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Abstract

Introduction: Apolipoprotein E 𝜀4 (APOE4)–related genetic risk for sporadic

Alzheimer’s disease is associated with an early impairment of cognitive brain net-

works. The current study determines relationships between APOE4 carrier status,

cortical iron, and cortical network-functionality.

Methods: Sixty-nine cognitively healthy old-aged individuals (mean age [SD] 66.1 [±
7.2] years; Mini-Mental State Exam [MMSE] 29.3 ± 1.1) were genotyped for APOE4

carrier-status and received 3 Tesla magnetic resonance imaging (MRI) for blood oxy-

gen level–dependent functional magnetic resonance imaging (MRI) at rest, three-

dimensional (3D)–gradient echo (six echoes) for cortical gray-matter, non-heme iron by

quantitative susceptibilitymapping, and 18F-flutemetamol positron emission tomogra-

phy for amyloid-𝛽

Results: A spatial pattern consistent with the default mode network (DMN) could be

identified by independent component analysis. DMN activity was enhanced in APOE4

carriers and related to cortical iron burden. APOE4 and cortical iron synergistically

interacted with DMN activity. Secondary analysis revealed a positive, APOE4 associ-

ated, relationship between cortical iron andDMN connectivity.

Discussion: Our findings suggest that APOE4 moderates effects of iron on brain func-

tionality prior tomanifestation of cognitive impairment.

K EYWORD S

APOE4, DMN, flutemetamol, fMRI, gradient echo, ICA, iron, MRI, PET, QSM, preclinical

Alzheimer’s disease

1 INTRODUCTION

Apolipoprotein E (apoE) is an essentialmediator for fatmetabolismand

facilitates cholesterol handling in the central nervous system (CNS).1
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The Apolipoprotein E 𝜀4 allele (APOE4) is the strongest known genetic

risk factor for sporadicAlzheimer’s disease (AD).2–4 In addition, several

studies have demonstrated associations between APOE4 with estab-

lished clinical phenotypes and pathological hallmarks of increased risk
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for AD. These include mild cognitive impairment,5,6 increased bur-

