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Abstract: Halting the rapid clinical deterioration, marked by arterial hypoxemia, is among the
greatest challenges clinicians face when treating COVID-19 patients in hospitals. While it is clear
that oxygen measures and treatment procedures describe a patient’s clinical condition at a given
time point, the potential predictive strength of the duration and extent of oxygen supplementation
methods over the entire course of hospitalization for a patient death from COVID-19 has yet to be
assessed. In this study, we aim to develop a prediction model for COVID-19 mortality in hospitals
by utilizing data on oxygen supplementation modalities of patients. We analyzed the data of 545
patients hospitalized with COVID-19 complications admitted to Assuta Ashdod Medical Center,
Israel, between 7 March 2020, and 16 March 2021. By solely analyzing the daily data on oxygen
supplementation modalities in 182 random patients, we could identify that 75% (9 out of 12) of
individuals supported by reservoir oxygen masks during the first two days died 3–30 days following
hospital admission. By contrast, the mortality rate was 4% (4 out of 98) among those who did not
require any oxygenation supplementation. Then, we combined this data with daily blood test results
and clinical information of 545 patients to predict COVID-19 mortality. Our Random Forest model
yielded an area under the receiver operating characteristic curve (AUC) score on the test set of
82.5%, 81.3%, and 83.0% at admission, two days post-admission, and seven days post-admission,
respectively. Overall, our results could essentially assist clinical decision-making and optimized
treatment and management for COVID-19 hospitalized patients with an elevated risk of mortality.

Keywords: COVID-19 hospitalization; COVID-19 mortality; risk score; inflammatory markers; oxygen

1. Introduction

Caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-
19 was declared a global pandemic by the World Health Organization (WHO) on 11 March
2020 [1]. It has since challenged healthcare systems worldwide and overwhelmed hospitals
and health workers [2], rendering them unable to halt the increased mortality of patients
who rapidly deteriorated to perilous health states [3,4]. In hospitals around the globe,
the number of patients requiring hospitalization far exceeded the maximum capacity
during the pandemic peaks of 2020 and 2021. This reality led to an insufficient number of
intensive care unit beds and inadequate treatment, forcing doctors to make difficult ethical
decisions [5–7].

The rapid clinical deterioration, marked by arterial hypoxemia [8,9], is among the
greatest challenges clinicians currently face when treating COVID-19 patients. Severe

Healthcare 2022, 10, 1146. https://doi.org/10.3390/healthcare10061146 https://www.mdpi.com/journal/healthcare

https://doi.org/10.3390/healthcare10061146
https://doi.org/10.3390/healthcare10061146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0003-1799-1763
https://orcid.org/0000-0002-1131-5572
https://orcid.org/0000-0003-3193-5768
https://orcid.org/0000-0001-7415-1053
https://orcid.org/0000-0002-6730-0855
https://orcid.org/0000-0001-9875-3550
https://doi.org/10.3390/healthcare10061146
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare10061146?type=check_update&version=1


Healthcare 2022, 10, 1146 2 of 10

cases typically feature respiratory distress and require supplemental oxygen and close
monitoring. Specifically, supplementation of oxygen therapy for COVID-19 patients is
recommended when their peripheral oxygen saturation (SpO2) falls below 94% [10,11].
Moderate-to-severe COVID-19 patients can receive supplemental oxygen, delivered via
nose prongs or face masks, through which oxygen flows at a moderate and consistent
rate [12]. In contrast, when it comes to patients with acute hypoxemic respiratory failure,
a high-flow nasal cannula (HFNC) is preferred [13,14]. Intriguingly, while it is clear that
oxygen measures and therapy treatment describe a patient’s clinical conditions at a given
time point [15], the potential predictive strength of the duration and extent of oxygen
supplementation methods over the entire course of hospitalizations for patient death from
COVID-19 has yet to be assessed.

