
Computational and Structural Biotechnology Journal 21 (2023) 5028–5038

Available online 13 October 2023
2001-0370/© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Review article 

Identifying cancer driver genes in individual tumours 

Rhys Gillman a,b, Matt A. Field a,b,c,d, Ulf Schmitz a,b, Rozemary Karamatic e,f, 
Lionel Hebbard a,b,g,h,* 

a Department of Biomedical Sciences and Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, 
Queensland, Australia 
b Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia 
c Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia 
d Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia 
e Gastroenterology and Hepatology, Townsville University Hospital, PO Box 670, Townsville, Queensland 4810, Australia 
f College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia 
g Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia 
h Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia   

A R T I C L E  I N F O   

Keywords: 
Cancer 
Driver gene 
Gene interaction network 
Machine learning 
Precision medicine 

A B S T R A C T   

Cancer is a heterogeneous disease with a strong genetic component making it suitable for precision medicine 
approaches aimed at identifying the underlying molecular drivers within a tumour. Large scale population-level 
cancer sequencing consortia have identified many actionable mutations common across both cancer types and 
sub-types, resulting in an increasing number of successful precision medicine programs. Nonetheless, such ap-
proaches fail to consider the effects of mutations unique to an individual patient and may miss rare driver 
mutations, necessitating personalised approaches to driver-gene prioritisation. One approach is to quantify the 
functional importance of individual mutations in a single tumour based on how they affect the expression of 
genes in a gene interaction network (GIN). These GIN-based approaches can be broadly divided into those that 
utilise an existing reference GIN and those that construct de novo patient-specific GINs. These single-tumour 
approaches have several limitations that likely influence their results, such as use of reference cohort data, 
network choice, and approaches to mathematical approximation, and more research is required to evaluate the in 
vitro and in vivo applicability of their predictions. This review examines the current state of the art methods that 
identify driver genes in single tumours with a focus on GIN-based driver prioritisation.   

1. Background 

While the development of novel approaches to treating cancer has 
improved survival prospects for patients with some cancer types, other 
cancer types have witnessed dramatically increased mortality rates. For 
example, in Australia and the US, cancers of the liver, pancreas, thyroid, 
and uterus have been associated with steadily increasing mortality over 

the past four decades, and their mortality rates are projected to rise 
sharply into the future [1,2]. Unsurprisingly, these cancers are 
frequently inoperable and lack effective chemotherapeutic options. In 
the case of liver and pancreatic cancers, front-line chemotherapeutics 
increase life expectancy by only a matter of months, with the only 
potentially curative treatment option being surgical resection, for which 
less than 25% of patients are eligible due to co-morbidities, late 

Abbreviations: CCG, Cancer Census Genes; CIViC, Clinical Interpretation of Variants in Cancer; CSN, Cell-Specific Network Construction; DEG, Differentially 
Expressed Gene; DFVS, Directed Feedback Vertex Set; DNA, Deoxyribonucleic Acid; FVS, Feedback Vertex Sets; GIN, Gene Interaction Network; IMC, Inductive 
Matrix Completion; KEGG, Kyoto Encyclopedia of Genes and Genomes; LIONESS, Linear Interpolation to Obtain Network Estimates for Single Samples; MDS, 
Minimum Dominating Sets; MMS, Maximum Matching Sets; MOSCATO, Molecular Screening for Cancer Treatment and Optimization; NCI PID, National Cancer 
Institute Pathway Interaction Database; NCI-MATCH, National Cancer Institute’s Molecular Analysis for Therapy Choice; NCUA, Nonlinear Control Of Undirected 
Networks Algorithm; PCC, Pearson Correlation Coefficient; PCST, Prize-Collecting Steiner Tree; PPI, Protein-Protein Interaction; PRODIGY, Personalised Ranking Of 
Driver Genes Analysis; RWR, Random Walker with Restart; SCS, Single-Sample Controller Strategy; SSN, Single-Sample Network; STRING, Search Tool for the 
Retrieval of Interacting Genes/Proteins. 

