
Research Article
A Novel Inflammation-Related Gene Signature for Overall
Survival Prediction and Comprehensive Analysis in Pediatric
Patients with Wilms Tumor

Jiahao Zhang ,1 Yongchang Lai ,2 Langjing Zhu ,3 Zechao Lu ,2 Chuxian Hu ,1

Haobin Zhou ,4 Zeguang Lu ,5 Zhicheng Tang ,6 Zhaohui He ,2 and Fucai Tang 2

1The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511500, China
2Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
3Department of Nephrology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
4The First Clinical College of Guangzhou Medical University, Guangzhou, Guangdong 511436, China
5The Second Clinical College of Guangzhou Medical University, Guangzhou, Guangdong 511436, China
6The Third Clinical College of Guangzhou Medical University, Guangzhou, Guangdong 511436, China

Correspondence should be addressed to Zhaohui He; hechh9@mail.sysu.edu.cn and Fucai Tang; tangfc2016@163.com

Received 28 January 2022; Accepted 19 April 2022; Published 7 May 2022

Academic Editor: Jayaraman Tharmalingam

Copyright © 2022 Jiahao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wilms tumor (WT) is a common pediatric renal cancer, with a poor prognosis and high-risk recurrence in some patients. The
inflammatory microenvironment is gradually gaining attention in WT. In this study, novel inflammation-related signatures
and prognostic model were explored and integrated using bioinformatics analysis. The mRNA profile of pediatric patients with
WT and inflammation-related genes (IRGs) were acquired from Therapeutically Available Research to Generate Effective
Treatments (TARGET) and Gene Set Enrichment Analysis (GSEA) databases, respectively. Then, a novel prognostic model
founded on 7-IRGs signature (BICC1, CSPP1, KRT8, MYCN, NELFA, NXN, and RNF113A) was established by the least
absolute shrinkage and selection operator (LASSO) and multivariate Cox regression to stratify pediatric patients with WT into
high- and low-risk groups successfully. And a stable performance of the prognostic risk model was verified in predicting
overall survival (OS) by receiver-operating characteristic (ROC) curves, Kaplan-Meier (KM) curves, and independent
prognostic analysis (p < 0:05). In addition, a novel nomogram integrating risk scores with good robustness was developed and
validated by C-index, ROC, and calibration plots. The potential function and pathway were explored via Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA, with mainly inflammation and immune-related biological
processes. The higher-risk scores, the lower immune infiltration, as shown in the single-sample GSEA (ssGSEA) and tumor
microenvironment (TME) analysis. The drug sensitivity analysis showed that regulating 7-IRGs signature has a significant
correlation with the chemotherapy drugs of WT patients. In summary, this study defined a prognostic risk model and
nomogram based on 7-IRGs signature, which may provide novel insights into clinical prognosis and inflammatory study in
WT patients. Besides, enhancing immune infiltration based on inflammatory response and regulating 7-IRGs signature are
beneficial to ameliorating the efficacy in WT patients.

1. Introduction

Wilms tumor (WT), known as nephroblastoma, accounts
for 5% of all pediatric patients with the tumor and 75% of
pediatric patients with WT between 1- and 5-year-old [1].
The 5-year relative survival for WT patients under 14-year

was 93.2%, but patients with diffuse anaplastic Wilms tumor
(DAWT) had a poor 4-year relapse-free survival most up to
40% only [2, 3]. Currently, many factors affect the risk
assessment of WT patients, such as tumor stage and histol-
ogy, molecular markers (LOH of 16q and1p), and clinical
characteristics [4]. Risk assessment in WT patients facilitates
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the treatment of long-term toxicity and minimizes the risk of
recurrence, as well as determining the need for postoperative
adjuvant therapy, of which molecular markers are regarded
as the factor to determine the final risk assessment [1]. In
recent years, although 32 biomarker markers were identified
in WT patients [5], it is necessary to further enrich the
potential biological prognostic signature based on the bio-
logical metabolism process and excavate more effective
prognostic scoring models.

