
Developing a machine learning model to
identify protein–protein interaction
hotspots to facilitate drug discovery
Rohit Nandakumar and Valentin Dinu

Program of Biomedical Informatics, College of Health Solutions, Arizona State University,
Tempe, AZ, USA

ABSTRACT
Throughout the history of drug discovery, an enzymatic-based approach for
identifying new drug molecules has been primarily utilized. Recently, protein–
protein interfaces that can be disrupted to identify small molecules that could be
viable targets for certain diseases, such as cancer and the human immunodeficiency
virus, have been identified. Existing studies computationally identify hotspots on
these interfaces, with most models attaining accuracies of ~70%. Many studies do not
effectively integrate information relating to amino acid chains and other structural
information relating to the complex. Herein, (1) a machine learning model has
been created and (2) its ability to integrate multiple features, such as those associated
with amino-acid chains, has been evaluated to enhance the ability to predict
protein–protein interface hotspots. Virtual drug screening analysis of a set of
hotspots determined on the EphB2-ephrinB2 complex has also been performed.
The predictive capabilities of this model offer an AUROC of 0.842, sensitivity/recall
of 0.833, and specificity of 0.850. Virtual screening of a set of hotspots identified
by the machine learning model developed in this study has identified potential
medications to treat diseases caused by the overexpression of the EphB2-ephrinB2
complex, including prostate, gastric, colorectal and melanoma cancers which are
linked to EphB2 mutations. The efficacy of this model has been demonstrated
through its successful ability to predict drug-disease associations previously
identified in literature, including cimetidine, idarubicin, pralatrexate for these
conditions. In addition, nadolol, a beta blocker, has also been identified in this study
to bind to the EphB2-ephrinB2 complex, and the possibility of this drug treating
multiple cancers is still relatively unexplored.

Subjects Bioinformatics, Computational Biology, Drugs and Devices, Data Mining and Machine
Learning
Keywords Machine learning, Protein-protein interaction, Drug discovery

INTRODUCTION
Drug discovery is the scientific process where new drugs and small molecules are
developed and identified to treat certain conditions. Throughout most of the history of
drug discovery, an enzymatic-based (lock and key) approach for identifying new drug
molecules was utilized (Bakail & Ochsenbein, 2016). As a result, many drugs targeting
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G-protein coupled receptors (GPCRs), which interact via this approach, constitute about
34% of the drugs in the market today (Hauser et al., 2017).

Protein-protein interfaces have been of particular interest in regards to drug discovery,
such as the EphA4-EphrinB2 complex, which is considered to be conformationally flexible
(Ma & Nussinov, 2014). Protein-protein interfaces can be stabilized or disrupted to
identify small molecules that could be viable targets for certain diseases such as cancer
and the human immunodeficiency virus (HIV). Identifying residue hotspots on these
protein–protein interfaces and repurposing existing drugs to target these new hotspots can
lead to novel drug targets, ultimately leading to new therapeutic treatments (Scott et al.,
2016). Although protein-based drug discovery (as opposed to enzymatic-based drug
discovery) is a relatively new and emerging field, recent studies have shown promising
results in regard to its potential in a wide range of fields from drug discovery to drug
repositioning. For example, the SpotOn study has produced remarkable results in regards
to identifying hotspots that are viable for drug discovery, and AnchorQuery, which
identifies small molecule protein-interaction inhibitors (Moreira et al., 2017; Koes,
Dömling & Camacho, 2018).

In addition, PPI-based peptide drug discovery has been used to identify new therapeutic
targets by disrupting PPIs. Major advances in docking simulations and models in
recent years have yielded to be effective in more accurately identifying peptide-protein
interactions. Although peptide-based PPI drug discovery does have its challenges, such as
limited bioavailability and solubility of peptides, this emerging field highlights potentially
exciting advances in computationally aided protein–protein interaction based discovery
techniques with the use of interfering peptides (Lee et al., 2019).

Currently, only 10–14% of the human proteome is considered to be “druggable”, and
most targets with published leads are in the rhodopsin-like GPCR family, with a smaller
number in cation channels and protein kinases (Hopkins & Groom, 2002; López-Cortés
et al., 2019). Druggability is the ability for a drug to bind to a specific target. As protein-
based drug discovery is a relatively new field compared to traditional drug discovery,
more research is needed to identify new hotspots on protein–protein interfaces. Existing
studies do computationally identify hotspots on these interfaces, but most of the
models developed only attain accuracies of around 70% (Kim, Chivian & Baker, 2004;
Tuncbag, Keskin & Gursoy, 2010). Moreover, many studies do not effectively integrate
information relating to amino acid chains and other structural information relating to the
complex/interface, and/or have completely different approaches to predict the likelihood
of hotspots on a particular interface.

For example, molecular dynamics (MD) simulations have been used to elucidate the
mechanisms of protein interactions and their viability for drug discovery. This strategy
has mixed results however—although the approach of molecular dynamics simulations
have relatively high predictive power, these simulations are computationally expensive
(Cukuroglu et al., 2014). In contrast, knowledge-based machine learning techniques
have the advantage of providing accurate results based on the properties/features of a
specific interaction. Machine learning and other statistical approaches allow for a high
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predictive power of hotspot detection, while being computationally efficient, provided that
the features inputted into the model are relevant.

This leads to the proposed research question: “Can the development of a machine
learning model lead to the discovery of new druggable targets and new drug-disease
associations?” The hypothesis was that the integration of different protein–protein
interaction features will lead to promising new hotspots. In addition, new drug-disease
associations could potentially be identified from these hotspots to treat deadly diseases
such as cancer.

To test this hypothesis, (1) a machine learning model was developed and (2) its ability
to integrate multiple features, including structural information, such as that associated
with amino-acid chains, to enhance the ability to predict protein–protein interface
hotspots was evaluated. In addition, virtual drug screening of a set of hotspots identified by
the machine learning model developed herein was performed in order to identify
potentially new drug-disease associations. Phase 1 consisted of developing the machine
learning model to identify potential protein–protein interface hotspots that could be viable
as a drug target, using the cancer-associated EphB2-ephrinB2 protein complex (PDB code:
1KGY) for illustration. Phase 2 of this project aimed to identify small molecules that could
act as inhibitors or disruptors to the hotspots identified for further analysis in Phase 1.

