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Abstract Many untargeted LC–ESI–HRMS based meta-

bolomics studies are still hampered by the large proportion

of non-biological sample derived signals included in the

generated raw data. Here, a novel, powerful stable isotope

labelling (SIL)-based metabolomics workflow is presented,

which facilitates global metabolome extraction, improved

metabolite annotation and metabolome wide internal

standardisation (IS). The general concept is exemplified

with two different cultivation variants, (1) co-cultivation of

the plant pathogenic fungi Fusarium graminearum on non-

labelled and highly 13C enriched culture medium and (2)

experimental cultivation under native conditions and use of

globally U-13C labelled biological reference samples as

exemplified with maize and wheat. Subsequent to LC–

HRMS analysis of mixtures of labelled and non-labelled

samples, two-dimensional data filtering of SIL specific

isotopic patterns is performed to better extract truly

biological derived signals together with the corresponding

number of carbon atoms of each metabolite ion. Finally,

feature pairs are convoluted to feature groups each repre-

senting a single metabolite. Moreover, the correction of

unequal matrix effects in different sample types and the

improvement of relative metabolite quantification with

metabolome wide IS are demonstrated for the F. grami-

nearum experiment. Data processing employing the pre-

sented workflow revealed about 300 SIL derived feature

pairs corresponding to 87–135 metabolites in F. grami-

nearum samples and around 800 feature pairs corre-

sponding to roughly 350 metabolites in wheat samples. SIL

assisted IS, by the use of globally U-13C labelled biological

samples, reduced the median CV value from 7.1 to 3.6 %

for technical replicates and from 15.1 to 10.8 % for bio-

logical replicates in the respective F. graminearum

samples.
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1 Introduction

While full genome sequences have been determined for

many organisms, it is currently still not possible to measure

the complete metabolite inventory of a biological system

due to methodical limitations. Complementary, sensitive

and generic techniques are required to cope with the large

chemical diversity and wide dynamic range of low

molecular weight metabolites. Gas chromatography (GC)

or liquid chromatography (LC) coupled to mass spec-

trometry (MS) as well as nuclear magnetic resonance

(NMR) spectroscopy have emerged as key techniques in

the field of metabolomics, as recently reviewed by e.g.

Zhang et al. (2012), Patti et al. (2012b) and Zhou et al.

(2012). The combination of LC with electrospray ionisa-

tion (ESI) high resolution mass spectrometry (HRMS) has

proven to be particularly powerful as this technique enables

the detection of a large number of known and unknown

metabolites simultaneously and requires only small

amounts of the biological sample (Hiller et al. 2011; Patti

et al. 2012b).

Two different metabolomics concepts can be distin-

guished: targeted and untargeted approaches. In targeted

approaches, a set of predefined known substances is

determined, thus, absolute quantification of those metabo-

lites, which are available as authentic reference standards,

is feasible. In contrast, untargeted approaches try to find

mass spectrometric features of all detectable metabolites,

including those unknown or at least unidentified at the time

of measurement. Therefore, the untargeted approach has

the advantage of probing the entire, observable metabolic

space and can obtain relative abundances of several hun-

dreds to thousands of metabolites simultaneously (Patti

et al. 2012b). For the automated data processing of such

LC–HRMS derived metabolomics datasets, various work-

flows and software packages have been developed and are

frequently used in untargeted metabolomics studies e.g.

XCMS (Smith et al. 2006), MzMine (Pluskal et al. 2010),

MetAlign (Lommen and Kools 2012) or Maven (Clasquin

et al. 2012). These software tools have in common, that

they extract as many features as possible from raw LC–

HRMS derived metabolomics data sets. In this respect the

term feature has been defined to be a bounded, two

dimensional LC–HRMS signal consisting of a chromato-

graphic peak (i.e. retention time) and a MS signal (m/z

value) (Kuhl et al. 2012).

Despite the recent advances regarding both LC–HRMS

instrumentation and data handling platforms, the compre-

hensive annotation of the metabolome of a biological

sample of interest and subsequent metabolite identification

still remain the major bottlenecks in untargeted meta-

bolomics, especially for LC-ESI-HRMS based studies

(Scalbert et al. 2009; Castillo et al. 2011; Patti et al. 2012b;

Theodoridis et al. 2012; Dunn et al. 2013). This limitation

can largely be attributed to the generic nature of the ESI

process, unavoidably leading to LC-ESI-HRMS full scan

chromatograms and spectra, containing a large proportion

of background and chemical noise compared to the signals

originating from true metabolites (Keller et al. 2008;

Covey et al. 2009; Trotzmüller et al. 2011). Further chal-

lenges arise from the fact that a single metabolite leads to

more than one ion species (e.g. isotopologue peaks, dif-

ferent adducts, in-source fragments and even more com-

plex combinations of the previous species). In addition,

many metabolites cannot completely be separated in the

chromatographic dimension and therefore LC–HRMS

measurements result in mass spectra, which contain signals

from more than one metabolite.

Another obstacle of untargeted LC-ESI-HRMS based

metabolomics is related to relative quantification of the

detected metabolite ions, which is caused by so called

matrix effects. The composition of the evaporated sample

at any time point of the LC–HRMS measurement can

significantly influence the ionization efficiency and leads to

ion suppression or ion enhancement in the ESI source of

the mass spectrometer (Tang and Kebarle 1993; King et al.

2000). Matrix effects can seriously affect signal intensities

as well as precision and even limit the coverage of the

metabolome (Vogeser and Seger 2010; Koal and Deigner

2010). They are difficult to overcome in global untargeted

studies as the matrix is composed of the biological sample

itself. Thus, except protein precipitation, sample purifica-

tion is generally not a suitable option as this would largely

discriminate many sample constituents of interest (Tulipani

et al. 2013). Moreover, the availability of appropriate

internal standards is often limited. The detailed and com-

prehensive study of matrix effects is laborious and chal-

lenging, thus only a few studies reported the systematic

evaluation of matrix effects and their limitations on relative

metabolite quantification in the field of LC–HRMS based

metabolomics (Böttcher et al. 2007; Redestig et al. 2011;

Tulipani et al. 2013).

With respect to the above mentioned limitations

regarding global annotation of the metabolome and method

performance evaluation, there is a great demand for both

innovative approaches for the analytical measurement of

biological samples with LC–HRMS as well as the devel-

opment of novel, improved data processing algorithms.

Stable isotope labelling (SIL) is a technique, which is

becoming increasingly used in different areas of meta-

bolomics research and it shows the potential to conquer

many of the elucidated limitations in untargeted meta-

bolomics research. In this respect, SIL assisted experiments

employ stable isotopes of elements such as carbon (13C),

hydrogen (2H), oxygen (18O), nitrogen (15N) and sulphur

(34S) (Klein and Heinzle 2012; Nakabayashi et al. 2013)
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respectively. However, 13C is used most commonly as the

main labelling isotope, since carbon is part of virtually any

metabolite. Non-labelled, partly labelled and highly

([98 %) 13C enriched (U-13C) metabolites show the same

physico-chemical properties and therefore are not sepa-

rated by chromatography, but can easily be distinguished

by their mass to charge ratio (m/z) using an MS instrument.

