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ABSTRACT Francisella tularensis causes the deadly zoonotic disease tularemia in
humans and is able to infect a broad range of organisms including arthropods,
which are thought to play a major role in Francisella transmission. However, while
mammalian in vitro and in vivo infection models are widely used to investigate
Francisella pathogenicity, a detailed characterization of the major Francisella viru-
lence factor, a noncanonical type VI secretion system (T6SS), in an arthropod in vivo
infection model is missing. Here, we use Galleria mellonella larvae to analyze the role
of the Francisella T6SS and its corresponding effectors in F. tularensis subsp. novicida
virulence. We report that G. mellonella larvae killing depends on the functional T6SS
and infectious dose. In contrast to other mammalian in vivo infection models, even
one of the T6SS effectors PdpC, PdpD, or OpiA is sufficient to kill G. mellonella larvae,
while sheath recycling by ClpB is dispensable. We further demonstrate that treat-
ment by polyethylene glycol (PEG) activates Francisella T6SS in liquid culture and
that this is independent of the response regulator PmrA. PEG-activated IglC secretion
is dependent on T6SS structural component PdpB but independent of putative effec-
tors PdpC, PdpD, AnmK, OpiB1, OpiB2, and OpiB3. The results of larvae infection and
secretion assay suggest that AnmK, a putative T6SS component with unknown func-
tion, interferes with OpiA-mediated toxicity but not with general T6SS activity. We
establish that the easy-to-use G. mellonella larvae infection model provides new
insights into the function of T6SS and pathogenesis of Francisella.
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F rancisella tularensis is the causative agent of the deadly zoonotic disease called tu-
laremia (1). The most virulent subspecies Francisella tularensis subsp. tularensis is

considered a tier 1 select agent due to high infectivity in humans (50% lethal
dose,,10 CFU) and a high mortality rate if left untreated (up to 60%) (1, 2). In Europe,
the less virulent Francisella tularensis subsp. holarctica is most prevalent (1). The closely
related Francisella tularensis subsp. novicida is often used as a model organism to study
Francisella pathogenicity, as it has a high infectivity in mice but not in humans (2).

Francisella virulence depends on the Francisella pathogenicity island (FPI) (3).
Interestingly, F. tularensis subsp. novicida encodes one FPI, while the more virulent subspe-
cies F. tularensis subsp. tularensis and F. tularensis subsp. holarctica both possess two identi-
cal FPIs (4). The FPI encodes a noncanonical type VI secretion system (T6SS) (see Fig. S1 in
the supplemental material) required for intracellular survival (4–7). T6SS is a contractile
nanomachine that can translocate effector proteins into bacterial and eukaryotic cells (8).
The T6SS consists of the following three subcomplexes: a membrane complex spanning
the bacterial cell envelope; a baseplate complex harboring the spike and effectors; and a
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contractile, cytosolic sheath with inner tube (8). Contraction of the cytosolic sheath propels
the inner tube with the spike and effectors into a target cell (9–11). Dynamics of sheath as-
sembly and contraction can be visualized by live-cell fluorescence microscopy and serves
as a readout for a functional T6SS (5, 12, 13).

For F. tularensis subsp. novicida, six secreted T6SS effectors were identified as fol-
lows: PdpC, PdpD, OpiA, and OpiB1, OpiB2, and OpiB3 (OpiB1–3) (14). While PdpC and
PdpD are required for phagosomal escape, their exact mode of action remains elusive
(15, 16). Interestingly, OpiA and OpiB1–3 are encoded outside the FPI at different
genomic sites (14). OpiA was shown to be a bacterial phosphatidylinositol 3-kinase
delaying phagosomal maturation (17). Conversely, the function of the three almost
identical OpiB proteins is unclear (14). The FPI encodes additional components PdpE
and AnmK, which are dispensable for T6SS assembly and dynamics, and thus may be
putative effectors (5). However, the corresponding deletion mutants were indistin-
guishable from the parental strains in various infection models (5, 15, 18, 19).

Strikingly, Francisella is able to infect and survive in a wide range of hosts ranging from
amoeba and insects to mammals (20–24). Although the primary niche of Francisella is
phagocytic cells, such as macrophages, Francisella is able to infect a broad range of cells,
including nonphagocytic cells such as HeLa cells, Drosophila melanogaster cells, or erythro-
cytes (6, 25–28). Furthermore, there is clear evidence that tularemia is transmitted either
by aerosols, infected animals, or by arthropod vectors such as ticks (21, 29, 30). Particularly,
the broad range of arthropods that are susceptible for Francisella infections suggests that
arthropods may play a role in maintaining Francisella in the environment (24).

An increasingly used arthropod in vivo infection model for studying host-pathogen
interactions as well as for antimicrobial drug testing is Galleria mellonella larva (31). G.
mellonella larvae combine several advantages for research, such as low maintenance
costs and few ethical problems, compared to mammalian in vivo infection models (32).
Moreover, G. mellonella larvae contain a complex innate immune system, including
phagocytic cells called hemocytes and a humoral response (31). A part of the humoral
response is a melanization process required for encapsulation of pathogens (33).
Melanization results in a color change of the larvae from a healthy yellow into different
shades of brown and black depending on the strength of the immune response (34).
Recently, the complete G. mellonella genome was sequenced, facilitating genetic
manipulations in the future (35).