The machine learning model developed in Phase 1 achieved an area under receiver
operating characteristic (AUROC) of 0.842 on the testing set, and identified residues
1122–1126 on this complex as potential hotspot residues. This information was then
used to generate a pharmacophore in Phase 2 which identified nine drug candidates to
disrupt the EphB2-ephrinB2 complex. Out of these candidates, further literature review
identified four drug candidates that could treat diseases that are overexpressed by this
complex: cimetidine, idarubicin, pralatrexate, and nadolol. Although nadolol has been
relatively unexplored in its potential of treating certain cancers, a drug with a similar
chemical makeup, propranolol, has been identified to treat multiple cancers including
colon cancer, which is linked to the overexpression of the EphB2-ephrinB2 complex
(Pantziarka et al., 2016; Işeri et al., 2014), and thus highlights significant repositioning
opportunities for nadolol.

METHODS
Dataset collection and feature aggregation
As a starting point, the dataset and codebase from the SpotOn study (Moreira et al., 2017)
were acquired. This study was selected as the starting point for its high effectiveness in
identifying potential hotspots that could aid in drug discovery. The SpotOn database
already has information regarding amino acid composition, solvent-accessible surface area
(SASA) information, position-specific scoring matrices, the number of amino acids at
2.5 and 4.0 Angstrom, the number of nearby hydrophobic residues, the total change
in SASA, the number of interfacial residues, pseudo-amino acid composition, and
scales-based descriptors of 2D and 3D descriptors from the protr R package (see below) for
a total of 881 features.
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In order to add more information to this dataset to better aid model prediction, the
protr R package (Xiao et al., 2015) was used to add more features related to amino acid
composition, dipeptide composition, etc., to the already pre-existing data. Additionally,
data related to pair potential, complex/monomer accessible surface area, residue
information, amino acid information, etc. were extracted from the HotPoint database
(Tuncbag, Keskin & Gursoy, 2010) and then added to the pre-existing dataset. This data
was added to add more information regarding the entire protein complex, as evidenced by
most of protr’s features, and to add residue specific features such as pair potential that
could improve predictive power. The addition of new features in the protr R package and
the HotPoint database led to a total of 2,323 features.

Upon further investigation of the SpotOn dataset, we found that chains I of proteins
with PDB code 2FTL, 3SG8, and 1CH0 do not exist as specified in the Protein Data Bank.
In the SpotOn study, these chains are specified, and features were derived for these
chains; however, in this study, as additional features are added and these chains could not
be identified, these chains have been removed from our dataset. This leads to a total of
520 protein residues, lower than SpotOn’s 534 protein residues. A total of 398 residues are
labeled as non-hotspots, and 122 residues are labeled as hotspots.

In order to derive features on our prediction dataset with the EphB2-ephrinB2 complex
(PDB code: 1KGY), we first downloaded the structure from the Protein Data Bank, and ran
this structure through the SpotOn’s codebase/pipeline to collect features specific to the
SpotOn study. Then, we sequentially added additional features unique to this study, such
as from the protr’s R package and features from the HotPoint database. Missing values are
assigned the average value of all non-missing values in a feature.

Preprocessing and feature engineering
Similar to the SpotOn study, both the training and testing sets were normalized, and
the testing set was normalized using mean and standard deviation of the training set.
In addition, before the model was run, data balance had to be accounted for, and
oversampling was performed in order to retain the properties of the majority class without
sacrificing the information available in this class (More, 2016). SMOTE, or synthetic
minority oversampling technique, was performed with k = 5 nearest neighbors (Chawla
et al., 2002). To account for multicollinearity, principal component analysis was also
performed. This leads to four different combinations: a pipeline without any changes to the
training data, a pipeline with only SMOTE applied, a pipeline with only PCA applied, and
a pipeline with both SMOTE and PCA applied.

Before the model was trained, the dataset was first subjected to feature engineering.
Three existing features that were selected for further exploration are the number of
intermolecular contacts within 4.0 Angstroms (#Dist-4.0), the number of hydrophobic
contacts (#Hydrophobic), and the pair potential of a specific residue (Pair Potential).
We hypothesized that an increase of hydrophobic contacts would cause a decrease in
hydrophobic pair potential due to the attractive interaction because of the hydrophobic
effect (Israelachvili & Pashley, 1982). As a result, we multiplied both variables and
multiplied by −1 to amplify the effects of this association and accounting for the inverse
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correlation. In addition, we hypothesized that the number of intermolecular contacts
will increase the pair potential as this may lead to many body potentials, which are
mostly repulsive at short distances (Byggmästar, Granberg & Nordlund, 2018). To model
this association, #Dist-4.0 and #Hydrophobic are multiplied to amplify the effects
as well. These two new engineered variables were named #Dist-4.0 � Pair Potential
and -#Hydrophobic � Pair Potential. This lead to a total of 2,323 features on the training
and testing datasets, as well as our dataset containing residue information on the crystal
structure of the EphB2-ephrinB2 complex (PDB code: 1KGY).

Machine learning model selection
Five different machine learning models were selected in order to evaluate and develop a
model: Logistic regression (LR), XGBoost (XGB), a balanced random forest classifier (RF),
K Nearest Neighbors (KNN), multilayer perceptron neural network (MLP), and a
Gaussian Naïve Bayes (GNB). This data was then split into a training:testing set ratio
of 80:20. 10-fold cross validation was performed 10 times on the training set to
prevent overfitting. GridSearch was performed in order to identify the best combination
of hyperparameters/parameters that could yield the best results. The following
hyperparameters/parameters were tested: LR, with C equal to 0.01, 0.1, 1, 10, 50, 100, 500,
1,000, and 5,000; RF with balanced class weight, with the number of estimators equal
to 50, 100, 150, 250, 350, 500, and maximum depth of 5, 7, 9, 11; XGB, with a learning rate
of 0.001, 0.01, 0.1, the number of estimators as 50, 100, 150, 200, and maximum depth of
4, 5, 6; KNN, with n neighbors of 1, 3, 5, 10, 15, 20; a multilayer perceptron model of
hidden_layer_sizes (10, 10, 10), (50, 1), (10, 10), (10, 1), (5, 5), (5, 5, 5) and alpha of
0.0001, 0.0002, 0.0005, 0.001; and GNB with variance smoothing of 1e−8, 1e−7, 1e−6,
1e−5, 1e−4, 1e−3, and 1e−2. The metric used to identify the best model from these sets of
parameters on the validation set is AUROC (area under receiver operating characteristic),
and this was chosen to compare our models more accurately with the AUROC and
receiver-operating characteristic curves provided in SpotOn. Four different run conditions
on the four different pipelines was also run and the results are compared. The model(s)
with the best run conditions on the highest scoring pre-processing dataset will be used
to build an ensemble model, similar to the SpotOn study. If the ensemble model has a
higher predictive capability than any individual model, the ensemble model will then be
used to predict hotspots on the EphB2-ephrinB2 complex, as this complex has been
overexpressed in many cancer cells, most notably in prostate, gastric, colorectal and
melanoma cancers (Pasquale, 2010). PyMol was utilized to visualize the hotspots predicted
on the EphB2-ephrinB2 complex.