The metabolic process of inflammatory response is
considered one of the rings in the tumor microenvironment
(TME) [6]. There are a lot of related factors and pathways to
the inflammation response in TME, such as tumor macro-
phages (TAMs), dendritic cells, lymphocytes, proinflamma-
tory cytokines, nuclear factor-κB (NF-κB), and c-Jun N-
terminal kinase (JNK), which impacts the progression of
the tumor [7]. And inflammation plays a dual role in pro-
moting tumor initiation and inhibiting tumor development
[8]. Some studies pointed out explicitly that acute inflamma-
tion can resist tumor development by the enhancement of
antitumor immunity, while chronic inflammation promotes
tumorigenesis by providing an ideal growth microenviron-
ment [6, 9]. And TAMs were the main type of infiltrating
cells in the inflammatory microenvironment of WT patients,
and more inflammation-related proteins and cytokines were
identified gradually by exact experiments, such as COX-2,
VEGF, Trx1, and HIF-1 [10–12]. And COX-2 inhibitors to
decrease tumor cell growth become a probability in WT
[13]. The inflammatory response is considered to be closely
related to anticancer therapy in these factors of the TME
[14]. Currently, the treatment of WT patients is principally
neoadjuvant chemotherapy, surgical resection, and postop-
erative chemotherapy [15]. A previous study indicated that
macrophage migration inhibitory factor (MIF) and CXCL7
as tumor proinflammatory factors were identified by proteo-
mics to correlate with clinical stage and development in WT
patients [11]. And the inflammatory pseudocapsule was
considered one of relapse-associated factors in WT [16]. In
summary, these pieces of evidence support the existence
and influence of the inflammatory microenvironment in
WT. Recently, the inflammatory response is interesting bio-
logical processing to probe diversified prognostic models
and potential value in cancer treatment and has been applied
in more and more cancers, such as bladder cancer, hepato-
cellular carcinoma, and pancreatic ductal adenocarcinoma
[17–19]. However, there are not many studies available for
the observation in prognosis and the target treatment-
based inflammatory response of WT patients. It is necessary
to develop a novel prognostic model based on inflammation-
related mRNA to explore more potential and effective targets
from the collection of these genes about inflammation-
related proteins and cytokines using bioinformatics analysis
in pediatric patients with WT.

In this study, a novel prognostic risk model of seven
inflammation-related signatures was identified to stratify
pediatric patients with WT into high- and low-risk groups
based on risk scores using bioinformatics analysis. Com-
bined with clinical characteristics, this study constructed a
collective nomogram model integrating risk scores. In addi-

tion, through exploring immune infiltration and TME
scores, the differences of immune status between the two risk
groups were analyzed further. Drug sensitivity analysis
showed the connection of signatures and drug activity to
reveal the potential treatment strategy in pediatric patients
with WT. In summary, the risk model is an independent
prognostic factor, and the inflammation-related prognostic
signature can become a potential treatment direction for
pediatric patients with WT.

2. Materials and Methods

2.1. Data Acquisition. The mRNA sequencing profile and
corresponding clinical information of WT were downloaded
from Therapeutically Applicable Research to Generate
Effective Treatments (TARGET, https://ocg.cancer.gov/
programs/target/data-matrix) on August 1, 2021, a database
that is aimed at improving pediatric cancer treatments. These
basic clinical characters involving gender, age, tumor stage,
endpoint event, histologic, overall survival time, and status
must be included. Averaging the repeated samples and
excluding samples without overall survival, 125 tumor sam-
ples and 6 control samples based on adjacent normal tissue
were used in our study. The data set of RPKM (reads per kilo-
base of transcript per million reads mapped) was converted
to TPM (transcripts per million) by the following formula:
TPM = ð106 ∗ RPKMÞ/sumðRPKMÞ [20]. Four gene sets
about the inflammation-related response, M38152, M5932,
M17322, and M39641, were selected from the molecular sig-
nature database of Gene Set Enrichment Analysis (GSEA,
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) on August
2021. The additional notes about inflammation-related genes
were shown in Table S1. Ultimately, a total of 1137
inflammation-related genes (IRGs) were applied in our study
through data deduplication and intersection with the mRNA
profile of WT patients.

2.2. Differential Expression of Inflammation-Related
Prognostic Genes. Firstly, the R package “limma” was utilized
to identify the differentially expressed inflammation-related
genes (DE-IRGs) with the certification requirement of |log2
[Fold Change (FC)]|>1 and false discovery rate ðFDRÞ <
0:05 between 125 tumor samples and 6 control samples.
Secondly, overall survival (OS) and survival status were asso-
ciated with the IRGs expression among 125 WT samples
using univariate Cox regression analysis to identify OS-
related genes by the R package “survival” with p < 0:05.
These inflammation-related prognostic genes (IRPGs) were
intersected between DE-IRGs and OS-related genes through
the “Venn” R package. When the volcano and heatmap were
plotted, the distribution of DE-IRGs and IRPGs was shown,
respectively. The hazard ratio (HR) with 95% confidence
interval (CI) of IRPGs was calculated by the R package “sur-
vival,” using forest plots to show. The correlation of IRPGs
was plotted by the “corplot” package based on the coeffi-
cients of each both IRPGs.