G. mellonella larvae were already used as an in vivo infection model for Francisella.
However, these studies focused on initial characterization of inoculum concentrations and
infection conditions for robust killing of G. mellonella larvae by various Francisella species
(36–39). Crucially, in-depth characterization of the major Francisella virulence factor, the
noncanonical Francisella T6SS, and its role in killing of G. mellonella larvae is lacking.

Here, we show that virulence of F. tularensis subsp. novicida in G. mellonella larvae
depends on a functional T6SS. However, ClpB-mediated T6SS sheath recycling is less
important than reported previously in mice and bone marrow-derived macrophages
(BMDMs). In addition, the main T6SS effectors PdpC and PdpD were dispensable for
killing G. mellonella larvae. In contrast to mammalian in vivo infection models, individ-
ual effectors PdpC, PdpD, or OpiA were sufficient to kill G. mellonella larvae in a manner
comparable to the parental strain. We demonstrate that Francisella T6SS can be acti-
vated in vitro by polyethylene glycol (PEG) in a PmrA-independent manner and use
this to show that AnmK affects OpiA-mediated killing of G. mellonella larvae without
altering T6SS activity or IglC secretion. In summary, our results suggest that G. mello-
nella larvae serve as a suitable model for testing roles of uncharacterized Francisella
genes in infection.

RESULTS
T6SS is required for efficient killing of larvae by F. tularensis subsp. novicida. In

order to characterize G. mellonella larvae as an in vivo infection model for Francisella,
we first tested if F. tularensis subsp. novicida establishes infection in a T6SS-dependent
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manner. We used F. tularensis subsp. novicida U112 iglA-sfGFP (10) as the parental
strain, which has T6SS sheath component IglA labeled with superfolder green fluores-
cent protein (sfGFP) and, thus, allows monitoring of T6SS dynamics by live-cell fluores-
cence microscopy (Fig. 1A; see also Movies S1 and S2 in the supplemental material) (5).
We compared survival of G. mellonella larvae infected with the parental strain and that
of a T6SS-negative control, in which pdpB, part of the T6SS membrane complex, was
deleted (Fig. 1A; see also Fig. S1 and Movies S1 and S2 in the supplemental material)
(5). G. mellonella survival was monitored for three different calculated inocula (106 CFU,
104 CFU, and 102 CFU per injection) and compared to a phosphate-buffered saline
(PBS) control (Fig. 2A to C). Fifty percent of larvae infected with the parental strain
were dead after 36 to 60 h, depending on the infection dose, while significantly more
larvae infected with the T6SS-negative strain remained alive (Fig. 2A to C). PBS-treated

FIG 1 T6SS assembly in F. tularensis subsp. novicida is independent of PdpC, PdpD, AnmK, OpiA, and OpiB1–3. All F. tularensis subsp. novicida mutants used
in this study exhibit a functional T6SS. Filled arrows point to examples of assembled T6SS. Upper images are a merge of phase contrast and GFP channel.
The lower images show GFP channel only. The 3.3- by 3.3-mm fields of view are shown. Scale bars represent 1mm. (A) Assembly of IglA-sfGFP containing
T6SS sheath in F. tularensis subsp. novicida U112 iglA-sfGFP (parental strain) and the DclpB mutant. Empty arrows point to sfGFP aggregates in the F.
tularensis subsp. novicida U112 iglA-sfGFP DclpB strain. No T6SS assembly was observed in the F. tularensis subsp. novicida U112 iglA-sfGFP DpdpB strain
(T6SS-negative control). (B) Assembly of IglA-sfGFP containing T6SS sheath in F. tularensis subsp. novicida U112 iglA-sfGFP DpdpC, DpdpD, DanmK, DopiA,
DopiB1–3, and DpdpC DpdpD strains. (C) Assembly of IglA-sfGFP containing T6SS sheath in F. tularensis subsp. novicida U112 iglA-sfGFP DpdpD DanmK DopiA
DopiB1–3 (pdpC), DpdpC DanmK DopiA DopiB1–3 (pdpD), DpdpC DpdpD DopiA DopiB1–3 (anmK), DpdpC DpdpD DanmK DopiB1–3 (opiA), DpdpC DpdpD DanmK
DopiA (opiB1–3), DpdpC DpdpD DopiB1–3 (anmK opiA), DpdpC DpdpD DopiA (anmK opiB1–3), and DpdpC DpdpD DanmK (opiA opiB1–3) strains.
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G. mellonella larvae survived over 120 h (Fig. 2A to C). The infection dose of 104 CFU
killed 93% of larvae when infected with the parental strain; however, less than 40% of
larvae died when infected with the T6SS-negative strain after 120 h (Fig. 2B). Moreover,
the parental F. tularensis subsp. novicida strain was able to robustly trigger an immune
response in G. mellonella larvae, indicated by the melanization process and darkening
of the larvae (Fig. 2D). In general, the killing rate for each strain and infection dose was
reproducible over three independent infection experiments (see Fig. S2 in the supple-
mental material). While our data show that the Francisella T6SS is a major virulence fac-
tor in G. mellonella larvae, at higher infection doses, larvae infected with the T6SS-neg-
ative strain were also killed, suggesting that additional virulence factors play a role
during infection.

