A2 with 28
features (alpha and beta frequencies) is shown in the right part
of Figure 5. The results again indicate that RF with 85% mean
accuracy is the model with better levels. On the other hand,
KNN, LDA, NB, and DT reach a mean accuracy between 70 and
80%. These models’ minimum values are between 64 and 69%
and maximum values are from 81 to 85%. Finally, for LR, MLP,
and NN models, the results indicate the lower performance with
values less than 70% mean accuracy.

Likewise, in Table 4, the evaluation results of approach A2
with the alpha and beta frequencies are detailed. The results show
that RF achieves the best mean result with 85% accuracy, with

a minimum of 74% and a maximum of 96%. The results of the
KNN model indicate a mean accuracy of 76% and a minimum
and maximum of 67 and 84%, respectively. Instead, NB achieves
a mean of 77%, a minimum of 69%, and a maximum of 85%
accuracy. On the other hand, DT reports a mean of 75% accuracy
and 69 and 85% as minimum and maximum, respectively. The
LDA model achieves a mean of 72%, with a minimum of 64%
and a maximum of 85%. The lowest performance models are
LR, MLP, and NN; they show minimums of 46% to 57%, mean
between 59 and 66%, and maximums of 69 up to 76% accuracy.

Finally, the models’ validation data with approach A2 with
28 features are presented in the lower part of Table 4. The data
show that RF obtains the best result with 85% accuracy in the
classification of new cases. Furthermore, this result is validated
with the F1 Score metric, which shows 80% for negative classes
and 88% for neutral classes.

Based on the results, it is observed that RF is the model that
best adapts to the classification of new cases, considering the two
scenarios proposed for approaches A1 and A2. Besides, the data
show that RF is capable of classifying similarly for cases that are
negative and neutral.
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FIGURE 6 | Behavior of classifiers in approach B1 and B2 with 56 and 28 features.

Approach B
Initially, Figure 6 details the different models’ behavior evaluated
for approaches B1 and B2 with 56 and 28 features, respectively.
Next, the statistics of the behavior of the models on approach B
are presented in Table 5.

Firstly, in the results of approach B1 with 56 features, it is
observed that RF is the best model, achieving a mean precision
of 86%. The models that reach similar values of 70% are KNN
(74%), NB (70%), and DT (77%). In contrast, LR, MLP, LDA,
and NN show a mean performance below 67% accuracy. The
data RF shows a mean performance of 86% accuracy, and
a minimum and maximum of 80 and 93%, respectively. On
the other hand, KNN results indicate a maximum accuracy
of 84%, a mean of 74%, and a minimum of 67%. NB model
shows a mean accuracy of 70%, and minimum and maximum
values of 62 and 79%. DT results indicate a mean accuracy of
77%, as well as a minimum and maximum of 66 and 82%,
respectively. Finally, LR, MLP, LDA, and NN models show a mean
accuracy of 66%, minimums from 45 to 56%, and maximums
from 59 to 79%.

On the other hand, the models’ behavior for approach B2 with
28 features is represented in the right part of Figure 6. First, it is
observed that RF obtains a mean accuracy of 87%. On the other
hand, the KNN, NB, and DT models achieve a mean accuracy of
more than 70%. Lastly, the LR, MLP, LDA, and NN models report
results below 68%.

The performance statistics of approach B2 with 28 features
show RF as the best model, which obtains a mean accuracy
of 87%; maximum and minimum correspond to 93 and 83%,
respectively. The KNN model achieves a mean accuracy of 71%,
a minimum value of 65%, and a maximum of 79%. On the other
hand, although NB and DT obtain a superior performance of 74%
mean accuracy, it is below the RF model. The data minimum and
maximum of NB are 64 and 83% accuracy. Instead, DT achieves a
minimum value of 70% and a maximum value of 83%. The lowest
results belong to LR, MLP, LDA, and NN models; they obtain a
mean accuracy of less than 68%. The minimum percentages of
these models range from 46 to 62% and the maximums range
from 62 to 72%.