Small molecule selection
A cluster of hotspots was identified and LigandScout (Wolber & Langer, 2005) was used
to create an apo-site pharmacophore. Virtual screening was then performed on this
pharmacophore to identify possible new drug indications. To perform the drug screening,
an approved Drugbank (Wishart et al., 2008) database that has a library of all molecules
that have molecular weight from 150 to 500 daltons was used. These small molecules
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were then ranked by the LigandScout software to identify molecules that most strongly
conform to the pharmacophore based on the chemical and structural properties of that
molecule. The drug-disease associations were then verified with scientific literature to
assess the validity and efficacy of the model, and then we identified new drug-disease
associations that have not been previously identified by cross-referencing existing scientific
literature.

Metric calculation
In context, sensitivity is the ability for the model to identify the hotspots and the
specificity/recall is the ability for the model to identify the non-hotspots, and both of these
statistics are defined as:

Recall ¼ Sensitivity ¼ True Positive
True Positiveþ False Negative

Specificity ¼ True Negative
True Negativeþ False Positive

Precision is defined as:

Precision ¼ True Positive
True Positiveþ False Positive

F1, MCC, Kappa, and Precision-Recall are all metrics that are robust in dealing with
data imbalance. They are defined as:

F1 ¼ 2 � precision � recall
precisionþ recall

MCC ¼ True Positive � True Negative� False Positive � False Negative

True Posþ False Posð Þ True Posþ False Negð Þ True Negþ False Posð Þ True Negþ False Negð Þp

Kappa ¼ po � peð Þ= 1� peð Þ where po is the probability of agreement assigned to any
sample, and pe is the expected/hypothetical probability of chance agreement.

Precision-Recall ¼ P

n
Rn � Rn�1ð ÞPn where Pn and Rn are precision and recall,

respectively, at the nth threshold.
All of these calculations are calculated using the Scikit-learn package in Python.

RESULTS
Phase 1
The average test metrics of each of the six algorithms tested on the four different
pre-processing pipelines are shown in Table 1. As the preprocessing pipeline where
SMOTE and PCA are applied has the highest AUROC, the top algorithms from this
pipeline are used to create an ensemble model.

In Table 2 are the best individual algorithms tested in the SMOTE and PCA pipeline.
The best set of hyperparameters were selected using GridSearch as follows: the logistic
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regression with C = 1,000, the random forest classifier with maximum depth of 5 trees and
the total number of estimators at 50 trees, an XGBoost classifier with learning rate 0.1,
maximum depth of 5, and 50 estimators, K-nearest neighbors with 5 neighbors, a
multi-layer perceptron classifier with alpha as 0.0002 and three layers of 10 neurons each,
and a Gaussian Naïve Bayes of variable smoothing of 1e−5. The best performing algorithm
in this pipeline is the logistic regression, as it has the highest AUROC.

The results of the Logistic Regression from the SMOTE and PCA pipeline were
compared with SpotOn’s highest performing algorithm from the upsampling
pre-processing procedure, as shown in Table 3. In order to more aptly analyze the
predictive capabilities of our top performing algorithm, we adjusted the threshold to
achieve a ≥0.88 specificity, as that is the specificity of the highest performing individual

Table 1 Average test metrics of algorithms tested on pre-processing pipelines. The “AUROC” column is bolded as to highlight the metric used to
select the best pre-processing pipeline. The “SMOTE, PCA” pipeline is the best performing pipeline based on AUROC.

Test AUROC Accuracy Precision Recall/Sensitivity F1 Precision-Recall MCC Kappa Specificity

ONLY SMOTE 0.745 0.772 0.516 0.694 0.584 0.430 0.451 0.435 0.796

RAW 0.722 0.777 0.536 0.618 0.563 0.416 0.427 0.418 0.825

NO SMOTE, PCA 0.702 0.785 0.535 0.549 0.539 0.403 0.402 0.400 0.856

SMOTE, PCA 0.774 0.798 0.551 0.729 0.625 0.467 0.502 0.491 0.819

Table 2 Best Individual Algorithms in SMOTE and PCA pipeline. The “AUROC” column is bolded as to highlight the metric used to select the
best individual algorithm. The logistic regression algorithm is the best performing model based on AUROC.

AUROC Accuracy Precision Recall/Sensitivity F1 Precision-Recall MCC Kappa Specificity

LR 0.842 0.846 0.625 0.833 0.714 0.559 0.624 0.612 0.850

RF 0.756 0.827 0.625 0.625 0.625 0.477 0.513 0.513 0.888

GBC 0.748 0.769 0.500 0.708 0.586 0.422 0.445 0.433 0.788

KNN 0.706 0.750 0.469 0.625 0.536 0.380 0.377 0.369 0.788

MLP 0.829 0.827 0.588 0.833 0.690 0.529 0.591 0.575 0.825

Gaussian 0.756 0.827 0.625 0.625 0.625 0.477 0.513 0.513 0.888

Table 3 Comparison of our study vs SpotOn. The “LG from PCA and SMOTE” column is selected to
highlight the metrics from the best performing algorithm from the best performing pipeline from our
study.

Test LG from PCA and SMOTE SpotOn’s ScaledUp*

Accuracy 0.865 0.79

F1 0.731 0.52

AUROC 0.840 0.83

MCC 0.645 0.38

Sensitivity 0.792 0.48

Specificity 0.888 0.88

Note:
* This data was adapted from the SpotOn study.
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algorithm in SpotOn, and comparing other metrics based on this threshold change.
This reduced the AUROC from 0.842, as identified in Table 2, to 0.840, as identified in
Table 3, but was still greater than any individual model in SpotOn. Our algorithms
perform better to that of SpotOn’s ScaledUp processing step in all six metrics as
demonstrated in Table 3.