ClpB and effectors PdpD and PdpC are less important for establishing infection
in G. mellonella larvae than in mammalian infection models. ClpB-mediated refold-
ing of the T6SS sheath is essential for Francisella virulence in BMDMs and mice (5, 40).
To test the role of ClpB in G. mellonella, we infected the larvae with a DclpB mutant
(Fig. 1A; see also Fig. S1 and Movies S1 and S2). Surprisingly, a DclpB mutant killed G.
mellonella larvae almost as efficiently as the parental strain (Fig. 2A to C). An average
delay in killing of approximately 12 to 24 h was observed for the DclpB mutant for all
infection doses, suggesting that while ClpB contributes to infection, it is largely
dispensable.

Next, we focused on the role of the FPI components, which are not required for
T6SS assembly (5) (Fig. 1B; see also Fig. S1 and Movies S1 and S2). First, we tested the
role of T6SS effectors PdpC and PdpD, which are secreted in a T6SS-dependent manner
and have a major role in phagosomal escape in BMDMs and mice (5, 14–16). Since the

FIG 2 F. tularensis subsp. novicida kills G. mellonella larvae in a T6SS- and concentration-dependent manner. (A to C) Survival curves represent three
individual experiments over 5 days pooled together (n0 total = 30; n0 = 10 per experiment). State of G. mellonella larvae was monitored every 12 h. Pupating
larvae were censored (vertical dashes). Error bars indicate standard error. Black survival curves, PBS-treated G. mellonella larvae; gray survival curves, G.
mellonella infected with F. tularensis subsp. novicida U112 iglA-sfGFP (parental strain); blue survival curves, G. mellonella larvae infected with F. tularensis
subsp. novicida U112 iglA-sfGFP DpdpB strain (T6SS-negative control); red survival curves, G. mellonella infected with F. tularensis subsp. novicida U112 iglA-
sfGFP DclpB strain. Individual curves were compared with log rank (Mantel-Cox) test. P values above a Bonferroni-corrected threshold were considered
nonsignificant (ns). **, P, 0.01; ***, P, 0.001; ****, P, 0.0001. Following curves were compared. Parental strain versus DclpB mutant, DclpB mutant versus
DpdpB mutant, and DpdpB mutant versus PBS control. Calculated infection inocula are as follows: 106 CFU (A), 104 CFU (B), and 102 CFU (C). (D)
Representative examples of G. mellonella larvae morphology directly after PBS treatment and infection with F. tularensis subsp. novicida U112 iglA-sfGFP
(parental strain) at an infection dose of 104 CFU and after 120 h or 96 h, respectively.
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infection with 104 CFU (Fig. 2B) resulted in the biggest survival difference between the
parental strain and a T6SS-negative strain, we used this dose for all remaining infec-
tions. Surprisingly, single in-frame deletions of pdpC and pdpD had no effect on
Francisella virulence in larvae (Fig. 3A and B). Even a DpdpC DpdpD double mutant,
which is avirulent in BMDM and mice (5), killed the G. mellonella larvae as efficiently as
the parental strain (Fig. 3C). We further analyzed the contribution of AnmK, a FPI com-
ponent of unknown function (4) and the four secreted effectors OpiA and OpiB1–3,
which are located outside of the FPI (14, 17) (Fig. 1B; see also Fig. S1 and Movies S1
and S2). Single deletion of either of the genes encoding these proteins had no effect
on Francisella virulence in larvae (Fig. 3D to F; see also Fig. S3 in the supplemental ma-
terial), suggesting that T6SS effectors play redundant roles in killing of G. mellonella.

PdpC, PdpD, and OpiA alone are sufficient for killing of larvae. Since both PdpC
and PdpD are dispensable for Francisella virulence in G. mellonella larvae, we hypothe-
sized that either other effectors, such as OpiA and OpiB1–3, may compensate for the