den of brain amyloid-𝛽 (A𝛽),7–11 CNS proteinopathy,12,13 metabolic

disorder,14,15 and vascular disease.16,17

Cognitive dysfunction in AD is preceded by progressive changes of

intrinsic brain network activity.18–21 Here, cognitive networks such as

the default mode network (DMN) are primarily affected.19,22–24 The

DMN is constituted by a distinct connectivity pattern of synchronous

cortical neuronal activity in spatially distant brain regions that include

themedial prefrontal cortex (MPFC), lateral parietal cortices, posterior

cingulate, and hippocampus, which are activated at rest.25–27 There

is a consistent link between APOE4 carrier status and increased A𝛽

burden.8,9,28 Interestingly, the effect of APOE4 on cognitive brain net-

works is present prior to accumulation of A𝛽 , whichmay reflect risk for

AD prior tomanifestation of characteristic AD pathology.29

Another pathological feature of AD is an increased burden of cere-

bral iron deposition.30,31 Although iron continuously accumulates in

the human brain during aging,32–35 recently published postmortem

data suggest an association between the amount of brain iron deposi-

tion and the progression and severity of cognitive decline in AD.36–38

Moreover, associations between APOE4 carrier status, clinical phe-

notypes of increased risk for AD, and increased iron burden in the

CNS have been demonstrated.36,39,40 Paramagnetic susceptibility, as

measured by quantitative susceptibility mapping (QSM) magnetic res-

onance imaging (MRI), has been demonstrated to closely relate to non-

heme iron content of deep brain gray matter.41–44 Although myelin

content is a major determinant of MR phase differences between

cortical gray and white matter,45 recently published histological data

suggest that iron in cortical gray matter regions is a major contrib-

utor to susceptibility measured by QSM.46 This approach is consid-

ered to provide an indirect estimate of non-heme iron in the brain,

and associated risk for oxidative damage.38,47 By applying suitable

post-processing techniques that balance susceptibility measures with

reference regions and correct for heme iron and other non-tissue

iron sources, strong linear correlations resulted between postmortem

gray matter tissue iron concentration and QSM measurements.43,48

Consistently, several QSM-MRI studies demonstrated an associa-

tion between increased tissue magnetic susceptibility, AD, and AD-

risk phenotypes.33,40,49,50 Considering possible damaging impacts of

brain iron burden on brain tissue by increased oxidative stress and

redox activity,51–56 as well as programmed cell death conferred by

ferroptosis,57,58 APOEmight be amoderator for iron-related oxidative

brain damage in individuals at risk for AD.36,59 In this context, corti-

cal iron burden might indicate early cortical neurodegenerative alter-

ations, as suggested by earlier published data of ours on brain iron in

mild cognitive impairment.40

Considering these prior studies, and allowing for the published

evidence on earliest APOE4-moderated DMN alterations in cog-

nitively unimpaired adults,29,60 we hypothesized that APOE4 may

moderate the effects of increased cortical iron on cortical function-

ality, as reflected by DMN connectivity. Moreover, we hypothesized

that APOE4-related changes should (a) be reflected by altered DMN

activity and (b) precede the manifestation of significant AD pathology

and cognitive dysfunction. To test this hypothesis, a study sample

HIGHLIGHTS

• Three-dimensional (3D) gradient recalled echo magnetic

resonance imaging for quantitative susceptibilitymapping

(QSM) and 18F-flutemetamol positron emission tomogra-

phy for amyloid-𝛽 (A𝛽) in healthy old-aged adults.

• Spatial definition and assessment of the defaultmode net-

work (DMN) by group independent component analysis.

• Synergistic effects of iron (as measured by QSM) and

APOE 𝜀4 allele (APOE4) on DMN connectivity.

• Interactive effects of APOE4 and QSM-iron may precede

A𝛽 pathology.

• APOE4 may accelerate brain iron accumulation associ-

ated DMNdisintegrity.

RESEARCH INCONTEXT

1. The apolipoprotein E 𝜀4 allele (APOE4) is the strongest

known genetic risk factor for sporadic Alzheimer’s

disease (AD). APOE4-associated impairment of brain-

network connectivity manifests prior to dementia. Con-

sidering recent reports on relationships between cerebral

iron load, genetic risk, and progression of AD, our study

aims at investigating the effects of APOE4on cortical iron

and cortical network connectivity in non-demented old-

aged adults. Brain iron may be non-invasively inferred on

by its paramagnetic properties using quantitative suscep-

tibilitymapping (QSM)magnetic resonance imaging.QSM

is considered to provide an indirect estimate of non-heme

iron.

2. Our findings suggest that APOE4 may moderate iron

effects on brain functionality, as reflected by altered syn-

chronized network activity, which is consistent with ear-

lier reports on APOE4-related default mode network

alterations.Additional studies areneeded to clarifymech-

anisms implicated in the interactionbetweenAPOE4, cor-

tical iron burden, and progression of cortical dysfunction

in AD.

of cognitively healthy, old-aged study participants was recruited.

All participants received genotyping for detection of APOE4 carrier

status,2 and 18F-flutemetamol positron emission tomography (PET)

for assessing brain A𝛽 burden.61,62 Blood oxygen level–dependent

(BOLD) functional MRI (fMRI) at rest was performed for assessing

intrinsic network connectivity, and the CONN toolbox63 was used to

identify the DMN by independent component analysis (ICA)64 and

statistical testing for interactive effects of APOE4 and cortical iron

load, inferred from graymatter susceptibility.
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2 MATERIALS AND METHODS

2.1 Study sample

The study sample included 69 cognitively healthy old-aged adults

(32 female, 37 male; mean age [SD] 66.1 [7.25] years, range 51–

80 years, mean education [SD] 15.99 [2.77] years, range 11–20)

recruited in the cantone Zurich, Switzerland, from an ongoing study at

our center.65 Study procedures were in concordance with regulations

issued by the local, cantonal ethics authority (Kantonale Ethikkommis-

sion Zürich, www.kek.zh.ch), good clinical practice, and with the Dec-

laration of Helsinki.66 Written informed consent was obtained from

all participants before inclusion in the study. Inclusion criteria were

age between 50 and 80 years, unimpaired overall cognitive status as

indicated by Mini-Mental State Examination (MMSE) ≥27/30, neu-

ropsychological testing, and comprehensive psychiatric examination.