The top ranking algorithms in the SMOTE and PCA pipeline are used to develop an
ensemble classifier to achieve better performance compared to any single algorithm.
Different ensemble algorithms are tested: stacking, where a meta-classifier is used to
combine the predictive power multiple base classifiers, and voting, a simple ensemble
method where each of the six algorithms tested votes on a specific data point, and a simple
majority vote is used to predict the classification of that data point as shown in Table 4.
In this case, the meta-classifier used during stacking is a Logistic Regression classifier
where C = 5. Each individual model is used as a base model separately with the meta-
classifier, and all models are combined with the meta-classifier. All ensemble models are
run on the SMOTE and PCA pipeline. In the voting ensemble, hard voting was
implemented, and all six algorithms are subjected to majority voting. Here, the best
performing classifier was the stacking classifier where all models are combined with the
meta-classifier. However, the AUROC of this ensemble method is still lower than that of
the top individual model, the logistic regression in the SMOTE and PCA pipeline.

A comparison of the accuracy and performance of the model developed herein,
shown in bold, compared with SpotOn as shown in Table 5. In our model, the logistic

Table 4 Different ensemble classifiers (stacking and voting) were tested. The “AUROC” column is bolded as to highlight the metric used to select
the best ensemble classifier. The logistic regression stacked with logistic regression is the best performing pipeline based on AUROC.

AUROC Accuracy Precision Recall/Sensitivity F1 Precision-Recall MCC Kappa Specificity

LR w/Logistic Regression 0.819 0.789 0.525 0.875 0.656 0.488 0.552 0.517 0.763

RF w/Logistic Regression 0.729 0.740 0.460 0.708 0.557 0.393 0.403 0.385 0.750

GBC w/Logistic Regression 0.773 0.808 0.567 0.708 0.630 0.469 0.508 0.502 0.838

KNN w/Logistic Regression 0.656 0.673 0.375 0.625 0.469 0.321 0.271 0.253 0.688

MLP w/Logistic Regression 0.798 0.779 0.513 0.833 0.635 0.466 0.519 0.489 0.763

Gaussian w/Logistic Regression 0.581 0.490 0.277 0.750 0.405 0.265 0.141 0.102 0.413

All (Stacking) w/Logistic Regression 0.785 0.827 0.607 0.708 0.654 0.497 0.542 0.539 0.863

Voting Classifier 0.710 0.712 0.425 0.708 0.531 0.368 0.365 0.341 0.713

Table 5 Comparison of our study to other studies. The “Our model” column is bolded as to highlight
the results of our model to other models.

Our model SpotOn* SBHD2* Robetta* KFC2-A* KFC2-B* CPORT*

AUROC 0.842 0.91 0.69 0.62 0.66 0.67 0.54

Sensitivity 0.833 0.98 0.7 0.29 0.53 0.28 0.54

Specificity 0.850 0.84 0.71 0.88 0.81 0.96 0.47

F1-score 0.714 0.96 0.62 0.39 0.56 0.42 0.42

Note:
* Columns 2 through 7 are adapted from the SpotOn study to perform the side-by-side comparison among the
algorithms.
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regression was our top performing algorithm, and was thus used to develop to predict
hotspots with high accuracies. The SpotOn study (Moreira et al., 2017) was used in order
to identify the testing accuracies of the SpotOn study and those of the other studies as well.
The other studies that are compared to are SpotOn, SBHD213, Robetta23, KFC2-A24,
KFC2-B, and CPORT25 (Kim, Chivian & Baker, 2004; Martins et al., 2014; De Vries &
Bonvin, 2011; Zhu & Mitchell, 2011).

Phase 2
The top logistic regression algorithm from the SMOTE and PCA pipeline was utilized to
predict the hotspots from the EphB2-ephrinB2 complex. This resulted in consecutive
residues 1122–1126 predicted as viable hotspots. Drug screening performed on these
hotspots results in nine potential small molecules that could bind to this hotspot.
The pharmacophore fit scores are provided from our drug screening analysis, where the
highest ranked drug also has the highest pharmacophore fit score as shown in Table 6.
Extensive literature review was conducted to identify which drugs could aid in treating
conditions associated with the EphB2-ephrinB2 complex.

Phase 1
As the best performing classifier, the logistic regression from the SMOTE and PCA
pipeline is subjected to PCA, it is difficult to analyze exactly which features are the most
valuable. As a result, in order to identify the most relevant features, sensitivity analysis
using Python library Pytolemaic (https://pypi.org/project/pytolemaic/) was performed on
the best performing logistic regression classifier from the SMOTE-only pipeline to
understand the significance of adding new features to the existing dataset as provided by
the SpotOn study. Three out of the top ten features (Relative Complex ASA, Complex
ASA, and the engineered features Dist-4.0 � Pair Potential) as identified by Fig. 1 were
added in this study exclusively, and highlights the improvement in predictive capabilities
of the addition of these features.

PyMol (Schrödinger, 2015) was used to derive and highlight residues 1122–1126 on
chain E of the EphB2-ephrinB2 complex. Predicted druggable hotspot residues are shown

Table 6 Pharmacophore fit rankings from drug screening: details for top ranked drugs.

Generic name Pharmacophore fit score Database ID Molecular weight

Pralatrexate 47.41 DB06813 477.47

Chlortetracycline 46.02 DB09093 478.88

Nadolol 45.97 DB01203 309.4

Imipenem 45.51 DB01598 299.35

Idarubicin 45.46 DB01177 497.49

Valganciclovir 44.76 DB01610 354.36

Conivaptan 43.92 DB00872 498.57

Cimetidine 43.86 DB00501 252.34

Barnidipine 43.53 DB09227 491.54
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as more visible surface markers (in green), and the other residues are shown in pink or
light red in Fig. 2. Residues 1122–1126 were selected for drug screening as consecutive
residues may be used as initial fragments in drug screening (Modell, Blosser & Arora,
2016).

Phase 2
An apo-site grid, as shown in Fig. 3, was developed and implemented on hotspot
residues 1122–1126 as identified via the machine learning model on the EphB2-ephrinB2
complex, where a visual representation of the hotspots on the complex are shown in Fig. 2.

Figure 1 Feature importances of the top logistic regression classifier. Sensitivity analysis of the logistic
regression from the SMOTE-only pipeline were performed. Features near the top of the graph have
higher feature importances. Full-size DOI: 10.7717/peerj.10381/fig-1
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This grid was developed by first calculating the pockets of hotspot residues 1122–1126
on LigandScout (Wolber & Langer, 2005).