FIG 3 PdpC and PdpD are dispensable for T6SS-dependent Francisella virulence in G. mellonella. Survival curves represent three individual experiments
over 5 days pooled together (n0 total = 30; n0 = 10 per experiment). State of G. mellonella larvae was monitored every 12 h. Pupating larvae were censored
(vertical dashes). Error bars indicate standard error. Individual curves were compared with log rank (Mantel-Cox) test. P values above a Bonferroni-corrected
threshold were considered nonsignificant (ns). Parental strain versus mutant curves were compared. Black survival curves, PBS-treated G. mellonella larvae;
gray survival curves, G. mellonella infected with F. tularensis subsp. novicida U112 iglA-sfGFP (parental strain); blue survival curves, G. mellonella larvae
infected with F. tularensis subsp. novicida U112 iglA-sfGFP DpdpB strain (T6SS-negative control); red survival curves, G. mellonella infected with F. tularensis
subsp. novicida U112 iglA-sfGFP (A) DpdpC mutant; (B) DpdpD mutant; (C) DpdpC DpdpD mutant; (D) DanmK mutant; (E) DopiA mutant; (F) DopiB1–3 mutant.
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loss of PdpC and PdpD or that Francisella secretes additional T6SS effectors. To distin-
guish between these two possibilities, we first assessed if the previously identified
T6SS effectors are individually sufficient to kill G. mellonella. We prepared strains where
we deleted genes encoding all but one of the known or suspected effectors (PdpC,
PdpD, AnmK, OpiA, and OpiB1–3) (see Fig. S1). Interestingly, the strains with PdpC,
PdpD, and OpiA alone were as efficient in killing of larvae as the parental strain (Fig.
4A, B, and D; see also Fig. S4 in the supplemental material). A strain expressing only
PdpD killed larvae even faster than the parental strain (Fig. 4B). In contrast,
F. tularensis subsp. novicida strains with pdpC, pdpD, and opiA deleted (only anmK and/
or opiB1–3 present) killed larvae at the same rate as the T6SS-negative strain (DpdpB
mutant) (Fig. 4C, E, and F; see also Fig. S4). Interestingly, killing of G. mellonella larvae
was significantly delayed in a strain with both anmK and opiA present compared to a
strain having only opiA (Fig. 4G; see also Fig. S4). In contrast, the presence of opiB1–3
had no significant effect on OpiA-mediated killing of larvae (Fig. 4H; see also Fig. S4).
Importantly, all of these strains assembled T6SS with a frequency and dynamics com-
parable to those of the parental strain (Fig. 1C and Fig. 4I; see also Movie S1 and S2). In
summary, these results suggest that PdpC, PdpD, or OpiA are individually sufficient to
kill G. mellonella larvae and that AnmK specifically reduces OpiA-mediated killing.

Polyethylene glycol activates Francisella T6SS assembly and IglC secretion.
Previous work identified activation of T6SS expression and assembly by 5% KCl treatment
(10) or by 30 to 60min of incubation on PBS-agarose pads (5). Inspired by the observation
that T6SS in Vibrio fischeri is activated by increasing the viscosity of the medium (41), we
tested if similar conditions could activate F. tularensis subsp. novicida T6SS. We show that
treatment of an exponentially growing culture of F. tularensis subsp. novicida U112 iglA-
sfGFP by 10% polyethylene glycol 4000 (PEG) induces assembly of IglA-sfGFP into
dynamic structures in less than 20min (Fig. 5A). In contrast, no such structures were
detected in untreated cells (Fig. 5B) or PEG-treated T6SS-negative mutant (DpdpBmutant)
cells (Fig. 5C).

In Francisella, the orphan response regulator PmrA is required for regulation of FPI
expression and intracellular replication upon environmental cues (42–44). Thus, we
hypothesized that PmrA could be involved in agarose pad-dependent and/or PEG-de-
pendent Francisella T6SS activation. However, deletion of pmrA did not significantly
change T6SS activity compared to the parental strain with either of the two activation
methods (Fig. 5D to F). Moreover, we observed that T6SS dynamics and number of
T6SS assemblies per cell upon PEG treatment were comparable to what was observed
upon starvation on PBS-agarose pads (Fig. 5F).

The advantage of PEG treatment is that it activates T6SS assembly in liquid culture
similarly to the previously used 5% KCl treatment (10, 14). Therefore, we tested if PEG
treatment also results in T6SS-dependent IglC secretion. Indeed, IglC was secreted by
T6SS-positive parental strain while no IglC was detected in the supernatant of the
T6SS-negative mutant (DpdpB mutant) (Fig. 5G). We also used this IglC secretion assay
to rule out that the observed AnmK-dependent modulation of F. tularensis subsp. novi-
cida infection is due to its role in T6SS-mediated secretion. Importantly, both strains
containing only opiA or opiA and anmK secreted IglC at comparable levels, albeit at a
slightly lower level than that of the parental strain (Fig. 5G). This suggests that a gen-
eral defect in T6SS function is an unlikely explanation for the observed AnmK-depend-
ent decrease in virulence toward G. mellonella (Fig. 4G).

DISCUSSION

Since Francisella is able to infect a broad range of arthropods, it is important to
understand Francisella pathogenicity in suitable infection models. Here, we characterized
the contribution of the noncanonical T6SS and its known effectors to F. tularensis subsp.
novicida pathogenicity in an in vivo arthropod infection model, namely, G. mellonella lar-
vae. Our data show that F. tularensis subsp. novicida robustly kills G. mellonella larvae in a
T6SS- and dose-dependent manner (Fig. 2; see also Fig. S2 in the supplemental material).