Exclusion criteria were presence of any condition possibly affecting

cognition, any current medication or substance abuse with prompt

effects on cognition, serious medical or psychiatric illness, and evi-

dence of infarction or inflammation on cranial MRI. Furthermore, sub-

jects with contraindications to MRI or PET, clinically relevant changes

in red blood count, or significant exposure to radiation were excluded.

After inclusion, all participants received standardized cognitive testing

and a clinical workup, including medical history, blood sampling, and

genotyping of APOE as described earlier.65 The study population was

dichotomized based on presence of theAPOE4 genotype (“APOE4 car-

riers” vs “non-carriers”), for stratification by genetic risk for sporadic,

late-onset AD.4

2.2 Cognitive assessment of participants

Screening for cognitive impairment was performed by applying the

MMSE67 and the Consortium to Establish a Registry for Alzheimer’s

Disease (CERAD) neuropsychological battery.68 Moreover, the delayed

recall Verbal Learning and Memory Test (VLMT)69 was used to assess

episodic memory performance, the Boston Naming Test for confronta-

tional word retrieval,70 the Stroop interference test71 as a measure of

executive function, and Trail Making Test, Section B divided by Section

A (TMTB/A) for assessment of mental flexibility.72

2.3 Acquisition ofMRI data andQSM

Imaging of all 69 participants was conducted using a 3T GE SIGNA

PET-MR whole-body scanner (GE Medical Systems, Milwaukee, WI)

equipped with an 8-channel head coil. For anatomical referencing

and automated image segmentation, T1-weighted BRAVO images

(TI = 450 ms, voxel size = 1 × 1 × 1 mm3, flip-angle = 12◦, ASSET

factor = 2, scan time = 6:00 minutes) were acquired. MR phase mea-

surements used for QSM calculation were collected using a multi-

echo 3D gradient recalled echo (GRE) sequence with six echoes

(TR/TE1/ΔTE= 40/6/4ms, voxel size= 1× 1× 1mm3, flip angle= 15◦,

bandwidth = ±62.5 kHz, flow compensated, ASSET factor = 2, scan

time = 7:53 minutes). For investigating BOLD synchronicity at rest

(open eyes), a T2∗-weighted single-shot gradient echo-planar imag-

ing sequence was used to record 200 functional volumes (repetition

time (TR) = 2.547 s; echo time (TE) = 13.8 ms; matrix = 64 × 64; flip

angle = 90◦, total scan time = 8.49 minutes), with 46 slices per volume

(voxel size= 3.75 × 3.75 × 3.6mm3) for whole-brain coverage.