Figure 4 shows the 26-feature pharmacophore developed using an apo-site grid derived
using hotspot residues 1122, 1123, 1124, 1125, and 1126 identified in Fig. 3 via the machine
learning model. A pharmacophore identifies the key parts of the molecular features
that define the function and shape of a specific ligand, and includes features such as
H-bond acceptors and donors, hydrophobic and aromatic rings, etc. This pharmacophore
is then used to identify drugs that fit its features. The scoring of this screening procedure
follows a pharmacophore-fit scoring function as provided in LigandScout. A maximum
number of two features are omitted from this multi-feature pharmacophore to identify
small molecule hits, and the best matching conformation is selected.

Cimetidine, currently an acid reflux medication, was identified via virtual screening to
potentially bind to the EphB2-ephrinB2 complex associated with cancer cells as shown in
Fig. 5. The right image is cimetidine in relation to the 26-feature pharmacophore
developed as shown in Fig. 4. A pharmacophore-fit score of 43.86 was achieved during
drug screening. Further literature review identified cimetidine as a potential repositioning
target for many different types of cancers, including melanoma, gastric, and colorectal
cancers (Pantziarka et al., 2014).

Idarubicin, a chemotherapy medication that’s currently used to treat breast cancer, was
identified via virtual screening to potentially bind to the EphB2-ephrinB2 complex,

Figure 2 The EphB2-ephrinB2 complex with highlighted residues using PyMol. Residues 1122–1126
are highlighted as shown in green as surface markers. The rest of the complex is in pink.

Full-size DOI: 10.7717/peerj.10381/fig-2
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Figure 3 Apo-Site Grid for residues 1122–1126. Apo site pharmacophore of residues 1122–1126.
The gray parts of the grid indicate the levels of buriedness and surface area.

Full-size DOI: 10.7717/peerj.10381/fig-3

Figure 4 Pharmacophore model of residues 1122–1126. Full-size DOI: 10.7717/peerj.10381/fig-4
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where the expression of the complex is associated with cancer cells as shown in Fig. 6.
The pharmacophore fit score of this small molecule is 45.46. This drug was also found to
treat cancers linked to the EphB2-ephrinB2 complex such as melanoma and leukemia
(Martoni et al., 1986; Jabbour et al., 2017). The right image is idarubicin in relation to the
pharmacophore developed as shown in Fig. 4.

Pralatrexate, a T-cell lymphoma medication, was identified via virtual screening to
potentially bind to the EphB2-ephrinB2 complex, where the expression of the complex is
associated with cancer cells as shown in Fig. 7. This small molecule has a pharmacophore
fit score of 47.41, and literature review suggests that this drug could potentially treat
breast cancer and prostate cancer (Yu, Zhao & Gao, 2018; Serova et al., 2011). Recent
research has shown that pralatrexate can treat esophagogastric cancer, which is associated
with the various gastrointestinal cancers of the EphB2-ephrinB2 complex (Malhotra et al.,
2020). The right image is pralatrexate in relation to the pharmacophore developed as
shown in Fig. 4.

Figure 5 (A) Structure of cimetidine. (B) Relative structure of cimetidine in relation to the developed
pharmacophore. Full-size DOI: 10.7717/peerj.10381/fig-5

Figure 6 (A) Structure of idarubicin. (B) Relative structure of idarubicin in relation to the developed
pharmacophore. Full-size DOI: 10.7717/peerj.10381/fig-6
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Nadolol, a beta blocker, was identified via virtual screening to potentially bind to the
EphB2-ephrinB2 complex, where the expression of the complex is associated with cancer
cells as shown in Fig. 8. This small molecule has a pharmacophore fit score of 45.97, and
literature review suggests that beta blockers could potentially treat a variety of cancers,
including breast cancer and pancreatic cancer (Ishida et al., 2016). A close relative of this
drug, propranolol, can induce apoptosis in liver cancer cells (Wang et al., 2018). This
research suggests nadolol’s potential role in mitigating the effects of other cancers as well.
The right image is nadolol in relation to the pharmacophore developed as shown in Fig. 4.

Virtual drug screening identified nine drugs (pralatrexate, chlortetracycline, nadolol,
imipenem, idarubicin, valganciclovir, conivaptan, cimetidine, and barnidipine) that bind
to the pharmacophore shown in Fig. 4. Further analysis via literature review identified four
drug candidates to potentially treat various types of cancers: cimetidine, idarubicin,
pralatrexate, and nadolol. Figure 5 shows the possibility for cimetidine, an antacid, to bind
with the EphB2-ephrinB2 complex, and scientific literature identified the possibility for
this drug to potentially treat melanoma, gastric, and colorectal cancers (Pantziarka et al.,
2014). Figure 6 identifies the possibility for idarubicin, a chemotherapy drug used to
treat leukemia, to bind with the EphB2-ephrinB2 complex, and literature review identified
the possibility for this drug to potentially treat melanoma and leukemia (Martoni et al., 1986;

Figure 7 (A) Structure of pralatrexate. (B) Relative structure of pralatrexate in relation to the
developed pharmacophore. Full-size DOI: 10.7717/peerj.10381/fig-7

Figure 8 (A) Structure of nadolol. (B) Relative structure of nadolol in relation to the developed
pharmacophore. Full-size DOI: 10.7717/peerj.10381/fig-8
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Jabbour et al., 2017). Figure 7 demonstrates the possibility for pralatrexate, a T-cell
lymphoma medication to bind to the EphB2-ephrinB2 complex.

DISCUSSION
In this article, we presented our development of a machine learning approach for
identifying druggable hotspots at protein–protein interfaces. Our algorithm builds on
previously existing methods, most notably the SpotOn study. Our approach combines
molecular features that have not previously been combined, such as the molecular
descriptors used in the SpotOn and HotPoint studies, and additional information related
to amino acid composition as provided by the protr module. It applies various machine
learning techniques, such as 10-fold cross-validation, feature engineering, and ensembling
techniques, including voting and stacking. A logistic regression with C = 1,000 was
used in order to achieve an AUROC of 0.842, sensitivity/recall of 0.833, and specificity of
0.850.

In order to find the most optimal pipeline, all four pipelines were run, and the pipeline
that used SMOTE and PCA during the pre-processing step was chosen the most optimal
pipeline due to its high average AUROC score. The average metrics of all classifiers in
each of the pre-processing steps are recorded in Table 1. Furthermore, the results of each
top performing classifier in the SMOTE and PCA pre-processing step are illustrated in
Table 2. In Table 3, the top metrics of the highest performing algorithm in the most
optimal pipeline, the SMOTE and PCA pre-processing pipeline, are compared with the
top-performing model in the ScaledUp pre-processing dataset in SpotOn, the highest
performing dataset in that study. SpotOn-specific metrics are provided by the study
itself. The individual models of our study performed better than the individual models
of SpotOn as highlighted in Table 3. After this step, ensemble methods such as stacking
and voting were implemented to potentially achieve even better results than any single
model. The results of performing this step are shown in Table 4.