During hospitalization, patients are subjected to various medical tests to monitor
disease progression and potential deterioration, including laboratory biomarkers [16].
Malik et al. (2020) identified several such markers of poor outcome, for example, decreased
lymphocyte count and elevated levels of C reactive protein, D-dimer, lactate dehydrogenase,
and Creatinine kinase [17]. Likewise, Sheth et al. (2021) found distinct Troponin, B-type
natriuretic peptide, D-dimer, and Creatinine kinase levels in COVID-19 patients who died
or were critically ill compared to less severe disease manifestations [18]. Despite such
efforts, no single prognostic biomarker that can distinguish patients who require immediate
medical attention and estimate their mortality risk has been identified.

Several pioneering studies have offered machine-learning models to identify res-
piratory deterioration among hospitalized COVID-19 patients. For example, Gao et al.
(2020) developed a COVID-19 machine learning model that predicts the chances of sub-
sequent physiological deterioration and death, based on a patient’s clinical data upon
admission [19]. In a similar study, Lassau et al. (2020) constructed a multimodal artificial
intelligence severity score that integrates five clinical and biological variables with a deep
learning CT-scan model15. Other studies attempted to identify respiratory deterioration
based on various biomarkers [20–22]. However, these methods did not account for the
overall oxygenation levels and the information gained from the physician’s treatment deci-
sions throughout the hospitalization period. Therefore, identifying high-risk patients using
practical risk-prediction tools that simultaneously combine all this information should
improve the allocation of resources and medical attention.

This study aims to develop a prediction model for COVID-19 mortality in hospitals.
We show that integrating clinical, biological, and respiratory data based on oxygen supple-
mentation modalities can be utilized to predict COVID-19 mortality at hospital admission,
two days post-admission, and seven days post-admission. Overall, our results may help
alert clinicians early on to the elevated mortality risk of a patient during hospitalization
and subsequently provide instant intervention and intensive care and monitoring.

2. Materials and Methods
2.1. Study Population

We retrospectively analyzed the data of 545 patients hospitalized with COVID-19
and admitted to Assuta Medical Center, Ashdod, Israel, between 7 March 2020, and
16 March 2021. For each patient, the data included general information on age, gender, and
background diseases and the daily blood test biomarker levels for various inflammation-
associated parameters. Each patient in our study received a random ID. Assuta physicians
ordered these patients according to their random ID and extracted the respiratory data of
the first 182 patients. The extraction process of the oxygen data was performed manually
and was time-consuming. Therefore, the medical team could not extract the respiratory
data for all 545 patients for our analysis at that time.

2.2. Measures

Our data includes the medical information collected from hospital admission to dis-
charge. This includes the daily measurements of oxygen saturation levels and the oxygen
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supplementation modality, as well as all daily blood test results. All patients were positive
for COVID-19 with RT-PCR at admission, but the day of symptom onset or first positive
test result was not available. Clinical and laboratory blood test data were obtained from
detailed medical records and reviewed, summarized, and cross-checked retrospectively
by a team of experienced medical doctors from Assuta Medical Center. Clinical data was
comprised of demographic variables (age and gender), and medical history, which included
the presence or absence of comorbidities (anemia, COPD, dementia, diabetes, or other).
Laboratory blood test data included the neutrophil percentage (NEU%), lymphocytes
counts (LYM abs.), total C-reactive protein, D-dimer, LDH in the blood (LDH-B), and Urea
in the blood (Urea-B). Respiratory data included (1) oxygen saturation levels (scale of
0–100%); (2) oxygen delivery modalities, ordered by flow rate, including nasal cannula,
simple face mask with reservoir, HFNC, Bilevel positive airway pressure (BiPAP) ventilator,
and Continuous positive airway pressure (CPAP) ventilator; and (3) flow rates, in liters per
minute (LPM).

2.3. Oxygenation Score to Predict Severity and Mortality

We generated a single scoring system based on the oxygen supplementation modalities
to reflect the severity of the respiratory failure (Table 1), which is consistent with the WHO
treatment recommendations [10,11] . This score, which we termed Oxygenation Severity
Score (OSS), was scaled from 1 to 10 and was measured daily for each patient. For example,
patients who did not receive any form of oxygenation support received a score of 1, whereas
patients who required a reservoir oxygen mask with an oxygen flow rate of 1–15 L/min
scored 4, and patients who required BiPAP scored 10 (Table 1).

Table 1. Oxygenation Severity Score.