For QSM reconstruction, phase data acquired with an echo time

in the range of 18 to 26 ms was used. QSM images were calculated

from the MR phase images using algorithms described previously by

our group40,48,65 using an in-house scriptwritten inMATLAB (MATLAB

2016a,Version9.0). Briefly, processing includedLaplacian-basedphase

unwrapping,41 brain masking using GRE magnitude image acquired at

TE = 14 ms with FSL’s brain extraction tool (BET, FMRIB Oxford, UK),

dividing the unwrapped phase images by 2𝜋*TE to obtain frequency

shift images (Hz) for each echo. For eliminating background fields the

vSHARPmethod42,73 wasused (maximumspherical kernel size=4mm,

regularization parameter = 0.05). Spatially confined vascular objects

such as veins and microbleeds were excluded from estimation of

regional susceptibility values. To increase signal-to-noise ratios (SNR),

images resulting from the last three echoes were averaged.74 Sparse

linear equation and least-squares (LSQR)-basedminimizationwas used

for inverse dipole calculations of susceptibility maps,75,76 with deep

frontal white matter as reference.65

2.4 Acquisition of flutemetamol-PET data

18F-flutemetamol-PET was used for determination of participants A𝛽

plaque burden,61,62 as described earlier by our group.65 In brief, an

individual dose of 140 MBq of flutemetamol was injected into the

cubital vein. Late-frame (85—105 minute) PET images were recon-

structed with state of the art time-of-flight algorithms allowing for

attenuation correction maps, which were generated using standard

procedures implemented by the manufacturer. This resulted in 3D

volumes of 18F-flutemetamol retention (matrix = 256 × 256 × 89,

voxel size = 1.17 × 1.17 × 2.78 mm3). Individual measures of cortical

A𝛽 plaque load were calculated based on average 18F retention in a

composite cortical volume of interest, which was normalized to cere-

bellar gray matter composite cortical volume of interest standard

uptake value ratio (COM-SUVR).62 Consistent with earlier studies on

AD and healthy controls, extent of amyloid pathology was assessed in

regard to a COM-SUVR threshold of 1.56.62

2.5 Analysis of functionalMRI data

2.5.1 Data preprocessing

BOLD fMRI data were processed for statistical analysis using “CONN

functional connectivity toolbox” (ver.17.d; www.nitrc.org/projects/

conn),63 “statistical parametricmapping” (SPM12,Version6906),MAT-

LAB (Version 9.0,MathWorks Inc., Natick,MA,USA), and the “statistics

and machine learning toolbox” (Version 10.2). After importing NIFTI

functional and anatomical images into the CONN toolbox, individual

http://www.kek.zh.ch
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
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TABLE 1 Overview of sample demographics, neuropsychological test performance as well as cortical A𝛽 and cortical magnetic susceptibility
measures as mean (±SD)

Whole sample APOE4 no-APOE4 t test (P)

N 69 18 51 -

Females/males 32/37 8/10 24/27 -

Age 66.1 (7.25) 66.28 (5.29) 66.04 (7.87) 0.89

Years of education 15.99 (2.77) 16.56 (2.48) 15.78 (2.87) 0.28

MMSE 29.32 (1.12) 29.12 (1.58) 29.4 (0.89) 0.49

BostonNaming Test 14.64 (0.7) 14.65 (1) 14.64 (0.57) 0.97

CERADword fluency 24.05 (5.34) 22.47 (5.36) 24.62 (5.27) 0.62

TMTB/A 2.24 (0.76) 2.33 (0.88) 2.21 (0.72) 0.64

Stroop 28 (7.12) 28.59 (6.87) 27.79 (7.26) 0.17

Episodic memory (VLMT) 9.34 (3.9) 9 (3.22) 9.47 (4.14) 0.69

Cortical Abeta (18F-flutemetamol SUVR) 1.19 (0.19) 1.28 (0.33) 1.16 (0.11) 0.15

Abeta positives (n> 1.56) 2 2 0 -

Cortical magnetic susceptibility (QSM) 1.85 (0.81) 1.81 (0.65) 1.87 (0.86) 0.78

T test was performed to investigate differences on a group-level between APOE4 carriers (APOE4) and non-carriers (no-APOE4).

Abbreviations: APOE4: Apolipoprotein E ɛ4 allele, MMSE: Mini-Mental State Exam, CERAD: Consortium to Establish a Registry for Alzheimer’s Disease,

TMT A/B: Trail Making Test, Section A divided by Section B, VLMT: Verbal Learning andMemory Test, SUVR: standard uptake value ratio, QSM: quantitative

susceptibility mapping.