* Correspondence to: The Science Place, Bd. 142, 1 James Cook Drive, 4811 Townsville, Queensland, Australia. 
E-mail address: lionel.hebbard@jcu.edu.au (L. Hebbard).  

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2023.10.019 
Received 28 July 2023; Received in revised form 10 October 2023; Accepted 11 October 2023   

mailto:lionel.hebbard@jcu.edu.au
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.10.019
https://doi.org/10.1016/j.csbj.2023.10.019
https://doi.org/10.1016/j.csbj.2023.10.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.10.019&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational and Structural Biotechnology Journal 21 (2023) 5028–5038

5029

detection and progression [3–5]. These cancers are typically treated 
with either non-targeted cytotoxic chemotherapies, which include DNA 
synthesis and repair inhibitors, and topoisomerase inhibitors, or broad 
acting multi-tyrosine kinase inhibitors [6–8]. These drug classes func-
tion with little specificity by killing the overactive and 
rapidly-replicating tumour cells faster than normal body cells. 

To direct chemotherapeutic treatment more specifically towards 
cancer cells, much effort has been directed to the development of 
molecularly targeted chemotherapeutics which target cells with a spe-
cific gene alteration. However, the widespread applicability of these 
therapeutics is impeded by the extensive heterogeneity observed in 
some cancer types. While targeted therapies are often effective in tu-
mours containing the relevant mutations, the extremely heterogeneous 
landscape of individual tumours limit their effectiveness. For example, 
of the 6 most frequently recurring mutations in liver cancer, none are 
present in more than 31% of patients [9,10]. Reimand and Bader [11] 
defined this phenomenon as the long-tail hypothesis: cancer mutations 
are represented by a short list of frequently mutated genes, and a long 
tail of infrequently mutated genes which collectively constitute most 
driver mutations. 

To address this, personalised approaches that match directed thera-
pies with patients most likely to respond have become crucial for 
modern cancer therapy. Personalised medicine has many advantages, 
including improved medication efficacy, reduced side-effects, and cost 
reduction [12], though, as discussed below, some challenges remain 
[13]. A basic way of achieving more patient-centric treatment is to 
identify biomarkers that predict patient response to treatment and then 
stratify patients accordingly. While this approach has been successful in 
some cancer types [14,15], for many it has not. By example, for liver 
cancer, several major multi-omics studies have attempted to molecularly 
classify tumours [10, 16–18]. However, to date, there are no established 
biomarkers that reliably predict the response to any treatment [19,20], 
likely due to the limited actionability of the most recurrent mutations 
[21]. Furthermore, several large clinical trials have begun to assess the 
feasibility of true molecular biomarker-based therapy choices for cancer 
patients, but the results are, thus far, underwhelming. For example, the 
National Cancer Institute’s Molecular Analysis for Therapy Choice 
(NCI-MATCH) has so far shown that actionable mutations were only 
present in 37.6% of patients [22], and two published arms of the study 
have not shown positive results [23,24]. The similarly aimed Molecular 
Screening for Cancer Treatment and Optimization (MOSCATO) trial also 
found less than 50% of patients carrying mutations that fit their list of 
targets, and overall, only 7% of patients benefited from the trial [25]. 

Evidently, precision care based solely on the presence of a genetic 
alteration is not sufficient. To circumvent this, further analysis identi-
fying driver genetic alterations may improve these efforts. In short, tu-
mours often harbour thousands of somatic mutations; however, only a 
small subset of these mutations, termed driver mutations, are responsible 
for driving cancer growth, while the remainder are called passenger 
mutations [26]. Moreover, given that driver mutations are indispensable 
for neoplastic growth, it is hypothesised that some are present in every 
intra-tumoural subclone [27]. Thus, driver mutations are the ideal target 
of precision care. 