2.3. Develop an Inflammation-Related Prognostic Gene
Model. To identify risk IRPGs through reducing the
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multicollinearity effect between IRPG expression and OS
among pediatric patients with WT, the Least Absolute
Shrinkage and Selection Operator (LASSO) regression was
applied by the R package “glmnet.” Tenfold crossvalidation
processing to select the optimal lambda value was carried
out with the minimum partial likelihood deviance. Narrow-
ing the range of risk signatures to develop a credible IRPG
risk model, a multivariate Cox regression was used to seek
optimal risk signatures by the lowest value of Akaike infor-
mation criterion (AIC) and calculate their coefficients and
risk scores of pediatric patients with WT. The formula of
risk scores used for the model was as follows:

RISKSCORE = 〠
n

i=1
Coef × Expð Þ, ð1Þ

where n, Coef, and Exp represented the number of genes,
regression coefficients, and expression of the related genes
obtained from multivariate Cox regression, respectively.
And pediatric patients with WT were segregated into high-
and low-risk groups according to the median value of risk
scores in all WT samples. Afterward, the “survival” package
was utilized to analyze the OS of two risk groups by plotting
the Kaplan-Meier (KM) curves with a log-rank test. The
time-dependent receiver-operating characteristic curves
(ROC) were utilized to validate the predictive power of the
prognostic model by the “timeROC” package. In addition,
t-distributed stochastic neighbor embedding (t-SNE) and
principal component analysis (PCA) were performed using
the R package “Rstne” to contour the expression pattern
of WT samples and visualize whether the high- and low-
risk samples could be distinguished via dimensionality
reduction.

2.4. Clinical Characteristics Relevance Analysis. With clinical
features including age, endpoint event, stage, gender, and
histologic, chi-square analysis or fisher’s exact probability
test was used between two risk groups. Furthermore, the
relevance between clinical characteristics and risk scores
was analyzed in all pediatric patients with WT using
the wilcox test of R package “limma.” To evaluate the
independent survival predictive performances of clinical
characteristics and risk scores, univariate and multivariate
Cox regression analyses were carried out using the R
package “survival.”

2.5. Construction of a Nomogram Integrating Clinical
Characteristics. Based on the significant factors from univar-
iate Cox regression analysis (p < 0:05) in the independent
prognosis analysis, a series of clinical information was deter-
mined to generate a novel nomogram integrating risk score
for predicting OS by multivariate Cox regression. To assess
the prediction ability of the nomogram, the bootstrap
method was performed to calculate the concordance index
(C-index) corrected by 1,000 resamples. The ROC curves
were plotted for the purpose as same as the C-index. In addi-
tion, calibration curves were used to describe the consistency
between the nomogram-predicted risks and the actual risks
at the 1-, 3-, and 5-year survival rates.

2.6. Functional Enrichment Analysis and Tumor
Microenvironment Analysis. The Gene Ontology (GO) and
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis were applied to DE-IRGs between control and
tumor samples using the R package “clusterprofiler.” To
show further enrichment of biological functions and path-
ways between high- and low-risk groups, the GO and KEGG
gene sets were downloaded from gene set enrichment analy-
sis (GSEA) (http://www.gsea-msigdb.org/gsea/downloads
.jsp) and performed using the R package “clusterprofiler”
and p < 0:05 to screen significant functions and pathways
[21]. In addition, the single-sample gene set enrichment
analysis (ssGSEA) was used to assess immune-related scores
and probe differences of immune-related cells and pathways
between high- and low-risk groups by the R package
“GSVA” and “GSEABase.” To evaluate the relationship
between cell content and risk score of the TME in WT
patients, the ESTIMATE algorithm was used to score the
content of stromal cells and immune cells in WT patients
using the R package “estimate” [22]. Through the Spearman
method, the visualization of the correlation between TME
scores and risk scores was plotted.

2.7. Drug Sensitivity Analysis. The CellMiner database
(https://discover.nci.nih.gov/cellminer/home.do) was designed
for the study to the relationship of efficacy among NCI-60
cancerous cell lines, chemical compounds, and natural
products [23]. The CellMiner database was used to excavate
the potential correlation between inflammation-related sig-
natures and antitumor drugs approved by American Food
and Drug Administration (FDA) in pediatric patients with
WT. The Z scores associated with drug activity expressed
as 50% growth inhibitory levels (GI50s) and RNA-seq
expression of NCI-60 were downloaded from the CellMiner
database. Then, the “limma” package was used to explore
the potential correlation using Pearson’s correlation analy-
sis with p < 0:05. A total of R packages was operated in R
software (version 4.1.0).