fMRI volumes were spatially realigned, and anatomical scans were

coregistered to the mean functional image, corrected for timing dif-

ferences between slices, spatially normalized to montreal neurologi-

cal institute (MNI) template space, and smoothed using an 8 mm full

width at half-maximum Gaussian kernel. The Artifact Detection Tool-

box (ART, https://web.mit.edu/swg/software.htm) was used for detec-

tion and analysis of sources of artifacts in the investigated timeseries

of 200 functional MR-volumes.63

2.5.2 Identification of resting-state networks

To obtain functional connectivity networks of all 69 participants, we

performed group spatial ICA77 as implemented in the CONN toolbox

for data-driven blind source separation of fMRI data and identification

of functional networks, represented by spatially distant patterns of

BOLD synchronicity.64,78–80 The DMN, as a representation of intrinsic

network activity, was identified based on characteristic spatial pat-

terns that included signature regions of MPFC, posterior cingulate

cortex (PCC), and left and right lateral parietal lobes (LPLs).26

2.6 Statistical analysis

The statistical analysis of fMRI data, as well as investigation of APOE4

and paramagnetic tissue iron effects on DMN connectivity, was per-

formed using algorithms implemented in the CONN-toolbox (V17d).63

As such, DMN activity was operationalized by level of BOLD syn-

chronicity (𝛽 weights of connectivity) within the spatial confinement of

the correspondent independent component.77 Reliability of the ICA for

detection of the DMNwas estimated by probability of each voxel iden-

tified by ICA to belong into the DMN by one sample t test. Moreover,

CONNwas used for investigating group differences in DMNactivity as

a function of APOE4 carrier status and cortical magnetic susceptibility

by linear regression and one-way analysis of covariate interaction tests

in order to study the effects of high corticalmagnetic susceptibility and

APOE4 carrier status on DMN activity. False discovery rate was used

to adjust raw P-values for multiple testing (P-FDR).81

Descriptives of the sample data are presented using mean ±SD.
Tests for differences in demographic, clinical, neuropsychological,

or imaging-based (SUVR, QSM) parameters between subjects in the

ApoE4- and no-ApoE4 group were performed with independent sam-

ples t tests. A median split of the study sample was used for separation

of participants based on average cortical magnetic susceptibility:

QSM levels above or equal to the group median were categorized

as “high cortical magnetic susceptibility” and QSM levels below the

group median as “low cortical magnetic susceptibility.” The resulting

dichotomous variable was used as a categorical operator of cortical

iron burden.

3 RESULTS

3.1 Characteristics of the study population

Within the study population of 69 participants, 18 carriers of the

APOE4 allele could be identified (allelic frequencies were: APOE

ɛ2/ɛ4 = 1, APOE ɛ3/ɛ4 = 16, APOE ɛ4/ɛ4 = 1). When compar-

ing APOE4 carriers with non-carriers, there were no significant dif-

ferences in demographic characteristics between groups. Moreover,

neuropsychological screening by MMSE as well as domain-specific

testing using the CERAD neuropsychological battery consistently indi-

cated high levels of cognitive performance in all study participants,

https://web.mit.edu/swg/software.htm
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F IGURE 1 Identification of resting-state networks by independent component analysis (ICA) of blood oxygen level–dependent (BOLD) time
course synchronicity at rest. Using ICA, 20 independent components could be identified, representing distinct BOLD time course synchronicity
patterns at rest. Heat maps represent factor loading by voxel for each spatial component, estimated by group ICA (color bar: lowest, blue=−3;
maximum, red=+7, horizontal lines in the green area= 0)

F IGURE 2 Spatial definition of the default mode network (DMN) based on blood oxygen level–dependent (BOLD) time course synchronicity
within independent component 3. Indicated are axial slices indicating brain regions included by component 3. Significance levels of voxel-level
BOLD synchronicity are color coded (T-map, highest values are yellow)

without significant differences between APOE4 carriers and non-

carriers (Table 1). Only in two APOE4 carriers was increased brain

A𝛽 load observable. For the rest of the study population, no sub-

stantial brain amyloid pathology was present, as indicated by average

COM-SUVR (mean (±SD)) of 1.19(0.19) without significant differences
on a group level (APOE4 carriers: 1.28(0.33), non-carriers: 1.16(0.1))

(Table 1). Overall cortical magnetic susceptibility was 1.85 (0.81) ppb,

without significant differences between APOE4 carriers (1.81(0.65)

ppb) and non-carriers (1.87(0.65) ppb) (Table 1).