Although our models outperform that of SpotOn’s individual models on all metrics, the
results of our approach are lower on three out of four metrics than the top performing
ensemble model from the SpotOn study, as illustrated in Table 5. This may be due to one of
many reasons. Even though there was an increase in the total number of features as
compared to the SpotOn study, the slight decrease in the total number of samples could
potentially negatively affect predictive performance. Another reason could be that the
models tested are not diverse enough from each other to significantly boost performance
via ensembling. Two of the models in this study are tree-based methods (random forest
and gradient boosting). This seems to be the most plausible explanation for why our
top individual model outperformed SpotOn’s top individual model on all metrics, but
ensembling techniques did not improve performance. A greater diversity of these
models would probably have boosted performance during stacking or voting, as a greater
variety of base models have been shown to boost predictive performance (Whalen &
Pandey, 2013).

To illustrate our approach, we applied this model to analyze the EphB2-ephrinB2
complex, which has been overexpressed and associated with multiple types of cancer,
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including prostate, gastric, colorectal and melanoma cancers (Pasquale, 2010). As the
overexpression of the EphB2-ephrinB2 complex is associated with these cancers,
further analysis for drug discovery could aid in identifying possible new hotspots that
potentially aid in drug discovery in the fight against cancer (Barquilla & Pasquale, 2015).
In addition, the viability for the EphB2-ephrinB2 complex, and more specifically the
EphB2 receptor, for drug discovery has been examined, and it was determined that small
molecules could potentially disrupt and/or bind to the ephrin binding pocket (Chrencik
et al., 2007; Noberini, Lamberto & Pasquale, 2012).

The effectiveness of introducing new and engineered features was demonstrated by the
sensitivity analysis on the logistic regression on the SMOTE-only pipeline (Fig. 1), where
three out of the top ten features were added in this study exclusively. Our algorithm
identified a set of residue hotspots (Fig. 2), which were then used to generate an apo-site
grid and pharmacophore model (Figs. 3 and 4). This model was used to identify drugs
with similar characteristics that could be potentially used to modulate the molecular
functions of the EphB2-ephrinB2 complex. Table 6 outlines the nine small molecules that
passed the drug screening test. Extensive literature review was performed on all nine drugs,
and four small molecules were selected their potential efficacy regarding their ability to
treat conditions associated with the EphB2-ephrinB2 complex. The identified drugs
included compounds already used for cancer treatment, such as pralatrexate, a T-cell
lymphoma medication, as well as non-cancer medication; cimetidine, an antacid; and
nadolol, a beta blocker that can treat cardiac conditions. Literature review suggests that
pralatrexate can potentially treat breast cancer and prostate cancer, and recent literature
highlights the possibility for this small molecule to treat other conditions such as
cancers of the gastric and esophageal systems (Yu, Zhao & Gao, 2018; Serova et al., 2011;
Malhotra et al., 2020). Figure 8 identifies nadolol, a beta blocker that can treat cardiac
conditions, as a candidate to bind to the EphB2-ephrinB2 complex. Literature review
strongly supports that beta blockers can be repositioned to treat other cancers, such as
cancer, and has identified a close relative of nadolol, propranolol, as a potential treatment
against multiple cancers, including colon cancer (Işeri et al., 2014).

CONCLUSION
The model developed herein in phase one compares favorably with those developed in
prior studies and offers enhanced predictive ability for identifying new druggable hotspots,
including possible druggable hotspots for cancer-related protein interfaces. The predictive
capabilities of the model developed herein are high, offering a high AUROC and
overall predictive performance to date. Herein, a logistic regression with C = 1,000 was
utilized to successfully identify hotspots.

Phase two of this project aims to identify possible drugs for repositioning. Structural
properties of the identified hotspot residues, such as H-bond acceptors and donors,
were identified as feature sets to aid in drug development. The efficacy of the model
developed herein has been demonstrated through its successful ability to predict
drug-disease associations previously identified in literature, including cimetidine,
idarubicin, and pralatrexate. Importantly, nadolol has been uniquely identified in this

Nandakumar and Dinu (2020), PeerJ, DOI 10.7717/peerj.10381 16/20

http://dx.doi.org/10.7717/peerj.10381
https://peerj.com/


study to potentially treat conditions caused by the overexpression of the EphB2-ephrinB2
complex. This work aims to yield better predictions in terms of hotspot discovery by
primarily increasing the sheer amount of data that is available regarding protein–protein
interactions. As a consequence, this work has shown that the increases in predictive power
as a result of this addition of data.

Possible avenues for future work include drug development using the pharmacophores
identified in this study to treat these diseases. Hopefully, by identifying hotspot residues
with unparalleled accuracy and identifying possible drug repositioning opportunities,
traditional drug development based on these residues and repositioned drugs could yield
new and effective treatments for diseases such as cancer. In addition, adding additional
novel features and data for hotspot identification, especially those that directly correlate
with the extent of how energetically favorable residues are, could further improve
model performance. Another avenue for future work would be to streamline the workflow
of both phases. Phase one is automated with the help of the machine learning model.
However, phase two requires manual input of the hotspot residues as identified in phase
one to identify potential drug candidates. A more streamlined process would improve
functionality and ease of use.

ACKNOWLEDGEMENTS
I would like to thank the researchers who conducted the SpotOn study, especially Ms. Irina
Moreira, for providing the code and existing dataset that this study is built on top of.
I would also like to thank Dr. Michael McKelvy of Basha High School for his extensive
feedback on my poster and project. In addition, I would like to thank Mr. Thomas Lemker
for his assistance in using the LigandScout software.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Rohit Nandakumar conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

� Valentin Dinu analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

All data and code used to produce these results are available as Supplemental Files.

Nandakumar and Dinu (2020), PeerJ, DOI 10.7717/peerj.10381 17/20

http://dx.doi.org/10.7717/peerj.10381#supplemental-information
http://dx.doi.org/10.7717/peerj.10381
https://peerj.com/


The code for the SpotOn study was obtained from Dr. Irina Moreira and her lab
(irina.moreira@cnc.uc.pt) and the data from the HotPoint study is available at
http://prism.ccbb.ku.edu.tr/hotpoint.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.10381#supplemental-information.