3. Results

3.1. Identification of Prognostic DE-IRGs. The flowchart of
the study process was presented in Figure 1. The 534 DE-
IRGs were identified from 1137 IRGs between 125 WT sam-
ples and 6 control samples, including 342 upregulated genes
and 192 downregulated genes (Figure 2(a)). Based on uni-
variate Cox regression analysis between OS and the expres-
sion of IRGs, 57 OS-related IRGs were identified (p < 0:05).
Then, 23 IRPGs were screened from the intersection
between DE-IRGs and OS-related genes (Figure 2(b)). A
total of 11 IRPGs were regarded as high-risk IRPGs with
the HR > 1, while the remaining IRPGs were protective fac-
tors with HR < 1 (Figure 2(c)). The positive and negative
correlation among 23 IRPGs was shown in Figure 2(d). A
heatmap was plotted to show the distribution of 23 IRPGs
between WT and control samples, which indicated that
7 IRPGs were downregulated in WT samples, and the
other 16 IRPGs were downregulated in control samples
(Figure 2(e)).
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3.2. Establishment and Assessment of the 7-IRPGs Signature.
The more significant genes of 14 IRPGs were screened from
23 IRPGs using LASSO regression based on the optimal
lambda value (Figures 3(a) and 3(b)). Then, 7-IRPGs
signature (BICC1, CSPP1, KRT8, MYCN, NELFA, NXN,
and RNF113A) was identified through multivariate Cox
regression in 14 IRPGs, which would be applied for the
establishment of a prognostic risk model in pediatric
patients with WT using the coefficient of 7-IRPG signature.
The risk score of each WT patient was counted as follows:
risk score = ð−0:466158 × the expression level of BICC1Þ +
ð−0:481445 × the expression level of CSPP1Þ + ð−0:119206 ×
the expression level of KRT8Þ + ð0:324931 × the expression
level of MYCNÞ + ð0:719828 × the expression level of
NELFAÞ + ð−0:315503 × the expression level of NXNÞ +
ð0:914112 × the expression level of RNF113AÞ. Based on the
median risk scores that were calculated from the coefficient
of signature and expression level of each sample, 125 pediat-
ric patients with WT were divided into a high-risk group
(n = 62) and a low-risk group (n = 63) (Figures 3(e) and

3(f)). The pediatric patients with WT in the high-risk group
had a lower survival rate than those in the low-risk group
(Figure 3(c)). According to ROC curves, demonstrating a
stable performance of the 7-IRPGs signature risk model,
the areas under the ROC curves (AUCs) were 0.744, 0.793,
and 0.813 for the WT patients at 1-, 3-, and 5-year OS,
respectively (Figure 3(d)). The pediatric patients with the
high- and low-risk groups were centered successfully in
two directions using PCA and t-SNE analysis methods
according to expression levels of 7-IRPGs signature
(Figures 3(g) and 3(h)).

3.3. Clinical Characteristics and Independent Prognostic
Analysis. The clinical information of high- and low-risk
groups was shown in Table 1. The differences between risk
scores and clinical characteristics analyzed further in our
study were shown in Figure 4(a). The stage and endpoint
event of pediatric patients with WT were significantly differ-
entiated in risk scores (Figure 4(a)). The univariate Cox
regression analysis showed that gender [HR: 1.785, 95% CI

Figure 1: The workflow chart of this study processes.
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(1.023-3.114), p = 0:041], event [HR: 2.290, 95% CI (1.316-
3.986), p = 0:003], stage [HR: 1.481, 95% CI (1.078-2.033),
p = 0:015], and risk scores [HR: 2.718, 95% CI (2.012-

3.673), p < 0:001] had significant differences (Figure 4(b)).
The factors significantly differentiated in the univariate
Cox regression analysis were involved in the multivariate
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Figure 2: Identification of DE-IRGs and IRPGs. (a) Volcanic map for displaying the up- and downregulation of DE-IRGs. (b) Venn plotting
IRPGs overlapped between DE-IRGs and OS. (c) Forest plots to show the results of the univariate Cox regression analysis between IRPGs
expression and OS. (d) The relevance heatmap revealed the correlation among IRPGs. (e) The heatmap showed the differences of IRPGs
between tumor and normal tissues.
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Figure 3: Construction of the inflammation-related prognostic signatures using LASSO regression analysis. (a, b) LASSO regression analysis
among 23 IRPGs. Each curve corresponds to an IRPG in the LASSO model. Partial likelihood deviance with 10-fold crossvalidation tuning
the parameter selection was used to screen the best lambda. Upper X-axes were the number of included IRPGs, while lower X-axes were log
lambda (λ) whose greater, the greater the punishment of the linear model. (a) Y-axes mean coefficients in each IRPGs; (b) Y-axes was partial
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Cox regression analysis, which demonstrated that event,
stage, and risk scores also had significant differences so that
risk scores [HR: 2.529, 95% CI (1.850-3.459), p < 0:001],
event [HR: 1.813, 95% CI (1.009-3.257), p = 0:047], and
stage [HR: 1.473, 95% CI (1.044-2.079), p = 0:027] can be
regarded as an independent prognostic factor in pediatric
patients with WT (Figure 4(c)).