The use of globally U-13C labelled biological samples

enables to circumvent problems in untargeted metabolo-

mics, such as metabolome annotation, generation of sum

formulas of the detected metabolites and putative metab-

olite identification. It was demonstrated that the combina-

tion of 13C, 15N and 34S labelling for example can help to

assign the number of atoms of the respective labelling

element to a metabolite ion correctly and thereby facilitates

annotation of metabolites by database search (Hegeman

et al. 2007; Giavalisco et al. 2008; Cano et al. 2013). In

addition to improved feature extraction and metabolite

annotation, SIL experiments have also been successfully

used to accomplish internal standardisation (IS) for quan-

tification of metabolite levels and, thus correct ion sup-

pression or MS signal fluctuations caused by matrix effects

in LC-ESI-HRMS (Bennett et al. 2008; Giavalisco et al.

2009; Hegeman 2010). Moreover, IS by globally stable

isotope labelled biological samples allow both detailed

characterisation of the performance of the used metabolo-

mics workflow as well as an improved relative quantifi-

cation/technical precision of metabolomics data.

Despite the high potential of SIL assisted approaches

and their successful application in various fields, to the best

of our knowledge only a few data processing tools have

been published for the automated evaluation of LC–HRMS

data originating from labelled biological samples. For non-

targeted GC–MS based metabolomics SIL assisted meta-

bolomics, Hiller and colleagues published the Non-targeted

Tracer Fate Detection (NTFD) algorithm (Hiller et al.

2013) to study labelled tracer compounds in the central

metabolism (Hiller et al. 2010). Moreover, de Jong and

Beecher (2012) have successfully implemented a sophis-

ticated method termed IROA (Isotopic Ratio Outlier Ana-

lysisTM) to automatically extract features differing between

experimental conditions after parallel cultivation on native

and U-13C-labelled nutrition sources. IROA is offered as a

commercial metabolomics application and software pro-

gramme. The R package mzMatch-ISO (Chokkathukalam

et al. 2013) is a software tool for the annotation and relative

quantification of SIL derived MS data with the aim to

provide insight into metabolic fluxes of biological systems.

It is designed to use metabolomics data analysed by XCMS

(Tautenhahn et al. 2008) and allows an in depth evaluation

and visualisation of the associated isotopic patterns and

their respective abundances of various native and labelled

metabolites. To the best of our knowledge, MetExtract,

which has been developed in our laboratory, is to date the

only publicly available tool aiming at the untargeted,

automated global detection of truly metabolite derived LC–

HRMS signals originating from natural (compounds

showing a natural carbon isotopic distribution pattern are

termed ‘‘non-labelled’’ in the following) and stable isotope

labelled biological samples (Bueschl et al. 2012).

Here a detailed analytical and data processing workflow

for SIL assisted untargeted LC–HRMS based metabolo-

mics experiments is presented. This workflow is exempli-

fied by two representative experiments: In the first

approach the filamentous fungus Fusarium graminearum is

cultivated in parallel on a non-labelled and a U-13C

labelled carbon source respectively under identical condi-

tions. In the second approach a metabolomics experiment is

performed using a non-labelled carbon source for cultiva-

tion of biological samples (wheat and maize), while glob-

ally U-13C labelled biological reference samples are used

for IS. The concept and performance of both variants are

presented in detail.

2 Materials and methods

2.1 Chemicals and biological samples

Acetonitrile (ACN, HiPerSolv Chromanorm, HPLC gra-

dient grade) was purchased from VWR (Vienna, Austria);

Methanol (MeOH, LiChrosolv, LC gradient grade) was

purchased from Merck (Darmstadt, Germany); formic acid

(FA, MS grade) was obtained from Sigma-Aldrich

(Vienna, Austria). Water was purified successively by

reverse osmosis and an ELGA Purelab Ultra-AN-MK2

system (Veolia Water, Vienna, Austria). Components of

the modified FMM were purchased from the following

suppliers: Fluka (KH2PO4, Fe(NH4)2(SO4)2�6H2O), Roth

(MgSO4�7H2O, KCl, ZnSO4, H3BO3), Sigma Aldrich

(NaNO3, MnSO4, CuSO4�5H2O, Na2MoO4�2H2O), Serva

(citric acid) and VWR (glucose). U-13C6-glucose with a
13C enrichment degree of 99 % was obtained from Eur-

isotop (Saarbrücken, Germany). U-13C labelled wheat ear

([97 % 13C, cultivar Baldus), and U-13C labelled maize

kernels ([97 % 13C, cultivar Yukon chief) were obtained

from Isolife (Wageningen, The Netherlands).

2.2 Cultivation of Fusarium graminearum, wheat

and maize samples

In this study a metabolomics workflow for two different

cultivation variants using stable isotope labelling is pre-

sented (Fig. 1). In the first approach (thereafter referred to

as variant A) the biological organism of interest is co-

cultivated under identical conditions, using either a 12C or
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13C carbon source respectively. This approach is favoured

for less complex organisms such as bacteria, yeasts or fil-

amentous fungi which allow cultivation on a defined

minimal medium, where the natural carbon source can be

easily replaced by highly ([98 %) 13C- or 15N-enriched

nutrients. Variant A is demonstrated for the filamentous

Fig. 1 Overview of the proposed SIL assisted workflow for native and U-13C co-cultivation (variant A) and native cultivation and use of U-13C

reference metabolome (variant B) [figure-width: 174 mm]

A novel stable isotope labelling assisted metabolomics workflow 757

123



fungus F. graminearum, a pathogen of several cereal crops.

In the second approach (referred to as variant B) a meta-

bolomics experiment is performed using a native 12C car-

bon source for cultivation, while a globally U-13C labelled

biological sample serves as reference metabolome for IS of

the non-labelled experimental samples. This approach is

preferred when isotope labelling under experimental con-

ditions is difficult to achieve or not feasible, e.g. with

animals or plants. Experimental details are given to a

degree necessary to fit the purpose of this paper, which is to

present and discuss the analytical concept and data pro-

cessing rather than the whole biological study.

2.2.1 Variant A: 12C and 13C co-cultivation

(F. graminearum samples)

Fusarium graminearum wild-type (PH-1, NRRL 31084)

and its isogenic tri5D::loxP mutant lacking the gene

encoding trichodiene synthase, the first enzyme in the

trichothecene biosynthetic pathway were used. The strains

were cultivated in a modified Fusarium minimal medium

(FMM: 1 g/L KH2PO4, 0.5 g/L MgSO4�7H2O, 0.5 g/L

KCl, 2 g/L NaNO3, 10 mg/L citric acid, 10 mg/L

ZnSO4�6H2O, 2 mg/L Fe(NH4)2(SO4)2�6H2O, 0.5 mg/L

CuSO4�5H2O, 0.1 mg/L MnSO4, 0.1 mg/L H3BO3, 0.1 mg/L

Na2MoO4�2H2O) (Leslie and Summerell 2007) containing

either non-labelled glucose or U-13C-glucose as sole car-

bon source at a concentration of 10 g/L. F. graminearum

wild-type and tri5D strains were grown on non-labelled as

well as on U-13C labelled FMM using six biological rep-

licates per strain and nutrition condition resulting in a total

of 24 samples. The cultures were set up as follows: the

strains were sporulated in mung-bean medium as described

before by Kluger et al. (2013). 1-ml aliquots of either non-

labelled or U-13C labelled glucose containing medium were

pipetted to each well of a UNIFILTER 24-well 10 ml

filtration microplate equipped with a Whatman GF/C filter

(VWR, Vienna, Austria) and each well was inoculated with

2,000 spores of the respective F. graminearum strain. Still

cultures were grown at 20 �C in the dark for 7 days.