Problematically, most popular approaches to identifying driver 
genes work at a cohort-level, by example, MuSiC [28], MutSigCV [29], 
CHASM [30], HotNet2 [31], and are usually a reflection of mutation 
frequency. Once such drivers have become sufficiently 
well-characterised, they are deposited in databases such as the Clinical 
Interpretation of Variants in Cancer (CIViC) [32], Cancer Gene Census 
(CGC) [33], Network of Cancer Genes (NCG) [34]. However, it remains 
unclear whether these canonical drivers are drivers in every case, that is, 
if a mutation is responsible for driving cancer in one patient it may not 
necessarily drive cancer in a different patient. Indeed, a truly person-
alised approach to cancer treatment would benefit from the ability to 
identify drivers based on the effects they are causing in the individual 
patient. 

The focus of this review will be on driver prioritisation methods 
which attempt to identify personalised drivers by combining genomic 
and transcriptomic sequencing data to evaluate how a genetic alteration 
is affecting patterns of expression across a gene interaction network 
(GIN). The limitations of these methods will be explored, along with 
some potential solutions to these limitations in the form of emergent 
methods of differential expression analysis without replicate data. 
Finally, some alternative machine-learning based approaches that do 
not rely on transcriptomic data will be briefly discussed. The literature 
discussed in this review was sourced from the PubMed and Web Of 
Science databases, primarily using the search terms: (“driver gene” OR 
“driver mutation”) AND (“personalised” OR “precision” OR “individual” 
OR “patient-specific”). However, this is not a comprehensive systematic 
review, and instead the included publications represent the selection of 
papers that best fit the authors criteria of algorithms for the prioritisa-
tion of driver genes in individual patients. 

2. Network-based driver prioritisation 

The authors of DriverNet [35] pioneered the idea that the functional 
impact of mutations can be quantified by virtue of their effect on the 
expression of connected genes in a network. The essential concept is 
outlined in Fig. 1. If a mutation can be functionally linked with large 
scale changes in gene expression, then it is likely that this mutation is a 
driver of the phenotypic changes observable in that individual’s cancer. 

Network-based driver identification methods combine genomic 
sequencing data with transcriptomic data in the form of GINs. GINs are 
often visualised as a graph, which is made up of nodes or vertices which 
are the genes, and edges which indicate an interaction between genes. 
These edges may be binary (1 = connected, 0 = not connected) or 
weighted with confidence values or strengths of interaction. Addition-
ally, if the direction of a regulatory relationship between two genes is 
known, this information can also be shown in the form of a directed 
graph (Fig. 2). Importantly, we can differentiate a GIN from a protein- 
protein interaction (PPI) network which only considers physical 
interactions. 

The degree of a node in the network is the number of edges con-
nected to it and importantly, it has been shown that driver genes tend to 
have a high degree [36,37]. Due to their goal to identify many con-
nections with DEGs, driver prioritisation algorithms are often biased for 
selection of such high-degree nodes, a phenomenon known as 
centrality-bias. This presents a problem in detecting lower degree yet 
important nodes. Paradoxically, to account for this bias, algorithms 
sometimes penalise high-degree nodes, despite the likelihood that these 
nodes contain the driver genes of interest. Some, but not all algorithms 
attempt to account for this bias. 

2.1. Network-based driver prioritisation using external reference networks 

The methods in Table 1 are driver prioritisation algorithms that have 
applied this concept to the level of an individual patient, and each of 
them relies on the provision of an external reference network, by 
example, STRING [38], Reactome [39], KEGG [40], and NCI PID [41]. It 
should be noted that all these algorithms are designed for use with bulk 
RNA-seq data. 