Brodmann et al. Infection and Immunity

July 2021 Volume 89 Issue 7 e00579-20 iai.asm.org 6

https://iai.asm.org


FIG 4 PdpC, PdpD, and OpiA are sufficient for T6SS-dependent Francisella virulence in G. mellonella. Survival curves represent three individual experiments
over 5 days pooled together (n0 total = 30; n0 = 10 per experiment). State of G. mellonella larvae was monitored every 12 h. Pupating larvae were censored
(vertical dashes). Error bars indicate standard error. Individual curves were compared with log rank (Mantel-Cox) test. P values above a Bonferroni-corrected
threshold were considered nonsignificant (ns). **, P, 0.01; ***, P, 0.001; ****, P, 0.0001. Parental strain versus mutant curves were compared to each
other. For panel G, mutant versus DpdpB strain curve was also compared. Black survival curves, PBS-treated G. mellonella larvae; gray survival curves,

(Continued on next page)
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These findings are in agreement with reports for other established in vivo infection mod-
els (4, 5, 45). Moreover, we could replicate the different dose-dependent killing dynamics
with the parental strain reported previously (39). Interestingly, even a T6SS-negative
strain killed some G. mellonella larvae, especially at high infection doses (Fig. 2; see also
Fig. S2), suggesting that other virulence factors contribute to Francisella virulence in
G. mellonella larvae. Indeed, Francisella encodes a variety of other bacterial virulence fac-
tors, such as type II secretion systems, type IV pili, outer membrane vesicles, nutritional
virulence factors, as well as mechanisms to avoid oxidative stress and immune recogni-
tion (46–54).

We observed striking differences in the importance of individual T6SS components
for F. tularensis subsp. novicida virulence in G. mellonella larvae compared to other
mammalian in vivo infection models such as mice. First, T6SS sheath recycling and thus
repeated T6SS firing is less important for Francisella pathogenicity in G. mellonella lar-
vae than in BMDMs and mice (5). A DclpB mutant killed G. mellonella larvae slower but
to the same extent as the parental strain (Fig. 2; see also Fig. S2). In contrast, a DclpB
mutant was attenuated in Drosophila melanogaster, another arthropod in vivo infection
model (25). It is important to note that the DclpB mutant is likely able to secrete a lim-
ited number of effectors because assembly and contraction of the T6SS sheath is inde-
pendent of ClpB (5). Thus, one explanation for the observed difference between G. mel-
lonella larvae and other in vivo infection models could be that G. mellonella cells are
more sensitive to T6SS effectors or less capable of inhibiting the bacteria, and thus less
effector translocation is sufficient for Francisella survival. Indeed, F. tularensis subsp.
tularensis and F. tularensis subsp. holarctica DclpB mutants are reported to replicate to
higher numbers in J774A.1 cells than in bone marrow-derived macrophages, suggest-
ing that some cell types may be more sensitive to T6SS effectors than others (40).
Interestingly, F. tularensis subsp. tularensis and F. tularensis subsp. holarctica DclpB
mutants were less attenuated in mice than the F. tularensis subsp. novicida DclpB mu-
tant (5, 40). However, both F. tularensis subsp. tularensis and F. tularensis subsp. holarc-
tica encode two T6SS (4) and thus are potentially capable of secreting more effectors
even with impaired T6SS compared to F. tularensis subsp. novicida. In summary, the
general sensitivity to T6SS effectors as well as the number of translocation events may
at least partially explain the variety of Francisella DclpB mutant phenotypes in different
infection models.

Another striking difference in G. mellonella larvae compared to mice and other
mammalian infection models is that Francisella virulence did not solely depend on
T6SS effectors PdpC and PdpD (Fig. 3A to C; see also Fig. S3 in the supplemental mate-
rial) (4, 5, 15, 16, 29, 55, 56). These results suggest that Francisella may manipulate dif-
ferent host cell components in insects and in mammal infection models or that arthro-
pods are more sensitive to other T6SS effectors, such as OpiA. In agreement, single
interruptions of pdpC and pdpD by transposons had no effect on Francisella virulence
in Drosophila melanogaster or in a cell line derived from Anopheles gambiae (25, 57).

Interestingly, individual PdpC, PdpD, or OpiA effectors were sufficient to mediate
Francisella virulence in G. mellonella larvae (Fig. 4A, B, and D; see also Fig. S4 in the sup-
plemental material), which explains why deletion of pdpC and pdpD results in no
change in virulence (Fig. 3C). In agreement, redundant functions for PdpC and OpiA
were previously proposed (17). A strain with pdpC, anmK, opiA, and opiB1–3 deleted and

FIG 4 Legend (Continued)
G. mellonella infected with F. tularensis subsp. novicida U112 iglA-sfGFP (parental strain); blue survival curves, G. mellonella larvae infected with F. tularensis
subsp. novicida U112 iglA-sfGFP DpdpB strain (T6SS-negative control); red survival curves, G. mellonella infected with F. tularensis subsp. novicida U112 iglA-
sfGFP DpdpD DanmK DopiA DopiB1–3 mutant (pdpC) (A), DpdpC DanmK DopiA DopiB1–3 mutant (pdpD) (B), DpdpC DpdpD DopiA DopiB1–3 mutant (anmK) (C),
DpdpC DpdpD DanmK DopiB1–3 mutant (opiA) (D), DpdpC DpdpD DanmK DopiA mutant (opiB1–3) (E), DpdpC DpdpD DopiA mutant (anmK opiB1–3) (F), DpdpC
DpdpD DopiB1–3 mutant (anmK opiA) (G), and DpdpC DpdpD DanmK mutant (opiA opiB1–3) (H). (I) Quantification of T6SS sheaths per bacterium within 5min
for F. tularensis subsp. novicida U112 iglA-sfGFP (parental strain), DpdpC DpdpD DopiA DopiB1–3 mutant (anmK), DpdpC DpdpD DanmK DopiA mutant
(opiB1–3), DpdpC DpdpD DopiB1–3 mutant (anmK opiA), and DpdpC DpdpD DopiA mutant (anmK opiB1–3). At least three biological replicates with at least
3,200 bacteria each were analyzed per strain. Mean with standard deviation is shown. No significant differences in means were detected with Tukey’s
multiple-comparison test and 95% confidence level.
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FIG 5 PEG activates Francisella T6SS in liquid culture. (A) Examples of assembled T6SS (IglA-sfGFP) in F. tularensis subsp. novicida U112 iglA-
sfGFP (parental strain) during PEG treatment. Filled arrows point to examples of assembled T6SS. Upper images are a merge of phase contrast
and GFP channel. The lower images show GFP channel only. The 3.3- by 3.3-mm fields of views are shown. Scale bars represent 1mm. (B) No
T6SS assemblies (IglA-sfGFP) were observed in untreated F. tularensis subsp. novicida U112 iglA-sfGFP (parental strain) and in the DpdpB mutant