3.4. Construction and Evaluation of a Prognostic Nomogram.
According to the univariate Cox regression analysis in the
independent prognostic analysis, clinical features including
gender, stage, and event, and risk scores were involved to
construct an effective nomogram model for predicting the
survival rates of 1-, 3-, and 5-year in pediatric patients with
WT (Figure 5(a)). Through obtaining the corresponding
scores of each variable and summing up these scores, the
predicted survival rates would be calculated in pediatric
patients with WT. The calibration plots showed good consis-
tency between the actual probabilities and the estimated
probabilities at 1-, 3-, and 5-year, as shown in Figure 5(b).
Moreover, to assess whether the nomogram model has a
credible prognostic performance, the ROC curves were
calculated and showed that AUCs were 0.815, 0.868, and
0.868 at 1-, 3-, and 5-year, respectively (Figure 5(c)), and
C-index was 0.83 (95% CI: 0.78-0.88). The above assessment
showed our nomogram model had a good robustness.

3.5. Functional Enrichment Analysis and Tumor
Microenvironment Analysis. GO and KEGG were applied
to further elucidate the biological functions and pathways
in DE-IRGs between 125 tumor samples and 6 control sam-
ples. Besides, GSEA analysis was applied between low- and
high-risk groups, as shown in Figure 6. For the GO analysis,
the DE-IRGs among pediatric patients with WT mainly
focused on the regulation of immune-related cells in biolog-
ical process (BP), plasma membrane and transcription
regulator complex in cellular component (CC), transcription
activator activity, and receptor-ligand activity in molecular
function (MF), as shown in Figure 6(a). The KEGG analysis

about DE-IRGs in all pediatric patients with WT revealed
that these DE-IRGs were enriched in immune-related
pathways, cytokine−cytokine receptor interaction, and
processing of a lot of diseases about infection, immunity,
and tumor, such as human papillomavirus infection,
COVID-19, primary immunodeficiency, and gastric cancer
(Figure 6(b)). Above all, these DE-IRGs were also found
the enriched behavior in the information-related biological
processes based on GO and KEGG, such as leukocyte prolif-
eration, regulation of leukocyte cell-cell adhesion, NF-kappa
B signaling pathway, TNF signaling pathway, and regulation
of inflammatory response (Table S2 and S3). This feature
suggested the feasibility of establishing an inflammation-
related prognosis model in WT patients. Furthermore,
GSEA analysis was applied to describe these biological
functions and pathways in all genes of WT patients
between high- and low-risk groups. Based on GO gene sets
in GSEA analysis, the high-risk group focused on immune-
related processes, while the low-risk group focused on
actin-related processes (Figures 7(a) and 7(b)). Besides, our
study also found that the regulation of inflammatory
response is more active in the low-risk group (Table S4).
The high-risk group mainly participated in DNA
replication, aminoacyl, and steroid biosynthesis, while the
low-risk group was associated with the processing of
cardiomyopathy, cardiac muscle contraction, and adhesion
pathway, as shown in the KEGG gene set analysis from
GSEA analysis (Figures 7(c) and 7(d)).

Involving the differences between 16 immune-related
cells and 13 immune-related pathways, the ssGSEA analysis
was performed to assess the activity of immune infiltration
in the low- and high-risk groups (Figures 8(a) and 8(b)).
In pediatric patients with WT, the low-risk group generally
had higher levels of infiltration of immune cells than the
high-risk group, especially of activated dendritic cells
(aDCs), dendritic cells (DCs), regulatory T (Treg) cells,
and induced dendritic cells (iDCs), while only natural killer
(NK) cells were enriched highly in the high-risk group. All
significant immune-related pathways were more enriched

Table 1: The clinical characteristics of high- and low-risk groups in pediatric patients with WT.

Covariates Group Total (n = 125) High-risk (n = 62) Low-risk (n = 63) p value

Gender
Female 71 (56.8%) 34 (54.84%) 37 (58.73%) 0.661

Male 54 (43.2%) 28 (45.16%) 26 (41.27%)

Age

<6 93 (74.4%) 49 (79.03%) 44 (69.84%) 0.316

≥12 5 (4%) 3 (4.84%) 2 (3.17%)

6~12 27 (21.6%) 10 (16.13%) 17 (26.98%)

Event

None 27 (21.6%) 10 (16.13%) 17 (26.98%) 0.007

Progression 7 (5.6%) 7 (11.29%) 0 (0%)

Relapse 91 (72.8%) 45 (72.58%) 46 (73.02%)

Stage
I/II 65 (52%) 27 (43.55%) 38 (60.32%) 0.061

III/IV 60 (48%) 35 (56.45%) 25 (39.68%)