Respiratory Aid Liters per Minute (LPM) Oxygenation Severity Score

Room air 0 1
Nasal cannula 1–4 2
Nasal cannula 5–10 3

Reservoir 1–15 4
Reservoir 15–20 5

HFNC 31–40 6
HFNC 20–30 7
HFNC <20 8

HFNC + Reservoir 9
BiPAP/CPAP 10

2.4. Statistical Analysis

Statistical analysis was performed using Python (version 3.8.5). For descriptive analy-
sis, the median (IQR) was assessed for continuous variables. For our predictive model, we
used the Scikit-learn machine learning library.

We developed machine-learning models to predict COVID-19 mortality, utilizing data
from three-time points (1) at admission, (2) two days post-admission, and (3) seven days
post-admission. In this study, we define “COVID-19 mortality” as a death resulting from
COVID-19 associated complications within 30 days post-admission.

For each time point, we analyzed only the data of individuals who were alive at the
time of prediction. For each time point, we ran two types of models (1) Naïve–which used
only data on age, gender, and the existence of background diseases; (2) Full–which utilized
the naïve model data, the daily OSS, and a subset of blood test biomarkers previously
shown to be predictive of COVID-19 mortality (see Table S1). Missing values on respiratory
data were imputed by the average of the daily OSS of the individuals who were alive at
each time point.

The machine-learning models were evaluated using a Random Forest [20,23] with
500 trees, a maximum depth of 3, a minimal sample of leaves for the splitting of 5, and a



Healthcare 2022, 10, 1146 4 of 10

minimum impurity decrease of 0.002, based on Gini impurity. Evaluation of the model
was conducted using a 100-fold repetition process, where the model was trained each
time using 70% of the data and tested over the remaining 30%, in a stratified manner. The
reported results are the median of these 100 executions, with a 25 and 75 percentile range.
AUC was used as the primary metric to assess the trained models’ overall performance.

To study the contribution of each data source (i.e., naïve data, OSS, and blood test
biomarkers), we calculated the incremental contribution to the AUC score by evaluating first
the contribution of OSS on top of the naïve model, and then the incremental contribution of
the blood test data on top of the OSS model. We chose this order as, typically, information
on age, gender, and background disease is available at hospital admission, and OSS is more
accessible than blood test biomarkers over the hospitalization period.

3. Results

In this study, we analyzed retrospective data of 545 patients who tested positive for
COVID-19 and were admitted to the Assuta Medical Center in Ashdod, Israel, due to
disease complications, between 7 March 2020, and 16 March 2021. For all those patients
the clinical data (age, gender, background diseases) and blood test data that were collected
during the hospitalization period, were available. For a random subset of 182 patients, we
also extracted respiratory data. These 182 patients had similar, age, gender, and background
disease characteristics, as patients for whom respiratory data was not available, as well
as similar survival and mortality rates (Table 2). The respiratory data included daily
measurements of oxygen saturation levels and the oxygen supplementation modality
from the hospitalization records. We examined the data of admitted patients for up to
30 days, while some patients were released before that time, and some died due to COVID-
19 complications.

Of the 545 individuals, 58.2% (n = 317) were men. The patients’ ages ranged from
12 to 101 years, with a median age of 67 years (IQR: 54–79). Overall, 16.2% (n = 89) of
the hospitalized patients died within 30 days of admission. We found that older age
and chronic diseases were associated with elevated mortality risk (Table 2). Specifically,
individuals above 80 years of age who were admitted to the hospital due to COVID-19
were 17.2 (95% CI: 6.34–46.43) times more likely to die from disease complications than
individuals below the age of 60 (Table 2). Likewise, COVID-19 patients with anemia,
chronic obstructive pulmonary disease (COPD), or dementia were 2.6 (95% CI: 1.27–5.35),
3.0 (95% CI: 1.36–6.63), and 3.5 (95% CI: 1.96–6.17) times, respectively, more likely to die
than those without these medical conditions.