2.2.2 Variant B: 12C cultivation & 13C reference

metabolome (wheat and maize samples)

Seeds of the wheat cultivars ‘‘Remus’’ and ‘‘CM-82036’’

were grown in pots with soil under environmentally con-

trolled greenhouse conditions. Light and watering regime,

humidity and temperature were kept under controlled

conditions whenever possible and readjusted continuously

to fit the plant’s actual developmental stage. At the onset of

anthesis five ears (ten spikelets per ear) were harvested for

each cultivar at the beginning of a luminescence cycle and

immediately shock-frozen in liquid nitrogen to quench

cellular metabolism. In total ten ears were sampled and

stored at -80 �C until further sample preparation.

Seeds of the maize line CO354 were planted in pots and

later transferred to an environmentally controlled green-

house with controlled light regime and temperature con-

ditions. Ears were harvested 18 days after hand pollination

and kernels were immediately extracted using sterilised

scalpels. Three pools of kernels were obtained, where each

pool derived from the mixing of seeds came from three

different ears, samples were immediately frozen in liquid

nitrogen after collecting and stored at -80 �C for further

analyses.

For IS using a U-13C labelled reference metabolome

according to variant B (Fig. 1), a U-13C labelled wheat ear

([97 % 13C, cultivar Baldus), and U-13C labelled maize

kernels ([97 % 13C, cultivar Yukon chief) were used

respectively. It was taken into consideration that the

labelled plant material had been grown to the same

development stage as the non-labelled wheat cultivars and

the native maize line CO354 respectively.

2.3 Sample preparation

2.3.1 Variant A: preparation of F. graminearum samples

The 24-well microtiter plate was removed from the climate

chamber and immediately centrifuged for 10 min at

2,000 rpm to separate the mycelium from the extracellular

metabolites in the supernatant. Non-labelled and U-13C

labelled supernatants were prepared in parallel according to

the following protocol. 500 ll aliquots of supernatants of

wildtype and tri5D mutant, which had been grown on

native glucose containing FMM were transferred separately

each into a 1.5 ml Eppendorf tube resulting in a total of 12

samples (n = 6 replicates per fungal strain). 400 ll ali-

quots of each of U-13C labelled supernatants were pooled

together in a 50 ml polystyrene tube (VWR International

GmbH, Vienna, Austria) resulting in a total of 4,800 ll of a

pooled U-13C-supernatant for IS. Immediately after cen-

trifugation and aliquoting of supernatants, all aliquots were

quenched with 30 % acetonitrile (v/v) resulting in a 7:3 (v/

v) ratio of supernatant to acetonitrile. For LC–HRMS

analysis, each quenched non-labelled supernatant was

standardised by adding the same volume (200 ll) of the

pooled and quenched 13C-supernatant resulting in LC–

HRMS sample aliquots (1:1, v/v).

In addition, 60 ll of each of the U-13C-standardised

LC–HRMS samples (n = 6 replicates per fungal strain)

were merged to an aggregate sample (AG) which was used

to evaluate the precision of the LC–HRMS measurement

and chromatographic peak integration steps by repeated

injection out of the same HPLC vial (n = 13 replicates).
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LC–HRMS analysis of all samples was carried out imme-

diately after sample preparation.

For comparison of SIL assisted data processing and

conventional data processing by XCMS as well as to

demonstrate the extraction efficiency, aliquots of quenched

native supernatants without any U-13C labelled material

were mixed with quenched FMM (1:1, v/v) to yield LC–

HRMS samples exhibiting same concentration levels of

non-labelled metabolites as the U-13C labelled standardised

analogues.

To further exemplify the selectivity of the proposed

workflow to identify only SIL derived biological infor-

mation, solvent blanks (water:acetonitrile (7:3, v/v)) con-

taining purified water instead of supernatant were prepared

in parallel according to the same procedure mentioned

above.

2.3.2 Variant B: preparation of wheat and maize samples

The sample preparation of plant material was based on De

Vos et al. (2007) carried out after slight modifications as

reported in Kluger et al. (2012). Native wheat ears and

U-13C labelled wheat ear ‘‘Baldus’’ were extracted and

prepared in parallel. Native wheat ears of the cultivar

‘‘Remus’’ and ‘‘CM-82036’’ respectively (n = 5 replicates

per cultivar) were milled separately to a fine powder using

a ball mill (MM301 Retsch, Haan, Germany). 100 ± 5 mg

of homogenised plant material were weighed to 1.5 mL-

Eppendorf tubes with subsequent extraction using 1 mL of

pre-cooled (4 �C) methanol:water (3:1, v/v) including

0.1 % formic acid (v/v) in an ultrasonic bath. After cen-

trifugation an aliquot of the supernatants (300 ll of native

samples and 420 ll of U-13C labelled reference sample)

were transferred separately to another 1.5 ml-Eppendorf

tube and pre-cooled (4 �C) water ? 0.1 % formic acid (v/

v) was added to achieve a final methanol:water ratio of 1:1

(v/v). IS was achieved by adding the same volume of

U-13C labelled sample aliquots resulting in (1:1, v/v)

mixtures of non-labelled and U-13C labelled supernatant.

All samples were rigorously mixed for 10 s before transfer

into HPLC vials for LC–HRMS measurements.

Maize line CO354 (n = 3) and U-13C labelled cultivar

‘‘Yukon chief’’ were prepared according to the same pro-

tocol, with ‘‘Yukon chief’’ diluted sample extracts being

used for IS.

2.4 LC–HRMS analysis

All samples (F. graminearum, wheat, maize) were ana-

lysed on a UHPLC system (Accela, Thermo Fisher Sci-

entific, San Jose, CA, USA) coupled to an LTQ Orbitrap

XL (Thermo Fisher Scientific) equipped with an ESI

source. A HTC PAL system (CTC analytics, Zwingen,

Switzerland) was used for injection (10 ll) per sample and

for thermostatisation of sample solutions to 10 �C

throughout the whole sequence.