Histologic
DAWT 42 (33.6%) 24 (38.71%) 18 (28.57%) 0.230

FHWT 83 (66.4%) 38 (61.29%) 45 (71.43%)
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in the low-risk group, including parainflammation, APC_
co_stimulation, CCR, check-point, and Type_II_IFN_
Reponse. The stromal and immune scores were applied to
understand the status of stromal cells and immune environ-
ment in pediatric patients with WT among different risk

scores. The stromal and immune scores decreased signifi-
cantly with the increase in risk score, which demonstrated
that pediatric patients with WT with high risk have lower
levels of stromal and immune cells than those with low risk
(all p < 0:05) (Figures 8(c) and 8(d)).
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Figure 4: Relevance analysis of clinical characteristics. (a) The differences of clinical characteristics in pediatric patients with WT, including
stage, events, age, gender, and histology. (b, c) Univariate and multivariate regression analysis outcomes of the relationships between the OS
and the clinical parameters.
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3.6. Drug Sensitivity Analysis. To explore the underlying
relationship between inflammatory signatures and the
treatment of WT patients, the relevance between 7-IRGs
signatures and 119 antitumor drugs approved by FDA were
screened in Table S5, of which 5 drugs applied in
chemotherapy for pediatric patients with WT in the
National Comprehensive Cancer Network (NCCN) were
shown in Figure 9. The drug-resistant of actinomycin D,
etoposide, and vincristine increased with the upregulation
of BICC1 and KRT8, while the drug sensitivity of
cyclophosphamide and etoposide increased with the
upregulation of RNF113A (Figure 9). In addition, NXN is

insensitive to cyclophosphamide and vincristine, CSPP1 is
insensitive to actinomycin D, and KRT8 is insensitive to
doxorubicin (all p < 0:05). More importantly, the more
relevant and potential correlations were found (|cor|>0.5,
p < 0:05), of which KRT8 is insensitive to pipamperone
and carmustine, RNF113A is sensitive to carmustine, and
BICC1 has a sensitivity with erlotinib (Table S5).

4. Discussion

WT is the most common type of pediatric kidney cancer. At
present, the chief treatment directions of pediatric patients
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Figure 5: Construction and validation of the nomogram model. (a) Nomogram integrating the points of clinical characteristics and risk
scores to predict the probability of 1-, 3-, and 5-year OS in pediatric patients with WT. (b) Calibration plots for assessing the
discrimination ability of the nomogram model. (c) ROC curves for validating the predictive performance of the nomogram model.
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with WT are to reduce drug toxicity in low-risk patients and
improve the outcome of high-risk patients based on risk
classification management, and the use of biomarkers to
improve risk stratification and new targeted therapies has
become an important research direction [24]. Exploring
the close relationship between inflammation and immu-
nity may promote the treatment direction in WT patients
[10, 25]. One study supports the above view that the progres-
sion of the inflammatory marker COX-2 can activate the
inflammatory microenvironment and inhibit the immune
response to escape immunosurveillance in the inflammatory
environment ofWT, which makes COX-2 become a probable
treatment target inWT patients [13]. For further exploration,
the application of inflammatory biomarkers needs further
evaluation in the prognosis of WT patients.

In this study, we first studied the mRNA profiles based
on 1137 IRGs from GSEA and TARGET databases in pedi-
atric patients with WT. Identifying these IRPGs between
DE-IRGs and OS-related genes was further applied in the
LASSO regression and multivariate Cox regression to
explore more appropriate inflammation-related signatures
and generate an optimal prognostic IRGs model. In addi-
tion, based on the independent prognostic analysis including
clinical characteristics and risk scores, a novel prognostic
nomogram model was constructed for further comprehen-
sive analysis assessing prognosis in pediatric patients with
WT, of which the endpoint event, stage, and risk scores were
identified as the significant factors predicting the prognosis.
The function enrichment analysis revealed the differences of
potential pathways and immune infiltration between high-
and low-risk groups. In addition, stromal scores and
immune scores of TME relevance analysis were beneficial
to show the correlation of risk scores and WT development.
Drug sensitivity analysis has a potential role in studying reg-
ulatory targets to reduce the resistance of chemotherapeutic
drugs in pediatric patients with WT.