3.2 Identification and spatial definition of the DMN

By performing group ICA for blind source decomposition of 3D

resting-state BOLD data, 20 spatial components of resting-state
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F IGURE 3 Effect of APOE4 carrier status on default mode network (DMN) activity. DMN activity, as indicated by synchronicity of blood
oxygen level–dependent (BOLD) time courses, is associated with APOE4 carrier status (F-map, highest values are yellow)

F IGURE 4 Effect of cortical iron burden on default mode network (DMN) activity. DMN activity is increased in study participants with high
cortical iron (estimated byQSM) (F-map, highest values are yellow)

network activity could be identified based on factor loading by voxel

(Figure 1). These represented established functional brain networks,

including one consistent with the DMN (component #3: T(68) = 4.07,

P(FDR)= 0.0024, k_min= 24), as defined by a spatial pattern ofMPFC,

hippocampus, parahippocampal formation, PCC, precuneus, and lateral

parietal cortex (Figure 2).

3.3 Synergistic interaction of APOE4 and cortical
iron on default mode network activity

By analysis of covariance, a significant effect of APOE4 carrier status

on increased DMN activity could be observed: F(2,66) = 17.95,

P(FDR) < 0.001. The strongest effects were observed in the

posterior cingulate cortex, precuneus, and lateral parietal cortex

(Figure 3).

Moreover,ANCOVAalso indicated significant effects of cortical iron

burden on connectivity within the DMN component (F(2,66) = 14.24,

P(FDR) < 0.001) (Figure 4). Finally, to compare regression effects

attributable to APOE4 and cortical iron, respectively, a one-way

ANCOVA interaction was performed by using second-level analysis

algorithms included inCONN.63 Additive synergismofAPOE4and iron

effects was indicated by a positive relationship between cortical iron

and DMN connectivity that was associated with APOE4 carrier status

(T(65)= 3.22, P(FDR)< 0.001, Figure 5A). Here, significant iron effects

within the subgroupofAPOE4carrierswereobserved (F(2,16)=10.97,

P(FDR) = 0.0026, Figure 5B). The strongest local effects consistently

resulted for voxels localized in the posterior cingulate cortex, the pre-

cuneus, and lateral parietal cortex (Figures 5A, B).
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F IGURE 5 (A) Synergistic interactions between APOE4 carrier status and cortical iron on default mode network (DMN) activity. Colors
indicate local effect sizes, as generated by second level, one-way analysis of covariance (ANCOVA) interaction analysis (T-map, highest values are
yellow). (B) DMN activity in APOE4 carriers relates to cortical iron burden. DMN activity is increased in APOE4 carriers with high cortical iron, as
indicated by regression (F-map, highest values are yellow)

4 DISCUSSION

We identified a synergistic interaction of cortical gray matter suscep-

tibility (QSM) and BOLD synchronicity at rest, suggesting a modera-

tor effect of APOE4 on the relationship between cortical non-heme

iron and DMN activity. This effect was observable in a population of

old-aged, cognitively healthy adults. Because for the majority of the

investigated participants no significant increase of A𝛽 burden could be

observed, our findings might reflect preclinical brain alterations asso-

ciated with APOE4-related increased risk for AD.
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The current study used established neuropsychological testing for