A reversed-phase XBridge C18, 150 9 2.1 mm i.d.,

3.5 lm particle size (Waters, Milford, MA, USA) analyt-

ical column, preceded by a C18 4 9 3 mm i.d. security

cartridge (Phenomenex, Torrance, CA, USA) was

thermostated to 25 �C and used for chromatographic sep-

aration at a constant flow rate of 250 ll/min. Water con-

taining 0.1 % FA (v/v) (eluent A) and MeOH containing

0.1 % FA (v/v) (eluent B) were used for linear gradient

elution: The initial mobile phase composition (10 % eluent

B) was held constant for 2 min, followed by a linear gra-

dient to 100 % eluent B within 30 min. After a hold time of

5 min the column was re-equilibrated for 8 min at 10 %

eluent B. A 10 ll sample loop was employed to maintain a

constant injection volume.

The ESI interface was operated in positive ion mode

with the following settings: sheath gas: 60 arbitrary units,

auxillary gas: 15 arbitrary units, sweep gas: 5 arbitrary

units, capillary voltage: 4 kV, capillary temperature:

300 �C. LTQ parameters were automatically tuned for

maximum signal intensity of a 10 mg L-1 reserpine solu-

tion (Sigma Aldrich) as recommended by the instrument

manufacturer. For measurements using the FT-Orbitrap in

the fullscan mode, the automatic gain control was set to a

target value of 3 9 105 and a maximum injection time of

500 ms was chosen. The mass spectrometer was operated

in a scan range from m/z 100–1,000 with a resolving power

setting of 60,000 FWHM (at m/z 400). Data were recorded

using Xcalibur 2.1.0 (Thermo Fisher Scientific).

2.5 Data processing

For an efficient extraction of metabolite derived MS signals

and analytical features, several consecutive data processing

steps (illustrated in Fig. 1-3-a–f) were implemented as an

expansion of the already released software version of

MetExtract (Bueschl et al. 2012). The focus of this paper

was laid on the detailed description of the complete

workflow including the biological experiment, sample

analysis and data processing as well as its application to

samples of plants and fungi. The extended MetExtract 2.0

software, which is capable of performing all of the fol-

lowing data processing steps (2.5.1–2.5.7) will be pub-

lished elsewhere together with the release of the

programme.

2.5.1 Pre-processing (Fig. 1-3-a)

Measurement files were converted from acquired profile to

centroid data and the mzXML format (Pedrioli et al. 2004)

with the MSConvert programme from the freely available
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ProteoWizard package v.3.0.3980 32-bit (Chambers et al.

2012).

2.5.2 MS signal pair filtering and clustering of m/z values

(Fig. 1-3-b)

Each recorded MS scan was inspected for the typical SIL

derived isotopic pattern as described previously in Bueschl

et al. (2012). The intensity threshold of both the monoi-

sotopic 12C derived (M) and U-13C derived (M0) MS signal

was set to 5,000 counts in at least 3 scans. The maximum

m/z deviation from postulated m/z values was set to

2.5 ppm and the isotopologue abundance error was set to

±20 %. Each MS signal pair, fulfilling the criteria was

annotated with m/z of M, the charge number z, deduced

from the SIL derived isotopic pattern, and the determined

number of carbon atoms nC, calculated from the m/z value

difference between M and M0, and z. Extracted MS signal

pairs were clustered together with hierarchical clustering to

group redundantly extracted MS signal pairs of similar m/z

value (i.e. MS signal pairs, which originate from the same

chromatographic peak or structural isomers with identical

sum formula). Hierarchical clustering was performed sep-

arately for all MS signals having the same number of

carbon atoms and the same charge number. All clusters in

the resulting tree, whose m/z values differed more than

±10 ppm were split into separate sub-clusters.

2.5.3 Feature pair picking (Fig. 1-3-c)

For each MS signal cluster, the algorithm of (Du et al.

2006) was utilised to inspect the XICs of both the mono-

isotopic 12C and the corresponding U-13C labelled ions for

co-eluting and similarly shaped chromatographic peaks.

For this purpose, a maximum retention time difference of

±15 scans was tolerated between chromatographic peaks

in both XICs. Furthermore, the chromatographic peak

profiles of the monoisotopic 12C and the U-13C labelled

features were compared with the Pearson correlation

coefficient and only those, with correlation coefficients

greater than 0.5 were considered a valid feature pair

derived from the SIL process. This data processing step

resulted in a list of putative feature pairs (monoisotopic
12C- and corresponding U-13C labelled feature) with each

feature pair being annotated with the m/z value of M,

retention time (Rt), peak area, number of carbon atoms per

ion (nC), and charge state z.

2.5.4 De-isotoping (Fig. 1-3-d)

Compared to correctly paired features, M?1 features, fal-

sely picked as monoisotopic 12C features or M0-1 features,

falsely picked as U-13C labelled features showed a reduced

number of carbon atoms nC and/or an increased monoiso-

topic 12C m/z value. Thus such erroneously extracted fea-

tures were removed from the feature list by comparing the

m/z values of M, charge state z, Rt and nC among putative

feature pairs.

2.5.5 Feature pair grouping (Fig. 1-3-e)

To group different features from the same metabolite,

extracted feature pairs were convoluted by comparing the

chromatographic peak shapes of all monoisotopic 12C

features eluting at approximately the same retention time

(±10 scans) (Kuhl et al. 2012). A minimum correlation

coefficient of 0.85 was specified for features to be grouped

together.

2.5.6 Matching results of several samples and generation

of data matrix (Fig. 1-3-f)

To track metabolite features over all samples of a particular

experiment, the extracted feature pairs of all LC–HRMS

data files were compared using nC, m/z of M and Rt in that

order. After data matrix generation, monoisotopic 12C and

U-13C labelled features, initially missed in some of the data

files due to the restrictive filtering criteria, were searched

for in a targeted way. To this end, the described peak

picking and integration algorithms were employed but

without checking peak shape similarity.

2.5.7 Internal standardisation

Internal standardisation was carried out on a file basis for

each feature pair by dividing the area of monoisotopic 12C

by that of its corresponding U-13C labelled feature.

2.6 Comparison with labelling free strategy

To compare the feature extraction process with a labelling

free approach, a non-labelled F. graminearum aggregate

sample, which had been diluted with FMM (1:1, v/v) and

did not contain any U-13C labelled culture supernatant and

one of the U-13C standardised F. graminearum aggregate

samples, were analysed, processed and evaluated. The data

file derived from a non-labelled sample was processed with

XCMS (1.34.0) and R (R Development Core Team, 2012,

v. 2.15.2) using parameter settings as recommended by

Patti et al. (2012a) for HPLC Orbitrap XL MS. The LC–

HRMS data file obtained for the U-13C standardised

aggregate sample was processed as described above (steps

2.5.1–2.5.4) and parameter settings similar to XCMS (i.e.

minimum intensity of 5,000 in at least 3 scans; maximum

tolerated m/z deviation of 2.5 ppm). Automated compari-

son of the results was performed by comparing both the
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determined m/z value and retention time of all extracted

features and feature pairs respectively. For this, a maxi-

mum relative m/z deviation of ±10 ppm and ±0.15 min

was allowed for two results to match. Features, which had

only been found by the SIL assisted data processing, were

further inspected manually using TOPPView (Sturm and

Kohlbacher 2009, v 1.10).