The prognostic model developed on seven IRGs (BICC1,
CSPP1, KRT8, MYCN, NELFA, NXN, and RNF113A). The

above seven prognostic IRGs have not been reported in
32 confirmative biomarkers of WT, thereby IRGs as prog-
nostic signature may be novel and potential biomarkers in
diagnostic tests, potential therapies, and prognostic assess-
ment [5]. KRT8 (keratin 8) has been identified as having
its mutations associated with the occurrence of inflammatory
diseases such as chronic liver disease, pancreatitis, and
inflammatory bowel disease [26–29]. MYCN was found that
its amplification was associated with poor prognosis and
relapse in WT patients [30]. MYCN-amplification can cause
several negative events in the tumor microenvironment and
inflammatory regulation of neuroblastoma, such as damage
to the infiltration and activation of T cells, more vascularized
tumor, and downregulation of MHC I [31, 32]. NELFA is one
of the components of the four-subunit NELF complex [33]. A
study by Yu et al. found that NELF positively regulated the
genes’ transcription and processes of macrophage-mediated
inflammation by inhibiting AP-1-dependent expression of
IL-10 and facilitating IL-6 production [34]. Furthermore,
macrophages are a common infiltration cell in chronic
inflammation promoting tumorigenesis [8, 35]. In addition,
BICC1 expression was positively and strongly correlated with
immune cells and macrophages in gastric cancer [36]. Upreg-
ulation of IRGs and macrophage markers were found in
transgenic mice with high nucleoredoxin (NXN) expression
that can promote adipogenic differentiation by restraining
the Wnt/β-catenin signaling pathway [37]. Furthermore,
inhibiting the Wnt/β-catenin signaling pathway by dietary
polyphenols can hinder the occurrence and development of
chronic inflammation [38]. CXCR4 recruits inflammatory
cells and is degraded by the overexpression of RNF113A
and may be helpful to resist immunosuppression [8, 39,
40]. CSPP1 has been identified to inhibit tumor cell migra-
tion, proliferation, formation, and invasion when it was
decreased and related to PI3K/Akt signaling pathway that
can reduce inflammation by downregulating the degranula-
tion of mast cells [8, 41–44]. In our study, MYCN, NELFA,
and RNF113A were identified as the risk genes (coef > 0
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Figure 6: Function and pathway analysis based on DE-IRGs. (a) GO analysis is based on biological process (BP), cellular component (CC),
and molecular function (MF). (b) KEGG analysis for the pathway.
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and HR > 1), while BICC1, CSPP1, KRT8, and NXN as the
protecting genes (coef < 0 and HR < 1) in the prognosis risk
model based on IRGs in pediatric patients with WT
(Table S6). Of note was how these genes interact and
influence needs further investigation and experiment in the
inflammatory metabolism and development of WT.

Inflammation cannot leave the immune process in WT
patients [25]. GO, KEGG, and GSEA were applied based
on the DE-IRGs and two risk groups, which demonstrated
that the function and pathway of IRGs were mainly enriched
in inflammation pathways, immunity pathways, and the
pathways of many other diseases. There is some definite evi-
dence that the NF−kappa B signaling pathway, TNF signal-
ing pathway, Th17 cell differentiation, and T cell activation
in the outcomes of functional enrichment analysis partici-
pated in the occurrence and development of inflammation,
especially immune function and pathway [45, 46]. Similarly,
enrichment of immunoglobulin function and the antigen-
binding process was observed in the high-risk group. The
results of our TME analysis suggested that a higher risk for
pediatric patients with WT leads to a lower immune score,
which indicated that high-risk patients with WT exist in
the immunosuppressive tumor microenvironment. This
phenomenon was also observed in the ssGSEA analysis,
where the high-risk groups had relatively low immune infil-
tration. We further postulate that appropriate reactivation
and enhancement of immune function may be beneficial
for pediatric WT therapy. Furthermore, no significant treat-
ment efficacy was observed with the use of an immune
checkpoint inhibitor targeting PD-L1 for pediatric tumors,
including WT patients [47]. We found that NK cells were
enriched higher in high-risk patients with WT. However,
other evidence showed that the function of NK cells in WT
can be undermined to favor tumor escape and generation
of immunosuppressive tumor microenvironment by blaste-

mal and epithelial tumor components of WT [48]. Activa-
tion of NK cells can kill WT primary cells, but M2
macrophages can damage NK cells, and the combination
of checkpoint inhibitors to inhibit macrophage recruitment
and activate NK cells is expected to become an effective
strategy for the treatment of WT patients [48, 49]. Our
study also found that the regulation of inflammatory
response is more active in low-risk pediatric patients with
WT. Furthermore, inhibiting macrophage recruitment is
also an effective strategy to treat chronic inflammation to
antagonize tumorgenesis [8]. Through secreting inflamma-
tory factors, pDCs and Tregs can favor immunosuppression
and tumor processing in WT [13]. Therefore, regulating
the inflammatory metabolic process is a potential pathway
to improve the efficacy of immunotherapy in pediatric
patients with WT.