3.1. Oxygenation Score as a Predictor of Survivorship

We aimed to explore the association between respiratory support therapy and mortality
of hospitalized COVID-19 patients. We focused our examination of the patient’s data on
three time periods (1) at admission, (2) two days post-admission, and (3) seven days post-
admission. Regarding the respiratory data, we analyzed the data of a random subset of
182 individuals, for whom respiratory data were available. The extracted respiratory data
included daily measurements of oxygen saturation level and the oxygen supplementation
modality from the hospitalization records. During the time of hospitalization, the patient
could have received one or more of the four available oxygen supplementation modalities,
depending on the degree of required aid (from minimal to maximal) (1) nasal canula (2)
simple face mask with reservoir (3) HFNC (4) HFNC+reservoir. We found that patients
who exhibited more respiratory distress, thereby requiring more supplemental oxygen
aid, had less potential to survive the disease. First, we examined the proportion of non-
survivors following 2- and 7-days post-admission, depending on the oxygen delivery
modality. We revealed a significant difference between patients requiring a face mask
with an oxygen reservoir bag attached (herein “reservoir”) and patients who received no
oxygen supplementation (herein “no aid”) (Figure 1A,B). Specifically, 75% of individuals
supported by reservoir oxygen masks during the first two days died 3–30 days following
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hospital admission. In stark contrast, for those who did not require any oxygenation
supplementation, the mortality rate was significantly less, 4% (Figure 1A). Likewise, 65%
of individuals assisted by a reservoir oxygen mask during the first seven days died 8–30
days following hospital admission, compared to 2% of patients who did not require any
oxygen supplementation (Figure 1B).

Table 2. Information on hospitalized patients with COVID-19 between 7 March 2020, and 16 March
2021, at Assuta Ashdod Medical Center.

Category
Type Category Respiratory

Data N Survivors % Survivors Non
Survivors

Non
Survivors %

Relative
Risk

95%
Confidence

Level

Age True 69 67 97.1% 2 2.9%
12–60 False 115 113 98.3% 2 1.7%

Both 184 180 97.8% 4 2.2% – –

True 72 62 86.1% 10 13.9%
60–80 False 163 138 84.7% 25 15.3%

Both 235 200 85.1% 35 14.9% 6.85 A* 2.48–18.93

True 41 26 63.4% 15 36.6%
>80 False 85 53 62.4% 32 37.6%

Both 126 79 62.7% 47 37.3% 17.16 A* 6.34–46.43

Gender True 64 54 84.4% 10 15.6%
Female False 164 141 86.0% 23 14.0%

Both 228 195 85.5% 33 14.5% 0.87 0.58–1.29

True 118 101 85.6% 17 14.4%
Male False 199 163 81.9% 36 18.1%

Both 317 264 83.3% 53 16.7% – –

Background True 60 54 90.0% 6 10.0%
diseases None False 112 96 85.7% 16 14.3%

Both 172 150 87.2% 22 12.8% – –

True 7 4 57.1% 3 42.9%
Anemia False 14 10 71.4% 4 28.6%

Both 21 14 66.7% 7 33.3% 2.61 B* 1.27–5.53

True 4 4 100.0% 0 0.0%
COPD False 9 4 44.4% 5 55.6%

Both 13 8 61.5% 5 38.5% 3.01 B* 1.36–6.63

True 13 6 46.2% 7 53.8%
Dementia False 14 9 64.3% 5 35.7%

Both 27 15 55.6% 12 44.4% 3.47 B* 1.96–6.17

True 37 28 75.7% 9 24.3%
Diabetes False 83 70 84.3% 13 15.7%

Both 120 98 81.7% 22 18.3% 1.43 B 0.83–2.47

True 73 67 91.8% 6 8.2%
Other False 145 123 84.8% 22 15.2%

Both 218 190 87.2% 28 12.8% 1.0 B 0.6–1.69

A Relative risk of the computed group compared to age group 12–60. B Relative risk of the computed group
compared to individuals with no background diseases. * Statistically significant at p < 0.05, Chi-square test of
independence.