(Continued on next page)
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only left with pdpD was even significantly faster in killing G. mellonella larvae than the
parental strain (Fig. 4B). It remains to be determined if this is due to increased translo-
cation rate of PdpD in the absence of other effectors.

While we cannot rule out that F. tularensis subsp. novicida encodes additional yet
unidentified T6SS effectors, deletion of pdpC, pdpD, and opiA resulted in an attenuated
phenotype in G. mellonella larvae comparable to that of a T6SS-negative mutant
(Fig. 4F), and mutants with only anmK or opiB1–3 were also severely attenuated (Fig. 4C
and E). Therefore, we conclude that PdpC, PdpD, and OpiA are the most important
effectors for Francisella virulence in G. mellonella larvae.

Surprisingly, OpiA-mediated toxicity was affected by AnmK while general T6SS-de-
pendent secretion was comparable to that of a fully virulent single opiA mutant
(Fig. 4G and 5G; see also Fig. S4). Previously, no function of AnmK was observed in
mice or macrophages (5, 15, 19, 25, 58). In contrast to OpiA, AnmK was never shown to
be secreted (14). AnmK is predicted to contain an anhydro-N-acetylmuramic acid ki-
nase domain, which is normally involved in peptidoglycan recycling (59), while OpiA
was found to be a phosphatidylinositol 3-kinase delaying phagosomal maturation (17).
It is possible that AnmK is a T6SS effector, which potentially competes with OpiA for
secretion by T6SS. Another possibility is that either AnmK modulates OpiA expression
levels or AnmK directly regulates OpiA function. Intriguingly, anmK is missing in
F. tularensis subsp. holarctica and is expressed in two separate open reading frames in
F. tularensis subsp. tularensis (15, 60). Surprisingly, the addition of opiB1–3 to anmK and
opiA background (DpdpD DpdpCmutant) reverts the intermediate phenotype to paren-
tal strain-like killing of G. mellonella larvae (Fig. 3C). This shows that further studies are
necessary to fully understand the role of these proteins in infection.

Several different environmental signals, such as biotin, iron limitation, pH changes,
oxidative stress, or starvation, were identified to increase FPI transcription or IglC pro-
duction (50, 61–64). Nevertheless, our understanding of what triggers T6SS assembly
remains limited. Here, we show that PEG, next to KCl and incubation on PBS agarose
pads, activates T6SS assembly in F. tularensis subsp. novicida (Fig. 5A) (5, 10). It is still
unclear which physiological signal is mimicked by incubation on PBS agarose pads and
10% PEG treatment. However, we show that orphan response regulator PmrA is dis-
pensable for both of the two T6SS activation methods (Fig. 5D to F). The demonstra-
tion that PEG activates Francisella T6SS expands the toolbox for Francisella T6SS
research, as it allows robust T6SS activation that is compatible with downstream analy-
ses without exposing cells to high KCl concentration, which could potentially stress the
cells.

In summary, we demonstrate that G. mellonella larvae are an easy to handle and ro-
bust in vivo infection model for studying Francisella virulence and its T6SS. Moreover,
this model makes it possible to uncover new functions and interactions between T6SS
components as shown for AnmK and OpiA. Further investigations about why some
effectors are more toxic in one infection model than another will lead to a more
detailed understanding of the mode of action of different effectors. Intriguingly, a well-
characterized arthropod in vivo model might help to study Francisella traits important
for persistence in the environment and in potential reservoir hosts.