Founded on the microenvironment of inflammatory
response in WT patients, inflammatory markers could favor
to the development of new treatments [25]. In our study, the
relationship between 7-IRGs signature and drug activity in
drug sensitivity analysis indicated that targeted regulation
of these signatures can help to improve the objective drug
response and the discovery of new drugs to treat WT, which
further showed the value of 7-IRGs signature in the
treatment of pediatric patients with WT. Actinomycin D,
etoposide, vincristine, cyclophosphamide, and doxorubicin
are regarded by NCCN as the first-line chemotherapy for
pediatric patients with WT in 2021 [1]. Besides, there are
some potential drugs in pediatric patients with WT. For
instance, even though irinotecan was used to treat colorectal,
pancreatic, and lung cancer at present, irinotecan as a poten-
tial drug was effective in treating high-risk metastatic
DAWT with a high response rate (79%) through the
combination with vincristine [2, 50]. In the drug sensitivity
analysis, irinotecan has a significant positive correlation
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Figure 7: Function and pathway analysis for WT patients between high- and low-risk groups by GSEA analysis. (a, b) The GSEA analysis is
based on GO for high-risk (a) and low-risk (b) groups. (c, d) The GSEA analysis is based on KEGG for high-risk (c) and low-risk (d) groups.
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with RNF113A and NELFA upregulated in WT samples,
as shown in Table S5. And as mentioned earlier,
upregulation of RNF113A can resist immunosuppression.
Even if carboplatin was not included in the treatment
regimen of NCCN, its safety and effectiveness based on
combination with ifosfamide and etoposide had been
demonstrated in high-risk patients with WT, especially
after nephrectomy [51]. When actinomycin D is not
available or hard to tolerate for WT patients, carboplatin
can become alternative drug [52]. In our study, carboplatin
sensitivity increased with upregulation of RNF113A or

MYCN and decreased with upregulation of KRT8, as
shown in Table S5. We also found that upregulation of
KRT8 is related to drug resistance in WT patients. In
previous studies, upregulation of KRT8 can enhance the
resistance of cisplatin by inhibiting the AKT pathway [53],
and decrease the sensitivity of mitoxantrone [54].
Therefore, according to the degree of different risk scores
and regulation of 7-IRGs signature in pediatric patients
with WT, the selection of appropriate or potential drugs
may help to improve the efficacy of treatment. Notably,
although our study offers new insight into the therapeutic
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Figure 8: The differences between immune infiltration and tumor microenvironment analysis. (a, b) The results of ssGSEA to compare the
differences of immune infiltration between high- and low-risk groups in pediatric patients with WT. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001; ns:
no significance. (c) Stromal score of TME plotted for showing the correlation between the content of stromal cells and risk scores. (d) The
immune score of TME was plotted for showing the correlation between the content of immune cells and risk scores.
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agents for WT patients based on the 7-IRGs signature, it still
needs to be verified through clinical trials of drugs.

Some limitations cannot be avoided in this study. First,
the prognostic values of the seven-IRGs signature were not
be validated using another database owing to the lack of
other relevant database including WT samples. Second, the
sample size of pediatric patients with WT in the TARGET
database was a comparatively small resulting in the bias of
the prognostic model possibly. And then, the number of
control samples (n = 6) may lead to bias in the stability of
screening DE-IRGs. Ultimately, our study was not involved
in experimental verification and other data types including
lncRNA and DNA methylation. Our study only included
the expression profile of the protein-encoded RNA.

5. Conclusions

In summary, our study demonstrated that IRGs were corre-
lated with OS, immune biological processing, and chemo-
therapy drugs in pediatric patients with WT. Through
identifying 7-IRGs signature, we developed a novel effective
risk model and a prognostic nomogram model with good
robustness. Besides, regulating the immune process of WT
based on the inflammatory response can contribute to
improving the efficacy of WT patients. The chemotherapy
drug sensitivity of WT patients may be controlled, and the

potential drugs of treatment can be excavated by regulating
the 7-IRGs signature. Our study provides a new insight to
the development and treatment in pediatric patients with
WT based on the inflammatory response. However, the idi-
ographic mechanisms among IRGs, drug sensitivity, and the
prognosis of pediatric patients with WT still need further
study by experiment.

Data Availability

The RNA-sequencing expression profile and relevant clinical
information of pediatric patients with Wilms tumor were
downloaded from the TARGET database (https://ocg
.cancer.gov/programs/target). The inflammation-related
genes can be obtained from GSEA molecular signatures
database (http://www.gsea-msigdb.org/gsea/msigdb). The Z
scores and expression profile of drug sensitivity analysis
were downloaded from the CellMiner database (https://
discover.nci.nih.gov/cellminer/home.do). These databases
used in this study were publicly accessed and obtained.
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Figure 9: Drug sensitivity analysis founded on the IRGs signature in pediatric patients with WT.
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