Finally, Table 5 presents the results of the validation of each
model. The data indicate that RF is the model with the best result;
it obtains 88% in the generalization of new cases, and F1 Score

validation metric indicates 89% for neutral classes and 86% for
positive classes.

According to the results for approaches B1 and B2, RF obtains
the best performance in classifying neutral and positive cases.
Besides, the data indicate that RF shows balanced performance
in the classification of the proposed cases.

In order to demonstrate the best performance of the evaluated
models, the average classification precision achieved in the cross-
validation task and the result in the test task of each model
are presented in the Figure 7. RF stands out for its uniform
performance in the four evaluated approaches. Approach A1-
56 obtains the best performance with 87% and 83% in the
cross-validation and evaluation of the model, respectively. In
comparison, approach A2-28 achieves the same result, 85% in
both tasks. For approaches B1-56 and B2-28, RF achieves the best
results. In B1-56, RF achieves 86% during cross-validation and
88% in model testing. In B2-28, RF obtains 87% and 88% accuracy
in cross-validation and model evaluation, respectively.

The importance of the features of the A2 approach (28
features) and the B2 approach (28 features) is shown in Figure 8
[Tree SHAP technique (Lundberg et al., 2020)]. Feature relevance
is calculated as the decrease in node impurity weighted by the
probability of reaching that node. The node probability can be
calculated by the number of samples that reach the node, divided
by the total number of samples. In both cases, the higher the
value, the more important the feature. Looking at the feature
sensibility analysis, the relevant features are similar for both
techniques. Therefore, future work should include significant
features as a small set of electrodes (F3, T7, T8, F7, AF4, etc.) for
trying to achieve similar performance with less complexity.

To evaluate the relevance of each participant’s dataset on
the best model obtained, these are evaluated considering the
results of the classification stage. Based on the data, RF is the
model that is considered appropriate to evaluate all scenarios
with the data per user. It is important to note that during data
evaluation of each participant, a similar process is followed for
the evaluation of each proposed approach, which consists of
selecting the negative and neutral or neutral and positive samples,
corresponding to approaches A1–A2 and B1–B2, respectively.
The results per participant and the performance of the data
on each model are presented in Table 6. It is identified that
the performance of the data of participants 1, 2, 3, and 4 are
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FIGURE 7 | Accuracy comparison in cross-validation and models evaluation. (A) Classification accuracy in approach A-1. (B) Classification accuracy in approach
A-2. (C) Classification accuracy in approach B-1. (D) Classification accuracy in approach B-2.

similar, and they obtain accuracy results superior to the rest of the
participants. Furthermore, it is possible to visualize that subjects
5, 6, and 7 obtain lower percentages of precision than the rest of
the participants.

On the other hand, it is observed that the A2 and B2 models
that include 28 features with the alpha and beta frequencies
obtain slightly higher results compared to the models with 56
features that include the alpha, beta, theta, and delta frequencies.

Finally, Table 7 includes an accuracy comparison among
relevant related research and the approach proposed by the
authors (at the bottom of the table).

DISCUSSION

This section discusses the main insights and breakthroughs
regarding the results obtained with the framework proposed in
this work.

Firstly, this study presents a new scenario for the recognition
and classification of emotions in people with visual disabilities, a
group of people not previously evaluated. The work defines and
implements a framework through a non-invasive BCI (Emotiv
Epoc+) with a set of auditory stimuli. From the records obtained,
two datasets were formed with the stimuli classified as negatives-
neutrals and neutrals-positives. Subsequently, the model’s RF, LR,
MLP, KNN, LDA, NB, DT, and NN were configured and evaluated
to identify the model with the best performance in recognition
and classification tasks emotions from EEG data.