REFERENCES
Bakail M, Ochsenbein F. 2016. Targeting protein-protein interactions, a wide open field for drug

design. Comptes Rendus Chimie 19(1–2):19–27 DOI 10.1016/j.crci.2015.12.004.

Barquilla A, Pasquale EB. 2015. Eph receptors and ephrins: therapeutic opportunities.
Annual Review of Pharmacology and Toxicology 55(1):465–487
DOI 10.1146/annurev-pharmtox-011112-140226.

Byggmästar J, Granberg F, Nordlund K. 2018. Effects of the short-range repulsive potential on
cascade damage in iron. Journal of Nuclear Materials 508:530–539
DOI 10.1016/j.jnucmat.2018.06.005.

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. 2002. SMOTE: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research 16:321–357
DOI 10.1613/jair.953.

Chrencik JE, Brooun A, Recht MI, Nicola G, Davis LK, Abagyan R, Widmer H, Pasquale EB,
Kuhn P. 2007. Three-dimensional structure of the EphB2 receptor in complex with an
antagonistic peptide reveals a novel mode of inhibition. Journal of Biological Chemistry
282(50):36505–36513 DOI 10.1074/jbc.M706340200.

Cukuroglu E, Engin HB, Gursoy A, Keskin O. 2014. Hot spots in protein-protein interfaces:
towards drug discovery. Progress in Biophysics and Molecular Biology 116(2–3):165–173
DOI 10.1016/j.pbiomolbio.2014.06.003.

De Vries SJ, Bonvin AMJJ. 2011. CPORT: a consensus interface predictor and its performance in
prediction-driven docking with HADDOCK. PLOS ONE 6(3):e17695
DOI 10.1371/journal.pone.0017695.

Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. 2017. Trends in GPCR
drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery
16(12):829–842 DOI 10.1038/nrd.2017.178.

Hopkins AL, Groom CR. 2002. The druggable genome. Nature Reviews Drug Discovery
1(9):727–730 DOI 10.1038/nrd892.

Işeri OD, Sahin FI, Terzi YK, Yurtcu E, Erdem SR, Sarialioglu F. 2014. Beta-Adrenoreceptor
antagonists reduce cancer cell proliferation, invasion, and migration. Pharmaceutical Biology
52(11):1374–1381 DOI 10.3109/13880209.2014.892513.

Ishida J, Konishi M, Ebner N, Springer J. 2016. Repurposing of approved cardiovascular drugs.
Journal of Translational Medicine 14(1):346 DOI 10.1186/s12967-016-1031-5.

Israelachvili J, Pashley R. 1982. The hydrophobic interaction is long range, decaying exponentially
with distance. Nature 300(5890):341–342 DOI 10.1038/300341a0.

Jabbour E, Short NJ, Ravandi F, Huang X, Xiao L, Garcia-Manero G, Plunkett W, Gandhi V,
Sasaki K, Pemmaraju N, Daver NG, Borthakur G, Jain N, Konopleva M, Estrov Z, Kadia TM,
Wierda WG, DiNardo CD, Brandt M, O’Brien SM, Cortes JE, Kantarjian H. 2017.
A randomized phase 2 study of idarubicin and cytarabine with clofarabine or fludarabine in

Nandakumar and Dinu (2020), PeerJ, DOI 10.7717/peerj.10381 18/20

http://irina.moreira@cnc.uc.pt
http://prism.ccbb.ku.edu.tr/hotpoint
http://dx.doi.org/10.7717/peerj.10381#supplemental-information
http://dx.doi.org/10.7717/peerj.10381#supplemental-information
http://dx.doi.org/10.1016/j.crci.2015.12.004
http://dx.doi.org/10.1146/annurev-pharmtox-011112-140226
http://dx.doi.org/10.1016/j.jnucmat.2018.06.005
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1074/jbc.M706340200
http://dx.doi.org/10.1016/j.pbiomolbio.2014.06.003
http://dx.doi.org/10.1371/journal.pone.0017695
http://dx.doi.org/10.1038/nrd.2017.178
http://dx.doi.org/10.1038/nrd892
http://dx.doi.org/10.3109/13880209.2014.892513
http://dx.doi.org/10.1186/s12967-016-1031-5
http://dx.doi.org/10.1038/300341a0
http://dx.doi.org/10.7717/peerj.10381
https://peerj.com/


patients with newly diagnosed acute myeloid leukemia. Cancer 123(22):4430–4439
DOI 10.1002/cncr.30883.

Kim DE, Chivian D, Baker D. 2004. Protein structure prediction and analysis using the Robetta
server. Nucleic Acids Research 32:W526–W531 DOI 10.1093/nar/gkh468.

Koes DR, Dömling A, Camacho CJ. 2018. AnchorQuery: rapid online virtual screening for
small-molecule protein-protein interaction inhibitors. Protein Science 27(1):229–232
DOI 10.1002/pro.3303.

Lee AC-L, Harris JL, Khanna KK, Hong J-H. 2019. A comprehensive review on current advances
in peptide drug development and design. International Journal of Molecular Sciences
20(10):2383 DOI 10.3390/ijms20102383.

López-Cortés A, Cabrera-Andrade A, Cruz-Segundo CM, Dorado J, Pazos A, Gonzáles-Díaz H,
Paz-y-Miño C, Pérez-Castillo Y, Tejera E, Munteanu CR. 2019. Prediction of druggable
proteins using machine learning and functional enrichment analysis: a focus on cancer-related
proteins and RNA-binding proteins. BioRxiv 825513 DOI 10.1101/825513.

Ma B, Nussinov R. 2014. Druggable orthosteric and allosteric hot spots to target protein-protein
interactions. Current Pharmaceutical Design 20(8):1293–1301
DOI 10.2174/13816128113199990073.

Malhotra U, Mukherjee S, Fountzilas C, Boland P, Miller A, Patnaik S, Attwood K,
Yendamuri S, Adjei A, Kannisto E, Opyrchal M, Bushunow P, Loud P, Iyer R, Khushalani N.
2020. Pralatrexate in combination with oxaliplatin in advanced esophagogastric cancer: a phase
II trial with predictive molecular correlates. Molecular Cancer Therapeutics 19(1):304–311
DOI 10.1158/1535-7163.MCT-19-0240.