assessment of cognitive domains typically affected in AD.82 Moreover,

all study participants were genotyped for presence of the APOE4

allele, allowing for additional stratification of the study population

by individual risk for AD.1,4 Each participant also was investigated

by 18F-flutemetamol PET to assess brain A𝛽 burden. Flutemetamol

has been used previously for assessing patients with AD,61,62 as well

as cognitively unimpaired old-aged adults.83,84 Although there was

no significant difference between APOE4 carriers and non-carriers

regarding A𝛽 pathology, longitudinal follow-up of our sample might

reveal possible faster accumulation of brain A𝛽 in the APOE4 group,

as suggested by earlier reports.10,85 Considering the synchronicity

of BOLD contrast variation in spatially distinct brain regions a proxy

of neuronal functionality,25,26,86 ICA was performed for detection

and statistical group-inferences.63,77 Blind source decomposition is

capable of identifying many different brain networks from fMRI data

recorded at rest.26,64 In the current study we focused on the DMN,

considering earlier studies that provide evidence that DMNconnectiv-

ity is an indicator of cognitive functionality,25,27,87 which is affected at

early, preclinical stages of AD.18,19,21,22,84 Although the chosen focus

on theDMNmay be a limitation regarding general inferences on global

intrinsic network activity, the unambiguous spatial characteristics of

the DMN componentmay have facilitated differentiation from compo-

nents representing noise. Iron burden was assessed using QSM,44,47,88

which is a potential pathology in AD and AD-risk populations.40,49,50,89

A close association between paramagnetic susceptibility in graymatter

brain regions (with low myelin content) and high tissue iron content

is supported by post mortem analysis of deep brain gray matter.43,90

Recently published histological data on cortical and deep gray matter

regions furthermore support a positive relationship betweenQSMand

iron, and an inverse relationship betweenQSMandmyelin.46 Although

paramagnetic susceptibility in human graymatter is regarded as a valid

measure of non-heme iron,38,91 particularly cortical susceptibility

measures should be interpreted carefully. When inferring on local

non-heme iron, myelin may have a confounding impact due to its phase

shifting capacity.45 Moreover, there may be a relationship between

susceptibility measured by locally increased BOLD contrast and QSM.

Although the current study investigated BOLD synchronicity over

time rather than local increases of BOLD contrast, the fact that BOLD

and QSMmay not be completely independent might nevertheless rep-

resent another limitation of our experimental approach. In addition,

QSM at higher spatial resolution might reduce the risk of confounding

heme iron by vascular objects that may have been missed due to SNR

limitations of the 3 Tesla GRE sequence applied here. Further studies

implying an additional, independent measure of blood flow might

provide insight on the interdependence of bothmeasures.

Although our data are consistent with earlier reports on an associa-

tion between APOE4 and altered DMNproperties in preclinical stages

of AD,29 our findings of an association between APOE4 and increased

DMN connectivity may be consistent with earlier considerations that

increased DMN connectivity might represent characteristic phenom-

ena in populations at risk for AD.84 Moreover, the finding of a genotype

effect may corroborate biological relevance of our observation. Our

main finding was that APOE4 effects synergistically interacted with

effects associated with increased brain iron (as estimated by QSM). To

our knowledge no interactive effects between magnetic susceptibility,

as a reflection of iron, andAPOE4onDMNactivity have been reported

so far. However, our findings support earlier considerations that detri-

mental effects associated with increased brain iron may be promoted

by the APOE4 genotype.36,59,89

Although the APOE4 genotype alone is not associated with

increased iron,37 increased prevalence of APOE4 in cognitively

impaired individualswith higher levels of brain ironmight reflect accel-

erated cognitive deterioration.39,40 Moreover, recently published data

suggest that alterations of cortical networks such as theDMNmay also

indicate progression of tau pathology.92,93 Here, additional longitudi-

nal studies are needed to carefully investigate potential interactions

between pathological tau and iron in neurodegenerative disease and

healthy aging.94 Our current findings of a possibly synergistic impact of

paramagnetic susceptibility and APOE4 on BOLD synchronicity within

the DMNmight support recently suggested therapeutic interventions

aimed at brain iron load54,95 but also restoring physiological network

architecture within the neocortex.96 Recent studies suggest poten-

tially deleterious effects of unbound iron by oxidative stress52,97 or

programmed cell death such as ferroptosis,58 an association of brain

iron burden with life style,98 and a possible role of iron for maintained

cognitive function at old age.65 Thus, longitudinal cohort studies are

needed to better understand the interplay between altered MR mea-

sures of cortical susceptibility, its relationship to dysbalanced brain

iron homeostasis, and APOE4-related risk for AD.
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