The results show that in the individual evaluation of the
stimuli, participants 1, 3, and 4 evaluated more than 50% of
the stimuli positively. Instead, participants 2, 5, 6, and 7 had
a balanced evaluation toward stimuli. On the other hand, it is
possible to observe brain signal variability concerning stimuli

considered positively and negatively (see Figure 4). Although
the behavior shows similar values of 4,200 µV, outliers were
recorded in the data. That could indicate a different reaction of
the participants to the presented stimuli. It is important to note
that the entire data have been considered during the machine
learning tasks. That is, the outliers have not been omitted.
Additionally, the data show that RF is the model with the best
performance during classification tasks. In evaluating results,
the RF model in the A1-56 and A2-28 approaches to negative
emotions achieved a classification accuracy of 83% and 85%,
respectively. In turn, with the positive emotions of approaches
B1-56 and B2-28, he obtained an accuracy of 88% in both cases.
The best results obtained from the RF model in approaches A2-
28 and B2-28 with negative and positive emotions and analysis
of the features’ importance allowed us to recognize that the beta
frequencies related to the frontotemporal areas of the brain are
important in the decision making of the models. On the other
hand, the results show that the algorithms LR, MLP, KNN, LDA,
NB, DT, and NN obtain a lower performance compared to RF
(see Figure 7). Although, in the validation of the models, it is
observed that DT and KNN obtain acceptable results for the
classification of positive emotions, this result is not consistent
with the identification of negative emotions. Therefore, these
models tend to classify toward one type of emotions.

The analysis of the participants’ brain signals’ dataset
allows identifying the variability in each subject’s data. This
characteristic is relevant because it is considered relative to the
perception of each subject toward each stimulus. This agrees
with what is stated by Anagnostopoulos et al. (2012), which
mentions that people’s emotional perception commonly differs.
The evaluation of the different machine learning models and,
according to the results obtained from the RF algorithm, their
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FIGURE 8 | Feature sensibility analysis by SHAP technique. RF best result in
approach A2 (upper) and B2 (lower).

performance coincides with the findings reported in Ackermann
et al. (2016). It is stated that RF is a robust algorithm in
the processing and recognition of patterns from EEG signals.
The test’s precision indicates that RF is an algorithm useful
for classifying emotions using EEG signals. Moreover, in the
validation of the RF model, it achieves the best results with an
accuracy of 85% for negative emotions and 88% for positive
emotions. Therefore, the RF classifier shows that it learns
in both classes.

TABLE 6 | Relevance analysis of data by participant.

Approach/Participant P1 P2 P3 P4 P5 P6 P7

A1 (56 features) 1.00 0.99 0.99 0.99 0.45 0.45 0.45

A2 (28 features) 1.00 1.00 0.98 0.98 0.52 0.5 0.45

B1 (56 features) 1.00 0.99 0.99 0.98 0.45 0.5 0.5

B2 (28 features) 0.99 1.00 0.98 1.00 0.55 0.5 0.57

Avg 0.99 0.99 0.98 0.98 0.49 0.48 0.49

TABLE 7 | Comparison of results with other related approaches.

Classifier Accuracy (%) Comment

SVM (Patil and
Behele, 2018)

91.96 Multiclass SVM is used for the
multiple classification of four
different emotions

SVM (Ramirez and
Vamvakousis,
2012)

86.33 Machine learning techniques
work well and are generally able
to distinguish patterns to
classify a person’s emotional
states

SVM (Ackermann
et al., 2016)

52 SVM is a robust algorithm when
it has few EEG signal
characteristics, and it also has
the ability to classify a person’s
emotions

MLP
(Sánchez-Reolid
et al., 2018)

96 It is mentioned that an ANN
based on a multilayer
perceptron (PMC) is a
competent approach to classify
emotions

KNN (Mehmood
and Lee, 2015)

61 Indicates that the KNN
algorithm for the classification
of emotions will have better
results than SVM

KNN (Kaundanya
et al., 2015)

100 It is identified that the smaller
the number of neighbors, the
results obtained in the
identification of emotions are
better

RF 85 Negatives
88 Positives

In this research, RF is a useful
algorithm for the classification
of emotions, from alpha and
beta brain signals

DT 74 Negatives
80 Positives

In this research, DT is an
algorithm that has a
non-uniform behavior for the
classification of negative and
positive emotions