2.7 Selectivity evaluation of SIL assisted workflow

To demonstrate the selectivity of feature pair extraction in

the presented SIL assisted metabolomics workflow, blank

samples (solvent blank) (n = 3) as well as five non-label-

led F. graminearum aggregate samples (no internal stan-

dardisation with U-13C labelled supernatant) were

processed as described earlier.

2.8 Evaluation of internal standardisation and matrix

effects

Analysis of internal standardisation was performed on a

feature pair level using only those pairs for which both the

monoisotopic 12C and the corresponding U-13C labelled

features were found in all replicates of a certain sample

type after re-integration. Therefore, no imputation of

missing values was required. For analytical precision

demonstration before and after internal standardisation

coefficient of variance (CV) histograms of individual fea-

ture pairs within all replicates of a sample type were cal-

culated. The bin width was set to 5 %. CV values above

120 % were set to 120 % to achieve equidistant axis in the

plots. To demonstrate internal standardisation with multi-

variate statistics, PCA plots were calculated for the

monoisotopic 12C and U-13C labelled feature areas as well

as for the internal standardisation derived feature pairs. For

analytical precision analyses R (R Development Core

Team 2012 v. 2.15.2) was used. The functionality for

calculating the principal component analysis (PCA) was

taken from the package ChemometricsWithR (Wehrens

2011, pp. 53–57). Data were range scaled (van den Berg

et al. 2006) prior to PCA. For the ellipsis in the PCA plots,

the ellipse package (Murdoch and Chow 1996) was used.

Ellipses were calculated using the co-variance matrices of

PC1 and PC2 of the respective sample types.

3 Results and discussion

U-13C or 15N labelled metabolites show nearly identical

physico-chemical properties as their native non-labelled

analogues. As a consequence, LC–HRMS measurements of

mixtures of non-labelled and U-13C labelled biological

samples result in perfect co-elution of all isotopologues of

a particular metabolite with very similar chromatographic

peak shapes (Fig. 2). Thus, the analysis of mixtures of

native and U-13C labelled biological samples leads to

labelling-specific isotopic distributions of both the non-

labelled and U-13C labelled metabolites in all recorded

mass spectra containing biologically derived ion signals.

As can be expected from the ESI process, different ion

species such as protonated molecules as well as sodium

adducts or the loss of water from the intact molecules may

be observed. For each of the detected ion species two

distinct mirror-imaged isotopic patterns are present in the

mass spectra. In addition to the regular signal pattern

originating from the natural isotopic composition of carbon

(98.8 % 12C and 1.1 % 13C), the second isotopic pattern

shows ascending MS signal intensities towards higher m/z

values for all U-13C labelled metabolite derived ion spe-

cies. The relative abundance of the isotopic signals in the

pattern of the labelled metabolite is given by the degree of
13C enrichment achieved in the respective experiment

(variant A) or the labelled biological reference sample

(variant B). For the cultivation of F. graminearum strains

(variant A) the degree of 13C enrichment of metabolites

was estimated from one data file using highly abundant

features of both the monoisotopic 12C and the corre-

sponding U-13C labelled isotopologues. From the intensity

ratio of M0-1 to M0 as well as the deduced number of

carbon atoms for this isotopic pattern, the enrichment was

calculated to be as high as 99.5 %, which is in good

agreement with the suppliers specifications (99 %). For the

wheat and maize samples (variant B), the U-13C labelled

reference samples also corresponded well to the supplier’s

specifications of around 97.5 %.

Variant A can be realized without much extra effort for

less complex organisms such as bacteria, yeasts or fungi,

which can be grown on synthetic media that require only a

limited number of carbon sources, available as stable iso-

tope enriched nutrients. Growing U-13C labelled plants

(e.g. A. thaliana, wheat) has also been carried out suc-

cessfully but is a more challenging task regarding infra-

structure, costs, and time to establish cultivation conditions

in a controlled U-13CO2 enriched atmosphere and can be

demanding, particularly under the experimental conditions

of interest. If U-13C labelled plant material is commercially

available, variant B might be a good compromise as it

provides the possibility to use globally U-13C labelled plant

samples as reference for both qualitative and quantitative

measurements with the drawback however, that the bio-

logical experiment itself is not carried out under labelling

conditions. Mammalian organisms can be regarded to be

even more demanding than plants. So far, successful SIL

experiments (15N or 13C stable isotope enrichment[90 %)

of different mammalian cell lines (e.g. CHO) requiring

complex media have been reported (Egorova-Zachernyuk
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et al. 2011), but to the best of our knowledge, labelling of

whole mammalian organisms was not performed success-

fully to date.

With the presented approach, the systematic search of

MS-signals and feature pairs carrying the SIL specific

isotopic pattern virtually enables the complete annotation

of that part of the metabolome of a biological sample

which can be accessed by the chosen sample preparation

and measurement method. Moreover, since the mass

difference of the 12C monoisotopic ion M and its U-13C

labelled isotopologue ion M0 is proportional to the mass

difference between 12C and 13C isotopes (i.e. 1.00335 u),

the number of carbon atoms contained in that particular

metabolite ions can directly be calculated from the

measured HRMS spectra (Bueschl et al. 2012). A pre-

requisite to unambiguously assign the number of carbon

atoms (nC) in a particular metabolite ion directly, the

workflow requires the m/z value of both the monoiso-

topic, non-labelled M- and fully 13C labelled M0 ions to

be clearly identifiable among their respective isotopic

patterns (Fig. 2c). For example, a 13C enrichment of

98 % for the labelled metabolites allows extracting and

directly calculating the number of carbon atoms in

metabolite ions containing up to 60 carbon atoms. In

case the degree of 13C enrichment dropped to e.g. 85 %,

this number is reduced to a maximum of 7 carbon atoms

before the MS signal of a hypothetical 13C n-1
12 C1 reached

the same intensity as the fully labelled 13Cn isotopologue

and thus would interfere with direct nC assignment. It

should be noted however that even at a further reduced

enrichment degree of as low as e.g. 75 or 50 %, the

presented workflow does still allow for the automated

recognition of corresponding isotopic ion patterns when

parameter settings for processing are adjusted accord-

ingly. In addition to the qualitative aspects of improved

metabolome annotation, the use of globally U-13C

labelled biological samples permits a highly efficient

internal standardisation thereby enabling the assessment

of precision parameters (both biological and technical) as

well as compensation of matrix effects and improved

relative quantification of hundreds of metabolites

simultaneously.

3.1 Feature reduction by two-dimensional data filtering

and feature grouping

With an average number of approximately 2 million signals

(corresponding to 900 MS signals/mass scan), the raw chro-

matograms of Fusarium culture supernatants contained less

data points than the plant derived chromatograms carrying

roughly 3 million MS signals (1,200 MS signals/mass scan).