Owing to the predictive potential of the respiratory stress on the survival rate, we
developed a simple metric (1–10 scale), which we termed Oxygenation Severity Score
(OSS), to determine the clinical severity of a COVID-19 patient (Table 1). This score was
determined daily for each patient based on the oxygen supplementation modality/delivery
method and the flow rate used. For example, patients who did not receive supplemental
oxygen were assigned a score of 1, whereas those who required a reservoir oxygen mask
with a 1–15 L/min oxygen flow scored 4, and those who required a BiPAP scored 10. We
observed that, while the OSS increased with the length of hospitalization, non-survivors had
a substantially higher OSS at an earlier stage of their hospitalization (Figure 1C). Specifically,
38% of patients who reached an OSS ≥4 on the first or second day of hospitalization did not
survive (RR: 2.5, CI 95%:1.2–5). Additionally, we found that a higher OSS score correlated
with less time until death (in days) (Figure 1D). For example, 78% of diseased patients had
a score ≥4 more than 2 days before death, and 55% of diseased patients had a score ≥4
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more than 4 days before death. Therefore, the OSS could provide an early sign of elevated
risk of mortality.
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Figure 1. (A) The proportion of individuals who died 3–30 days post-admission to the type of
oxygenation aid treatment provided during the first two days post-admission. (B) The proportion of
individuals who died 7–30 days post-admission to the type of oxygenation aid treatment provided
during the first seven days post-admission. Error bars represent the 95% confidence interval. (C)
Daily median oxygenation score of survivors and non-survivors admitted to the hospital. The
purple area represents the overlapping between the 95% confidence interval of the “Survivors” and
“Non survivors” graphs. (D) The number of days until death as a function of the maximal daily
Oxygenation Severity Score (OSS). The light red/blue areas represent the interquartile range.

3.2. Integration of OSS with Biological Blood Test Data to Predict Mortality

After analyzing the clinical data (age, gender, and background diseases) and respira-
tory data, we aimed to create a predictive model for mortality from COVID-19. We also
accounted for the laboratory blood test data collected from patients during the hospitaliza-
tion period. We developed two Random Forest models, one that utilized only information
on age, gender, and background diseases, and another that used all the data, including
OSS and blood test biomarkers. Our model included all 545 patients. However, only a
random subset of 182 patients had available respiratory data. Thus, as the Random Forrest
algorithm cannot use missing values, we imputed the missing OSS values for the remaining
363 patients by the average of the daily OSS of the individuals who were alive at the
time of prediction. This procedure, which uses the daily average values in patients for
whom data is not available, is equivalent to adding a ‘null’ value as it does not add any
information on patients with no OSS data. Of note, the 182 patients had similar survival
and mortality rates to the remaining 363 patients, for whom the respiratory data was not
available. We computed the performance of our models to determine COVID-19-associated
mortality following (1) hospital admission, (2) two days post-admission, and (3) seven
days post-admission. We compared the results of the three prediction scenarios to a naïve
model that relied solely on the information before hospitalization (i.e., gender, age, and
background diseases).



Healthcare 2022, 10, 1146 7 of 10

We observed that the 2- and 7-day predictive models, which combine the clinical,
OSS, and blood test data, better-classified patients into survivors and non-survivors than
the naïve model (Figure 2A). Namely, our integrated models achieved an area under the
receiver operating characteristic curve (AUC) score on the test set of 82.5%, 81.3%, and
83.0% at admission, two days post-admission, and seven days post-admission, respectively.
The longer the hospital stay, the greater the OSS and blood tests contributed to predicting
mortality (Figure 2B). Furthermore, we observed that several blood tests correlated with
the severity of the disease by diverging significantly between survivors and non-survivors.
Examples of such tests are neutrophil percentage (NEU%), lymphocyte count (LYM abs.),
blood urea (Urea-B), and blood LDH (LDH-B) levels (Figure S1A–D). Nevertheless, we
observed no correlation between the laboratory blood test markers and the OSS (Figure
S1E), emphasizing why the OSS provided additional predictive information for COVID-
19 mortality beyond that extracted from laboratory blood tests. Therefore, combining
biological data with the respiratory data could allow clinicians to target high-risk patients
during hospitalization to provide instant intervention and prevent mortality due to COVID-
19 associated complications.
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Figure 2. Predictive models’ performance. (A) Mean AUC of a model that utilizes data before
hospital admission (i.e., age, gender, and background diseases) and of a model that utilizes data
before and during hospitalization (i.e., includes the oxygenation score and blood biomarkers). AUC
scores are presented for patients on the day of admission, two days post admission, and seven days
post admission. (B) Sociodemographic and background disease, oxygenation, and blood test data
and their sequential contribution to the “at admission”, “2-days” post admission and “7-days” post
admission predictive models.