Considering the types of frequencies, delta, theta, alpha, and
beta, different machine learning models have been trained and
evaluated to determine their ability to recognize and classify
different affective states of a group of people with visual
disabilities. The data show that models that consider alpha
and beta frequencies perform slightly better than models that
consider all frequencies. The results show that models that
consider alpha and beta frequencies perform slightly better than
models that consider all frequencies. These results coincide
with Ramirez and Vamvakousis (2012), who mention that the
most important frequencies are alpha waves (8–12 Hz), which
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predominate in mental states of relaxation, and beta waves (12–
30 Hz), which are active during states with intense mental
activity. Similarly, the results show that the frontotemporal
brain areas associated with the beta frequency show the greatest
contribution to the performance of the models (see Figure 8).
Finally, the model’s performance proposed in this research
reaches values comparable to other research (Fdez et al., 2021)
to classify emotions into two categories (negative and positive).

Due to the limitations of this study in processing brain
activity from EGG data, it is important to consider different
signal acquisition and processing aspects. The first factor needs
to check all the sensors; this avoids errors in the recorded
data. On the other hand, signal processing includes considering
aspects such as noise generation. Previous tests are necessary
to minimize noise generation, ensuring that the participant
feels comfortable with the device; this avoids unexpected data
generated by involuntary movements.

Finally, one way to respond to the study limitations is to
increase the participant population in the experimentation stage.
This would result in a greater number of evaluations toward the
stimuli. Another criterion is to expand the number of stimuli and
experimental sessions to obtain a large amount of information
related to people’s emotional perception of different auditory
stimuli. In turn, this would allow extending the analysis of the
behavior of brain signals and their response to specific stimulus.

As future work, the authors propose to extend the framework
with more techniques such as recurrent neural networks (RNN),
convolutional neural networks (CNN), or long short-term
memory (LSTM). Those techniques could be compared with the
current ones for obtaining a more in-depth study of brain waves
and emotions in people with visual disability. Additionally, it is
proposed to explore the brain regions’ behavior using 2D and
3D maps of the participants’ brain activity. This process will
allow recognizing the brain areas that reflect high or low activity
during the stimulation process. Future research can also consider
incorporating data from other sources; i.e., the framework will
have more than one entry at the same time. Adding data from
a new source, other than EEG brain signals, will provide more
knowledge for the classification of a person’s affective state and
could improve the accuracy of the model. Also, as exposed in the
section “Discussion,” a reduced dataset can be tested, taking into
account the relevant features of the sensitivity analysis. Besides,
as stated in the related work, many of the models proposed for
the classification of emotions have not been evaluated in real
time. Therefore, the authors take into account the assumptions
made by Lotte et al. (2018) and propose as future research
to adapt and evaluate the framework as a BCI for real-time
emotion recognition.

It is remarkable that, although the participants of this research
have visual disabilities (population not previously tested), the
authors’ proposal reached similar levels of accuracy compared to
other research for the classification of people’s emotions.

CONCLUSION

It should be taken into account that emotions play an essential
role in many aspects of our daily lives, including decision making,

perception, learning, rational thinking, and actions. Likewise, it
should be considered that the study of emotion recognition is
indispensable (Pham and Tran, 2012).

In this work, the authors have explored and analyzed a
previously unreported scenario, the classification of emotions in
people with visual disabilities. The most important aspects of the
framework are as follows: (i) It is a twofold framework. The first
is mainly focused on data acquisition (signal extraction) with a
BCI device using auditory stimuli. The second is concerned with
analysis techniques for the modeling of emotions and machine
learning models to classify emotions. (ii) The framework can be
expanded with more machine learning algorithms, and therefore
it increases the flexibility. (iii) Experimentation is focused on
people with visual disabilities. Experimentation results show that
28 feature approaches, including alpha and beta frequencies,
performed best for emotion recognition and classification.
According to these models’ performance, the achieved accuracy is
85 and 88% in the classification of negative and positive emotions,
respectively. Therefore, it is considered that feature selection
plays a key role in classification performance. Also, an analysis
of features illustrates that the brain’s frontotemporal areas linked
to beta frequency have the most significant contribution to the
proposed models’ performance. Finally, it has been proposed to
continue research based on brain signals and to incorporate new
sources of information from people with disabilities, to develop
new ways of communication and technological interaction that
will allow them to integrate into today’s society.
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