This greater complexity of the plant samples is also visible in

all successive data processing steps. The first data filtering step,

comprises an inspection in every mass spectrum of a particular

Fig. 2 3D representation of a selected F. graminearum aggregate

sample analysed with LC–HRMS. Chromatogram of the unprocessed,

centroided (a) and the processed (b) with only the SIL derived MS

signals are shown. The 3D representation in c shows a zoomed section

of the unprocessed datafile (a) illustrating the labelling specific

isotopic pattern for three different ion species (M denotes the

monoisotopic 12C metabolite and M0 denotes the U-13C labelled

metabolite) of a metabolite with the neutral, monoisotopic mass of

624.3827 u and nC = 30 carbon atoms. 3D representations were

created with TOPPView (Sturm and Kohlbacher 2009, v. 1.10)

[figure-width: 174 mm]
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data file for groups of corresponding M (i.e. monoisotopic 12C

metabolite ion), M?1, M0 (i.e. U-13C labelled metabolite ion)

and M‘-1 isotopologue MS signals forming MS signal pairs.

The formation of MS signal pairs in each mass scan resulted in

the most significant reduction of data points. As illustrated for a

selected F. graminearum aggregate sample (respective num-

bers for other sample types and experiments can be found in

Table 1), the LC–HRMS raw chromatogram (centroided and

converted to mzXML) contained a total of 1,987,654 MS

signals which were reduced by a factor of about 120 to 16,736

putative M/M0 signal pairs under the tested conditions (Fig. 2a,

b). On average, the number of extracted signal pairs represents

0.6–0.9 % of the original contained MS signals. It should be

noted that low abundant principal ions (i.e. M or M0) may not

show distinctive M?1 or M0-1 isotopic signals (e.g. at the

beginning/end of a chromatographic peak), and thus these

signals are not considered during this filtering step. Therefore,

the number of real SIL derived signal pairs is always under-

estimated. However, data processing which does not verify the

isotopic patterns could successfully extract these low abundant

metabolite ions, but at the same time increase the number of

false positive findings (e.g. pairings of artefacts which can

originate from the Fourier transformation process (Brown et al.

2009)). However, all SIL assisted data processing steps pre-

sented here always verify the isotopic patterns of both the

native and U-13C labelled metabolite ions using the number of

carbon atoms for this ion species deduced from M and M0

respectively.

After MS signal clustering, feature pairs are extracted

from the data. As the non-labelled monoisotopic and its

corresponding U-13C labelled analogue of a particular

metabolite can be expected to show perfect chromatographic

co-elution, verification of retention time and chromato-

graphic peak shape similarity is used for feature pair picking

(Fig. 1-3-c). The subsequent de-isotoping step eliminates

incorrectly paired monoisotopic 12C- and U-13C features

which do not represent true monoisotopic or uniformly

labelled features. Together, the data filtering steps 3b–3d

reduced the metabolite-related information—depending on

the investigated organism—to ca. 300–900 distinct de-isot-

oped feature pairs per LC–HRMS chromatogram.

Since ionisation by electrospray may give rise to several

ion species for the same substance such as adducts, in-source

fragments or dimers, the SIL derived feature pairs are further

combined with the aim to convolute all ion species of a

particular metabolite into single groups (Fig. 1-3-e). Feature

grouping is greatly facilitated by the prior removal of all non-

biology related as well as all M?1, M?2 isotopic features

and, depending on the investigated samples, resulted in the

detection of 87–135 metabolites for the F. graminearum—

and 200–360 truly plant derived substances for the maize and

the wheat extracts respectively. As a major benefit of the

presented approach all of these metabolites can be used to

build-up reference databases and can serve as positive lists

for future metabolomics experiments. The list of approxi-

mately 135 metabolites detected for the Fusarium aggregate

samples (variant A, labelling under experimental conditions)

can be assumed to comprise all metabolites which have been

produced and released by at least one of the fungal strains

under the tested conditions. For variant B of the workflow,

which is exemplified with globally U-13C-labelled reference

samples, the detected metabolites are restricted to those

present in both, the reference as well as the experimental

samples. Nevertheless, all of the generated feature groups

facilitate metabolic feature annotation and come with addi-

tional valuable characteristics for molecular formula gen-

eration and metabolite annotation such as the number of

carbon atoms, the charge state for each metabolite ion as well

as all other ion species detected for that particular metabolite

(i.e. feature group).

Table 1 The table provides a quantitative overview of the data processing results with the proposed workflow (Fig. 1)

No. Workflow

step

Wildtype PH-1

(variant A)

Aggregate samples

(variant A)

Remus wheat

(variant B)

CM wheat

(variant B)

CO354 maize

(variant B)

MS signals 3-a 1.8 9 106

(±0.06 9 106)

1.9 9 106

(±0.09 9 106)

3.0 9 106

(±0.01 9 106)

3.0 9 106

(±2 9 102)

2.8 9 106

(±7 9 103)

SIL derived signal

pairs

3-b 1.06 9 104

(±0.24 9 104)

1.65 9 104

(±0.52 9 104)

1.87 9 104

(±0.66 9 104)

2.09 9 104

(±0.19 9 104)

2.04 9 104

(±0.67 9 104)

MS signal clusters 3-b 8.09 9 102

(±0.27 9 102)

1.28 9 103

(±0.04 9 103)

2.07 9 103

(±0.03 9 103)

2.32 9 103

(±0.13 9 103)

1.39 9 103

(±0.37 9 103)

Feature pairs before

de-isotoping

3-c 824 (±19) 1,199 (±34) 1,288 (±30) 1,443 (±92) 858 (±274)

De-isotoped feature

pairs

3-d 291 (±9) 442 (±14) 797 (±9) 902 (±68) 511 (±166)

Feature groups (i.e.

metabolites)

3-e 87 (±6) 135 (±6) 347 (±12) 362 (±32) 209 (±58)

Selected sample types are taken from the F. graminearum, wheat and maize experiment. The mean value and its standard deviation among the

replicates within a certain sample type are given Table 1
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3.1.1 Comparison of feature extraction with a labelling-

free workflow

To compare the number of SIL derived features with those

found with a labelling-free metabolomics approach, a

selected native F. graminearum aggregate sample (con-

sisting of a mixture of non-labelled F. graminearum

wildtype and non-labelled tri5D mutant culture superna-

tants) was diluted 1:1 (v/v) with either Fusarium minimal

medium (FMM) or a pooled 13C-aggregate supernatant, to

generate two LC–HRMS samples both containing the

native metabolites at identical concentration levels.

Retention time shifts observed between the respective LC–

HRMS chromatograms were negligible (see TICs in

Fig. 3a). Parameter settings for XCMS-based (Smith et al.

2006) feature extraction for the non-labelled aggregate

sample chromatogram such as intensity threshold (5,000

counts), minimum number of scans (39), maximum ppm

deviation (2.5 ppm) were kept identical to the SIL assisted

feature picking in order to ensure maximum comparability

of results between the two approaches. As expected, with

XCMS every chromatographic peak in the data regardless

of its origin (biological, background, noise…) was

extracted as a feature. In total, n = 4,625 features (illus-

trated as grey symbols in scatter plot of Fig. 3b) were

found by XCMS based data processing including all low

abundant features with no observable isotopic peaks or MS

signals. In contrast, with the SIL assisted approach MS

signal- and feature pair picking and subsequent de-isotop-

ing only yields monoisotopic 12C features with a high

degree of confidence to correspond to truly sample derived

metabolites. In total, application of the SIL assisted

workflow yielded 431 feature pairs (red dots in scatter plot

in Fig. 3b) which are about ten times less compared to

XCMS. Moreover, data processing and automated com-

parison of the SIL and XCMS assisted approach resulted in

28 feature pairs (Fig. 3b blue dots) solely found with the

SIL assisted approach. A closer, manual inspection of these

28 results showed, that 22 features were not automatically

matched because of larger m/z or retention time deviations.