4. Discussion

Rapid clinical deterioration is among the greatest challenges clinicians face when treat-
ing COVID-19 patients in hospitals. To allow better early detection of such deterioration, we
have developed a simple scoring system based on oxygenation data to predict the mortality
of hospitalized COVID-19 patients. We found that combining this simple scoring system
with basic information on age and background diseases can predict the potential risk of
mortality during hospitalization. Integrating blood tests into our model further improved
our predictions, with an AUC score of 82.5%, 81.3%, and 83.0% at admission, two days
post-admission, and seven days post-admission, respectively. Overall, the combination
of both medical and respiratory parameters could assist clinicians in targeting high-risk
patients during hospitalization, assist in their decision-making process, and allow for rapid
intervention to prevent mortality caused by COVID-19 associated complications.

COVID-19 disease progression is monitored by laboratory blood tests during the
patient hospitalization period [16–18,24,25]. The biomarkers used can be divided into
several groups: hematological (i.e., neutrophil and lymphocyte count), inflammatory (i.e.,
C-reactive protein), immunological (i.e., IL-6), and biochemical (D-dimer, LDH, urea). Our
examination of biomarkers from the different groups showed a clear difference between
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survivors and non-survivors, mainly in patients with an elevated neutrophil percentage
(NEU%), decreased lymphocyte count (LYM abs.), and lower urea and LDH levels in the
blood (urea-B and LDH-B, respectively). Indeed, no single prognostic biomarker could
estimate a patient’s mortality risk. Therefore, combining multiple markers enabled a
more accurate identification of the patients’ likelihood of developing severe symptoms
of respiratory failure. Conversely, blood test information is retrospective to the time of
measurement. By contrast, the OSS is a simple measure that can be recorded non-invasively
in real-time. Although each layer of information contributes equally to the predictive
models, combining continuous OSS measures early during hospitalization and detailed
blood laboratory biomarkers can serve as a powerful tool for early detection of patients’
deterioration, allowing for rapid and efficient treatment.

Our study has several limitations that should be addressed. First, our data includes
clinical and biological information on 545 patients, but the respiratory data is limited
to 182 patients. Our results should be validated with larger samples. Second, the data
were retrospectively obtained from a single medical center, with its particular medical
practices, which may decrease the ability to generalize the results, especially considering
the COVID-19 variability among populations and countries [26]. Third, our data was
collected during 2020/1 at the first outbreak of the COVID-19 pandemic. Since then, several
variants of the virus have emerged, with different onsets of clinical symptoms and mortality
rates. Nevertheless, we denote that the treatment practice used at the hospital has not
considerably changed since then and the isolation of high-risk patients for respiratory
deterioration remains a challenge in health care systems. Therefore, the ability to identify
patients with high mortality risk is essential for clinical decision-making and optimized
treatment and management.

Despite the recent development of effective vaccines, the coronavirus pandemic will
likely continue to affect our lives in the years to come due to the emergence of new, highly
transmissible mutant strains [27–29], the incomplete efficiency of the developed vaccines
in the elderly [30] and high-risk populations, and the objection to vaccinating certain
populations, such as individuals with a history of allergies [31]. Thus, in the absence of
medically approved treatments, using practical risk-prediction tools, such as demonstrated
in this study, may help ensure the provision of adequate clinical care to COVID-19 patients
in a critical state and intensive monitoring during the hospitalization period.

In conclusion, we provide a new dynamic machine-learning model that combines
data derived from monitoring medical and respiratory parameters. The model integrates
clinical and biological information to alert at hospital admission, two days post-admission,
and seven days post-admission against patients with an elevated risk of dying. Overall,
our model could essentially assist clinical decision-making and intensive monitoring of
COVID-19 infected individuals with unfavorable prognostic indicators and a high risk of
mortality from disease complications.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
healthcare10061146/s1, Figure S1: Death due to COVID-19 infection is dependent on the severity of
the immune-inflammatory response and correlates with the OSS, Table S1: Description of the features
considered in the machine-learning model.
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