FIG 5 Legend (Continued)
(T6SS-negative control) (C) after PEG treatment for 60min. (D) T6SS activation in F. tularensis subsp. novicida U112 iglA-sfGFP DpmrA mutant on
PBS agarose pad after 60min incubation. (E) T6SS assemblies in F. tularensis subsp. novicida U112 iglA-sfGFP DpmrA mutant after PEG treatment
for 60min. (B to E) Merge of phase contrast and GFP channel and 39- by 26-mm fields of view are shown. Scale bars represent 5mm. (F)
Quantification of T6SS sheaths per bacterium within 5min. At least three biological replicates with at least 750 bacteria each were analyzed per
strain and condition. Mean with standard deviation is shown. No significant differences in means were detected with Tukey’s multiple-
comparison test and 95% confidence level. (G) Levels of inner tube protein IglC was assessed in bacterial pellets and concentrated supernatants
of F. tularensis subsp. novicida U112 iglA-sfGFP (parental strain), DiglC mutant (negative control for a-IglC antibody), DpdpB mutant (T6SS-
negative control), DpdpC DpdpD DopiB1–3 mutant (anmK opiA), and DpdpC DpdpD DanmK DopiB1–3 mutant (opiA) after PEG treatment for 1 h.
Arrow points to IglC bands (theoretical size, 22.1 kDa). An exposure time of 1min was used for developing the immunoblot.
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MATERIALS ANDMETHODS
Bacterial strains. F. tularensis subsp. novicida U112 and derivative strains were grown in brain heart

infusion (BHI) broth with aeration or on BHI agar plates at 37°C. The medium was supplemented with
0.1% L-cysteine (Acros Organics) and 100mg/ml ampicillin (AppliChem) for overnight cultures and plates.
Escherichia coli DH5a lpir and derivative strains were aerobically grown in Luria broth (LB) or on agar
plates supplemented with 50mg/ml kanamycin at 37°C. All strains are listed in Table S1 in the supple-
mental material.

Bacterial mutagenesis. F. tularensis subsp. novicida in-frame deletion mutants were created with sui-
cide vector pDMK3 (66) as reported previously (see Table S2 in the supplemental material) (5, 67). In brief,
pDMK3 containing a DNA sequence of interest, including homology arms (750 bp each), was introduced
into a donor E. coli strain from Harms and Dehio (68) and conjugated into F. tularensis subsp. novicida. For
conjugation, liquid cultures of recipient F. tularensis subsp. novicida and donor E. coli strains were grown
until an optical density at 600 nm (OD600) of 1 was reached. Day cultures were washed once in LB and 1ml
of both donor and recipient strain culture was concentrated and mixed together. Conjugation took place
on an LB agar plate supplemented with 300mM 2,6-diaminopimelic acid at 25°C overnight. Then, the mix-
ture was transferred on Mueller-Hinton agar plates supplemented with 0.1% L-cysteine, 0.1% D-glucose
(Millipore), 0.1% fetal calf serum (BioConcept), 100mg/ml ampicillin, and 15mg/ml kanamycin to select for
recipients containing the suicide vector. After incubation at 37°C for 2 days, colonies were restreaked on
BHI agar plates supplemented with 0.1% L-cysteine, 100mg/ml ampicillin, and 15mg/ml kanamycin.
Negative selection was carried out on LB agar plates supplemented with 0.1% L-cysteine, 5% sucrose, and
100mg/ml ampicillin, which were incubated at room temperature for several days. All plasmids and
remaining peptides of in-frame deletions are listed in Table S2. All cloning products were sequenced,
and sites of homologous recombination were verified by PCR.

Galleria mellonella infections. Weight and aged defined Galleria mellonella larvae from TruLarv
(BioSystems Technology) were used for all infection experiments. For each experiment and condition,
10 randomly chosen larvae were infected as previously described (69). F. tularensis subsp. novicida
strains were prepared as follows. Day cultures of bacterial strains from plates were inoculated at an
OD600 of 0.2 and grown without antibiotics as described above for 3 h. Then, cultures were washed once
with Dulbecco’s phosphate saline buffer without CaCl2 and MgCl2 (PBS; Sigma), and OD600 was adjusted
to 1 in PBS. Ten-fold dilutions in PBS were carried out. Tenmicroliters of the 108, 106, or 104 CFU/ml dilu-
tion (106, 104, or 102 CFU per injection) was used for injection into the second left proleg with a
Hamilton syringe (10-ml volume, 26s ga bevel tip, needle length of 51mm; Sigma-Aldrich). All infected
larvae per condition were placed in one petri dish (Greiner Bio-One) and incubated at 37°C for 5 days.
Survival was scored manually every 24 h. Death was defined as no movement of legs, head, or body.
Pupated larvae were considered alive as long as they exhibited any movement but were censored and
not considered for calculating the percentage of surviving larvae. As control for proper handling, each
experiment included larvae injected with PBS.

Petri dishes with 10 dead G. mellonella larvae and after 5 days all remaining G. mellonella larvae were
incubated at 220°C overnight before disposal.

Plating of inoculum. The prepared 10-fold dilution series of F. tularensis subsp. novicida strains was
also used to determine the actual inoculum concentration. A total of 100ml of the calculated 103 CFU/ml
dilution was plated on Mueller-Hinton agar plates supplemented with 0.1% L-cysteine, 0.1% D-glucose
(Millipore), 0.1% fetal calf serum (BioConcept), and 100mg/ml ampicillin. The plates were incubated for
2 days at 37°C, and colonies were counted afterward.