Only three feature pairs found solely with the SIL assisted

approach did not show any signals in the native sample

Fig. 3 a Illustration of an overlay of full scan LC–HRMS total ion

current chromatograms obtained for two F. graminearum aggregate

samples. Red Non-labelled 12C and U-13C culture filtrate mixed 1:1

(v/v); grey Non-labelled filtrate mixed 1:1 with fungal growth

medium. b 2D plot of detected LC–HRMS features (all dots). Grey

symbols indicate all features found with XCMS processing. Red

symbols represent monoisotopic 12C features found by both XCMS

and the presented workflow (variant A, Fig. 1). Monoisotopic 12C

features found by the labelling assisted approach only are marked in

blue. Features with a retention time [30 min are mainly detected by

XCMS. Due to the higher strength of the eluent, predominantly

impurities of non-biological origin such as polymers and apolar

compounds are displaced from the stationary phase [figure-width:

174 mm]

764 C. Bueschl et al.

123



processed with XCMS. Moreover, 3 of these 28 feature

pairs were identified as false positives (e.g. pairings of

Fourier transform artefacts (Brown et al. 2009)). For

additional manual inspection of those parts of the LC–

HRMS chromatograms showing a high density of features

(e.g. Rt C 30 min or m/z B 150), which had only been

found by XCMS, TOPPView was used to confirm that none

of these features did show corresponding U-13C labelled

isotopologues.

It should be noted that workflows which do not make

use of SIL, generally try to not further consider those non-

biologically related background features by using statistical

analysis to select features significantly differing between

two or more experimental conditions. Such an assumption

implies, however that only biologically derived features

vary significantly between the different experimental con-

ditions and that all others approximately show similar

abundances across the different sample types.

3.1.2 Selectivity of the presented approach

To demonstrate the selectivity of the workflow for the

extraction of truly biologically related metabolite features

by the use of SIL, eight blank samples were included in a

measurement sequence of F. graminearum samples and

evaluated according to the presented workflow (variant A).

Three of these blanks, which consisted of purified water

instead of fungal supernatant, were employed as solvent

blanks. Furthermore, five aggregate samples containing

only the non-labelled F. graminearum metabolome served

as simulated matrix background blanks. Metabolite ions

detected in the native F. graminearum supernatants were

not expected to be found with the SIL assisted data pro-

cessing steps since they did not contain any U-13C labelled

metabolites. In the solvent blanks, hardly any MS signal

pairs (searched in each mass scan, Fig. 1-3-b) were

extracted (2, 26 and 39 MS signal pairs respectively).

Better yet, none of these MS signal pairs were further

confirmed to be valid feature pairs according to the pre-

defined filtering criteria (Fig. 1-3-c). The simulated back-

ground blanks showed 14, 17, 7, 224 and 106 MS signal

pairs on a mass scan level. Subsequent feature pair picking

revealed 0, 1, 1, 1 and 5 feature pairs for the simulated

background blanks respectively. However, none of such

extracted feature pairs were found in more than one of the

measured matrix blanks. Further manual inspection clearly

showed that all of these randomly picked feature pairs

fulfilled the present criteria either by chance or were

pairings of different adducts or Fourier transformation

artefacts (Brown et al. 2009). Such incorrectly picked

adducts or artefacts showed nearly identical chromato-

graphic profiles and they were therefore not discarded as

false positives automatically (Fig. 1-3-e). Two of these

feature pairs were detected at [700 u with a difference

between the monoisotopic 12C and corresponding U-13C

mass corresponding to less than ten carbon atoms. Thus

such feature pairs can easily be excluded from further data

analysis. In conclusion the very low rate of false positives

in both types of blank samples demonstrates the excep-

tionally high selectivity of the presented approach in only

extracting truly biologically related feature pairs.

3.2 Results of internal standardisation

Absolute quantification in untargeted metabolomics

experiments of all detected (known or unknown) metabo-

lites is generally not feasible by most of the current

approaches. Moreover, the accuracy of relative feature/

metabolite quantification in untargeted metabolomics

experiments is limited by matrix effects which can cause

problems during statistical analysis as the biased feature

abundances complicate comparison across different

experimental conditions. Internal standardisation using

globally stable isotope labelled biological samples provides

the ideal tool to overcome these limitations and has already

been used for relative (e.g. Giavalisco et al. 2009) and even

for absolute quantification in untargeted metabolomics

approaches (Bennett et al. 2008). As the presented work-

flow also makes use of globally U-13C labelled biological

samples, the effect of global internal standardisation on

matrix effects and technical precision has been investigated

at the example of the F. graminearum dataset.

3.2.1 Correction of matrix effects

In many metabolomics experiments unsupervised multi-

variate statistical tools such as PCA are used as a first step

to reduce the dimensionality of the analytical data and test

for separation of biological samples into different classes

according to experimental conditions. Such tools operate

on different signal abundances or feature areas in the data

matrix obtained from prior data processing. In order to test

the suitability of the SIL assisted workflow to correct for

matrix effects, feature areas obtained for the F. grami-

nearum dataset were range scaled (van den Berg et al.

2006) and subsequently PCA score plots were calculated

using (1) peak areas of monoisotopic 12C features (12C-

PCA, Fig. 4a), (2) U-13C labelled ion species (U-13C-PCA,

Fig. 4b) and (3) the peak area ratio of the respective non-

labelled and U-13C features of a certain feature pair (12C/

U-13C-PCA, Fig. 4c). To be able to compare the three

different PCA plots, only those feature pairs which had

been found consistently throughout all replicates and

samples categories (PH-1, tri5D and pooled aggregate

samples (AGs)) were considered (n = 109).
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As can be expected from the experiment, the score plot

of the 12C-PCA shows a clear separation of the PH-1, tri5D
and AGs samples into three distinct groups. The same

holds true for the 12C/U-13C-PCA, which was calculated

from the area ratios of non-labelled and corresponding

U-13C features. Additionally the variance captured by PC1

and PC2 increased slightly from 85.4 to 88.8 %. Compared

to the 12C-PCA, the aggregate samples are located in the

centre of the 12C/U-13C-PCA score plot (Fig. 4c), which is

explained by the range scaling process together with the

fact that these aggregate samples constitute of equal

amounts of U-13C internally standardised PH-1 and tri5D
samples. In contrast to the ideal behaviour of the U-13C-

standardised AG samples, matrix effects obviously affected

the monoisotopic 12C feature areas of the aggregate sam-

ples (Fig. 4a), which in turn become visible as a shift of the

aggregate sample group away from the centre of the 12C-

PCA score plot.