Martins JM, Ramos RM, Pimenta AC, Moreira IS. 2014. Solvent-accessible surface area: how well
can be applied to hot-spot detection? Proteins-structure Function and Bioinformatics
82(3):479–490 DOI 10.1002/prot.24413.

Martoni A, Pacciarini MA, Piana E, Pannuti F. 1986.A pilot study of oral idarubicin in metastatic
melanoma. Chemioterapia: International Journal of the Mediterranean Society of Chemotherapy
5:414–415.

Modell AE, Blosser SL, Arora PS. 2016. Systematic targeting of protein-protein interactions.
Trends in Pharmacological Sciences 37(8):702–713 DOI 10.1016/j.tips.2016.05.008.

More A. 2016. Survey of resampling techniques for improving classification performance in
unbalanced datasets. Available at https://arxiv.org/abs/1608.06048.

Moreira IS, Koukos PI, Melo R, Almeida JG, Preto AJ, Schaarschmidt J, Trellet M, Gümüş ZH,
Costa J, Bonvin AMJJ. 2017. SpotOn: high accuracy identification of protein-protein interface
hot-spots. Scientific Reports 7(1):8007 DOI 10.1038/s41598-017-08321-2.

Noberini R, Lamberto I, Pasquale EB. 2012. Targeting eph receptors with peptides and small
molecules: progress and challenges. Seminars in Cell & Developmental Biology 23(1):51–57
DOI 10.1016/j.semcdb.2011.10.023.

Pantziarka P, Bouche G, Meheus L, Sukhatme V, Sukhatme VP. 2014. Repurposing drugs in
oncology (ReDO): cimetidine as an anti-cancer agent. Ecancermedicalscience 8:485
DOI 10.3332/ecancer.2014.485.

Pantziarka P, Bouche G, Sukhatme V, Meheus L, Rooman I, Sukhatme VP. 2016. Repurposing
drugs in oncology (ReDO): propranolol as an anti-cancer agent. Ecancermedicalscience 10:680
DOI 10.3332/ecancer.2016.680.

Pasquale EB. 2010. Eph receptors and ephrins in cancer: bidirectional signaling and beyond.
Nature Reviews Cancer 10(3):165–180 DOI 10.1038/nrc2806.

Nandakumar and Dinu (2020), PeerJ, DOI 10.7717/peerj.10381 19/20

http://dx.doi.org/10.1002/cncr.30883
http://dx.doi.org/10.1093/nar/gkh468
http://dx.doi.org/10.1002/pro.3303
http://dx.doi.org/10.3390/ijms20102383
http://dx.doi.org/10.1101/825513
http://dx.doi.org/10.2174/13816128113199990073
http://dx.doi.org/10.1158/1535-7163.MCT-19-0240
http://dx.doi.org/10.1002/prot.24413
http://dx.doi.org/10.1016/j.tips.2016.05.008
https://arxiv.org/abs/1608.06048
http://dx.doi.org/10.1038/s41598-017-08321-2
http://dx.doi.org/10.1016/j.semcdb.2011.10.023
http://dx.doi.org/10.3332/ecancer.2014.485
http://dx.doi.org/10.3332/ecancer.2016.680
http://dx.doi.org/10.1038/nrc2806
http://dx.doi.org/10.7717/peerj.10381
https://peerj.com/


Scott DE, Bayly AR, Abell C, Skidmore J. 2016. Small molecules, big targets: drug discovery faces
the protein-protein interaction challenge. Nature Reviews Drug Discovery 15(8):533–550
DOI 10.1038/nrd.2016.29.

Schrödinger LLC. 2015. The PyMOL molecular graphics system. Version 1.8. Available at
https://pymol.org/2/.

Serova M, Bieche I, Sablin M-P, Pronk GJ, Vidaud M, Cvitkovic E, Faivre S, Raymond E. 2011.
Single agent and combination studies of pralatrexate and molecular correlates of sensitivity.
British Journal of Cancer 104(2):272–280 DOI 10.1038/sj.bjc.6606063.

Tuncbag N, Keskin O, Gursoy A. 2010.HotPoint: hot spot prediction server for protein interfaces.
Nucleic Acids Research 38:W402–W406 DOI 10.1093/nar/gkq323.

Wang F, Liu H, Wang F, Xu R, Wang P, Tang F, Zhang X, Zhu Z, Lv H, Han T. 2018.
Propranolol suppresses the proliferation and induces the apoptosis of liver cancer cells.
Molecular Medicine Reports 17:5213–5221 DOI 10.3892/mmr.2018.8476.

Whalen S, Pandey G. 2013. A comparative analysis of ensemble classifiers: case studies in
genomics. In: 2013 IEEE 13th International Conference on Data Mining. 807–816.

Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. 2008.
DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research
36(Suppl._1):D901–D906 DOI 10.1093/nar/gkm958.

Wolber G, Langer T. 2005. LigandScout: 3-D pharmacophores derived from protein-bound
ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling
45(1):160–169 DOI 10.1021/ci049885e.

Xiao N, Cao D-S, Zhu M-F, Xu Q-S. 2015. Protr/ProtrWeb: R package and web server for
generating various numerical representation schemes of protein sequences. Bioinformatics
31(11):1857–1859 DOI 10.1093/bioinformatics/btv042.

Yu L, Zhao J, Gao L. 2018. Predicting potential drugs for breast cancer based on miRNA and tissue
specificity. International Journal of Biological Sciences 14(8):971–982 DOI 10.7150/ijbs.23350.

Zhu X, Mitchell JC. 2011. KFC2: a knowledge-based hot spot prediction method based on interface
solvation, atomic density, and plasticity features. Proteins-Structure Function and Bioinformatics
79(9):2671–2683 DOI 10.1002/prot.23094.

Nandakumar and Dinu (2020), PeerJ, DOI 10.7717/peerj.10381 20/20

http://dx.doi.org/10.1038/nrd.2016.29
https://pymol.org/2/
http://dx.doi.org/10.1038/sj.bjc.6606063
http://dx.doi.org/10.1093/nar/gkq323
http://dx.doi.org/10.3892/mmr.2018.8476
http://dx.doi.org/10.1093/nar/gkm958
http://dx.doi.org/10.1021/ci049885e
http://dx.doi.org/10.1093/bioinformatics/btv042
http://dx.doi.org/10.7150/ijbs.23350
http://dx.doi.org/10.1002/prot.23094
http://dx.doi.org/10.7717/peerj.10381
https://peerj.com/

	Developing a machine learning model to identify protein--protein interaction hotspots to facilitate drug discovery
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