T6SS-dependent secretion assay. Overnight cultures were washed twice with PBS and then resus-
pended in BHI and used for inoculation of day cultures without antibiotics at an OD600 of 0.2. After 3.5 h,
the OD600 was adjusted to 2, and the bacterial cultures were washed twice with PBS and resuspended in
1ml of BHI without L-cysteine. Then, 1ml of 20% polyethylene glycol 4000 (Sigma-Aldrich) in BHI with-
out L-cysteine was added so that a final PEG 4000 concentration of 10% was achieved. The cultures were
incubated at 37°C shaking for 1 h. Afterward, 1ml of the PEG 4000-treated samples was centrifuged at
16,000 � g for 1.5min. A total of 0.9ml of supernatant was used for trichloroacetic acid (TCA)/acetone
protein precipitation. In brief, 100ml of 100% TCA (wt/vol) (Sigma-Aldrich) was added to the harvested
supernatants, followed by incubation at 4°C for 10min with mixing in between. After centrifugation at
18,000 � g and 4°C for 5min, the precipitated proteins were washed twice with cold acetone (Merk
Millipore) and left to dry at room temperature. Then, the precipitated proteins were resuspended in
40ml 1� lithium dodecyl sulfate (LDS) buffer (Thermo Fisher). The remaining bacterial cells were resus-
pended in 100ml PBS, boiled at 95°C for 10min, and sonicated afterwards. Thirtymicroliters of these
samples were mixed with 10ml 4� LDS buffer.

SDS-PAGE and Western blotting. Samples prepared for the T6SS-dependent secretion assay (see
above) were supplemented with 4ml of 1 M dithiothreitol (DTT; Roche) and incubated at 72°C for
10min. Then, 20ml of the samples was loaded on 10% polyacrylamide gels, and proteins were separated
by gel electrophoresis. For immunodetection, proteins were transferred to a nitrocellulose membrane
(25 V for 45min). After blocking of the nitrocellulose membrane in 5% milk in Tris-buffered saline con-
taining Tween 0.1% (TBST) at room temperature for 2 h and three washing steps with TBST for 5min
each, the nitrocellulose membrane was incubated with the primary antibody at room temperature for
2 h. Primary a-IglC antibody (polyclonal antibody raised in rabbit; Genescript) was used at a final con-
centration of 1mg/ml in 5% milk in TBST. Incubation for 1 h with secondary antibody a-rabbit conju-
gated to horseradish peroxidase (Jackson ImmunoResearch) at a final concentration of 30 ng/ml in 5%
milk in TBST followed. LumiGLO chemiluminescent substrate (KPL) was used for detection of peroxidase
on a gel imager (GE ImageQuant LAS 4000). Exposure time is given in the figure legend.
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Live-cell fluorescence imaging. Microscope set up was described previously (5, 11, 70). The Nikon
Ti-E inverted motorized microscope was equipped with a Perfect Focus system and a Plan Apo 1003 Oil
Ph3 DM (NA 1.4) objective lens. Fluorescence was excited and filtrated with a SPECTRA X light engine
(Lumencor) along with an ET-GFP (Chroma number 49002) filter set. The exposure time for each channel
was set to 150ms. Images were collected with a scientific complementary metal oxide semiconductor
(sCMOS) camera pco.edge 4.2 with a pixel size of 65 nm (PCO) and VisiView software (Visitron). For imag-
ing, day cultures of F. tularensis subsp. novicida parental and mutant strains were inoculated from plate
at an OD600 of 0.2 without antibiotics. At an OD600 of 1, the cultures were concentrated in phosphate sa-
line buffer to an OD600 of 10. A total of 1.5ml of the concentrated cultures was then spotted on a pad
consisting of 1% agarose in phosphate saline buffer. The agarose pad was covered with a cover slip and
incubated at 37°C for 1 h before imaging at 30°C and 95% humidity (T-unit; Okolab). To monitor T6SS
activation through PEG 4000 treatment (see T6SS-dependent secretion assay), 1.5ml of liquid culture
was spotted on a pad consisting of 1% agarose in BHI, covered by a coverslip, and imaged immediately.
Images were collected every 30 s for 5min.

Image analysis. Image analysis was carried out with Fiji software (71) as previously described (5, 70,
72). Images in the same subfigure were set to the same contrast values for comparison of fluorescent
signal intensities. For quantification of T6SS assemblies per bacterium within 5min, the “temporal color
code” function was used together with the “Cell Counter” plugin.

Statistical analysis. Three infection experiments with independent G. mellonella larvae batches
were performed. Mutants of a given set were tested in the same infection experiments. Pooled and sin-
gle survival plots were calculated with Prism 8 (GraphPad Software). For more clarity, the graphs contain
only data of the indicated mutant and the controls (G. mellonella larvae treated with PBS and infected
with parental strain and T6SS) of the whole experiment. Thus, for a given set of mutants, the controls
are the same for individual graphs. Standard errors were calculated for pooled survival plots. The log
rank (Mantel-Cox) test in combination with Bonferroni corrected threshold (significance level, 0.05; num-
ber of comparisons, 6) was used to determine if compared curves are significantly different. P values are
given in the figure legends.

Number of T6SS assemblies per bacterium was quantified in biological replicates. The smallest num-
ber of analyzed bacteria for a data set is given in the figure legend. Means with standard deviation were
calculated. To test for significant differences in means, the Tukey’s multiple-comparison test with a confi-
dence level of 95% in Prism 8 (GraphPad software) was used.
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