Interestingly, the use of U-13C-feature areas for PCA

also resulted in a clear separation into the three sample

categories, although (according to the preparation protocol

for the AGs, see Sect. 2.3.1) the absolute concentration

levels of all U-13C labelled metabolites were identical in

every of the analysed samples and sample type. In this

case, the separation of the sample groups in the U-13C-PCA

plots is explained by the different metabolic composition of

the wildtype PH-1, tri5D and AGs samples with respect to

their non-labelled metabolites, which resulted in distinct

alterations of the areas derived from U-13C labelled fea-

tures (i.e. matrix effects) for each of the tested sample

categories. The separation of the three sample categories

based on the peak areas of the respective U-13C features

would have never been recognised as artefact (caused by

matrix effects) without the availability of globally U-13C

labelled biological samples. In contrast, an observation as

depicted in Fig. 4b most probably would have led to the

false conclusion that metabolites differing between the

experimental samples had caused the separation according

to the tested experimental states.

3.2.2 Precision of workflow and improvement of technical

data variability

Stable isotope labelling assisted internal standardisation

has been successfully used for improved metabolite quan-

tification in GC–MS and LC–MS based metabolomics

studies (e.g. (Birkemeyer et al. 2005; Bennett et al. 2008;

Giavalisco et al. 2009)). Here, the assessment and

improvement of both biological and technical precision of

the presented SIL assisted workflow are exemplified with

the F. graminearum dataset. Again, U-13C labelled fungal

samples were employed for global internal standardisation

of non-labelled samples and subsequently precision mea-

sures of the workflow were estimated. Only those feature

pairs were considered which had been found in all repli-

cates of the respective sample type corresponding to

n = 307 12C/U-13C feature pairs for PH-1 wildtype data

and n = 424 for aggregate samples. Coefficients of varia-

tion (CVs) of each feature (pair) were calculated across all

replicates of a particular sample type, the distribution of

CVs was plotted as a histogram with a class size of 5 %

(Fig. 5) and the median CV as well as 90 % percentile

were taken as precision estimate. For PH-1 samples, CVs

of monoisotopic 12C feature areas showed a median value

of 15.1 % with 90 % of all features showing CVs below

36 %. These CV values can be interpreted as a measure for

the variability of the overall workflow including all steps

from culturing of fungi (biological variance) to sample

Fig. 4 Three PCA scores plots derived from consistently extracted

feature pairs of three sample types: F. graminearum samples PH-1,

tri5D and aggregate samples (AGs). For all three PCAs the exactly

same set of feature pairs was used, however different intensity values

(peak areas) were taken for each feature pair. a areas of monoisotopic
12C features of the respective feature pairs, b areas of U-13C labelled

features, c intensity ratios of monoisotopic 12C and corresponding

U-13C feature area (internal standardisation) [figure-width: 174 mm]
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preparation, LC–HRMS measurement, data processing and

feature integration (technical variance). Using the area

ratio of corresponding monoisotopic 12C and U-13C fea-

tures, the overall precision of PH-1 samples was improved

to a median CV of 10.8 %, with 90 % of all features

showing CVs below 26.6 %, indicating that (1) biological

and technical variability roughly contributed equally to the

overall spread of feature areas and (2) internal standardi-

sation with globally U-13C labelled samples helped to

improve precision considerably. For the tri5D mutant,

comparable CV values and improvements were obtained

(data not shown).

In order to estimate and dissect the precision of the end

determination step (i.e. LC–HRMS measurement, data

processing and feature integration), 12C/U-13C aggregate

samples, consisting of 1:1 mixtures of PH-1/tri5D super-

natants were measured as replicate injections (n = 13) at

regular intervals over a complete LC–HRMS sequence.

The distribution of CVs of the monoisotopic 12C feature

areas showed a median CV of 7.1 % (90 % of all features

had CV values below 18 %). After internal standardisation

(blue histogram), the distribution of CVs shifted left (blue

histogram) towards lower CV values with a median and

90 % quartile of to 3.6 and 9.7 % respectively, demon-

strating a substantial improvement (*50 %) of the LC–

HRMS end determination.

It should be noted that for a few (n \ 10) features the

internal standardisation of F. graminearum culture super-

natants resulted in CV values [120 %. This might have

been caused by non-reproducible degradation/chemical

conversion of a few metabolite features in the samples but

this phenomenon was not further investigated in this study

however.

With ca. 20 % and 40–50 % respectively the distribu-

tion of CVs in wheat and maize samples (variant B) yielded

slightly higher median and 90 % percentile values than for

the F. graminearum samples (data not shown). Similar to

the F. graminearum experiment, wheat and maize aggre-

gate samples were used to study the technical precision.

Similar to Fusarium, median CV (90 % percentile) values

shifted from roughly 8 % (16 %) to 5 % (20 %) for wheat

and 12 % (22 %) to 6 % (17 %) for maize respectively

(data not shown).

In conclusion, the above illustrated results are in good

agreement with the reports of e.g. Birkemeyer et al. (2005),

Bennett et al. (2008), Giavalisco et al. (2009), who

described enhanced precision and (relative) quantification

after metabolome wide internal standardisation by use of

U-13C labelled biological samples. Furthermore, as shown

for F. graminearum samples, internal standardisation

resulted in an improved performance of multivariate data

analysis.

Fig. 5 Histograms showing the distributions of coefficients of

variation (CV) across all SIL derived features which were consistently

found in all replicates of F. graminearum wildtype PH-1 (n = 6) and

F. graminearum aggregate samples (n = 13). The histograms in a and

b (red) were derived from the peak areas of the monoisotopic 12C

feature of the respective feature pairs while c and d (blue) were

calculated after internal standardisation with the areas of the

corresponding U-13C labelled features of the very same feature pair.

Histograms e and f (overlay of transparent red and blue) combine the

respective above two histograms to illustrate the shift towards lower

CVs by internal standardisation, achieved for both sample types

[figure-width: 129 mm]
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4 Concluding remarks

Recent reports of SIL assisted tools and techniques and

their application to various fields of metabolomics have

illustrated significant improvements to circumvent major

challenges of untargeted metabolite profiling. The pre-

sented workflow enables the untargeted global extraction

of truly metabolite related MS signals and features in LC–

HRMS datafiles derived from native and U-13C labelled

metabolomes. Together with the automated generation of

hundreds of feature groups per sample, each of which is

representing a distinct metabolite, this approach constitutes

a major step forward towards global annotation of the

entire metabolic composition of biological samples.

Additionally, metabolome wide internal standardisation

with U-13C labelled samples greatly enhances accuracy and

reliability of relative quantification by correction of tech-

nical variability as well as correction of matrix effects,

which otherwise are difficult to evaluate and compensate.

In conclusion, although stable isotope labelling of whole

metabolomes for untargeted metabolomics is still challeng-

ing and generally requires additional efforts in terms of costs

and/or experimental design, it is anticipated that SIL assisted

metabolomics will arouse increasing interest and become a

well-established technique in metabolomics research.
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