DawnRank [36] was one of the first algorithms designed to apply this 
framework to individual samples. DawnRank maps patient-specific 
mutations, tumour gene expression and normal gene expression data 
to a pre-defined GIN with directed and unweighted edges. Mutated 
genes are subsequently ranked based on their connectivity to differen-
tially expressed genes in the network using a modified version of Goo-
gle’s PageRank algorithm [42]. This random-walk approach works 
iteratively, whereby at each iteration there is a chance to “walk” to the 
next node in the network, the probability of which is dependent on the 
degree of that node and the differential expression level (simply the 
absolute difference of log tumour versus normal expression). Thus, for an 
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Fig. 1. Overview of network-based driver prioritisation. Given that driver mutations are responsible for creating a cancer phenotype, it is assumed that this 
phenotype must be the result of an alteration in gene transcription activity. Therefore, by combining mutation data with expression data on a gene interaction 
network (GIN), these algorithms quantify the likelihood of a mutation being a driver based on how it influences the expression of genes. To begin, genomic (DNA) and 
transcriptomic (RNA) sequencing data is acquired for each individual patient (Pn), and, using this information, genetic alteration (Blue) and expression dysregulation 
(Red) is identified for each gene (Gn). These altered and dysregulated genes are then mapped onto a GIN, which may be sourced from an external database (e.g., 
STRING, Reactome, KEGG, NCI PID) or constructed de novo from transcriptomic data. The prioritisation algorithms then utilise various methods to quantify the 
linkage between altered genes and DEGs, and ultimately rank the altered genes by their overall impact on the network. 

Fig. 2. The basic representations of gene interaction networks. A) The graph is constructed by joining vertices/nodes which represent genes by edges, which 
represent regulatory relationships. B) Undirected, unweighted graph where interactions are binary and it is unknown which direction, if any, the interaction occurs 
in. C) Directed graph, which indicates the direction of a relationship between genes. D) Weighted graph, where edges carry weights usually representative of their 
strength or confidence. 
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individual patient, mutated genes which are connected to many dysre-
gulated genes in a network are highly ranked. It should be noted that 
DawnRank’s damping factor increases the priority of genes with a high 
degree, and there is no correction for non-driver high-connectivity 
genes, meaning it is likely susceptible to centrality bias. 

OncoImpact [43] was another early method in this category which 
works similarly to DawnRank, though with more stringent filtering of 
predicted drivers. Rather than utilising the quantitative differential 
expression level of each gene, OncoImpact converts this information to a 
binary form (DEG or non-DEG), at the risk of losing valuable informa-
tion. This information is then mapped to the unweighted directed 
reference network where dysregulated genes are considered “explained” 
if they have a short path to a given mutation or copy number alteration. 
“Phenotype genes” are defined as genes that are frequently dysregulated 
in the population of samples being tested (>5%), and mutations are 
ranked by the number of dysregulated phenotype genes they explain. 
Finally, true drivers are further filtered using the parsimony principle by 
creating a bipartite graph for patient-specific mutation-phenotype gene 
associations and finding the minimum number of mutations to cover a 
maximal number of phenotype genes using a greedy approximation al-
gorithm. It should be noted that OncoImpact, in contrast to DawnRank, 
discards paths which travel through genes with a degree greater than a 
certain threshold, which is calculated systematically based on the 
dataset to account for centrality bias. 

Hit’nDrive [44] considers the outliers of gene expression in the in-
dividual patient compared with other patients in the dataset as binary 
DEGs, and utilises the STRING network as an undirected, unweighted 
PPI network. Similar to DawnRank, Hit’nDrive uses a random-walk 
approach to calculate the “hitting time” or expected length of walk be-
tween two nodes and applies these as edge weights. The data is then split 
into a bipartite graph of mutated genes and DEGs, and the weighted 
multiset cover (WMSC) problem is applied to find the smallest subset of 
mutated genes that sufficiently influence a user-defined fraction of 
DEGs. As noted by the authors, Hit’nDrive does tend to identify drivers 
with high degree. 

Single-Sample Controller Strategy software (SCS) [45] identifies 
driver genes by using network-control theory. Briefly, network-control 
algorithms attempt to find the minimal set of “control” nodes that 
transition a network from one state to another based on their connec-
tivity with “target” nodes. SCS considers the transition between two 
phenotypic states, normal and tumour, and mutated genes are consid-
ered “controllers” of this transition. DEGs, defined by a log2 fold-change 
of +/- 1, are the target genes to be controlled, and these DEGs are 
indicated on a pre-defined GIN. Next, a Random Walk with Restart 

(RWR) algorithm is used to identify a sub-network around each mutated 
gene, which is taken to be the network of genes being controlled by the 
mutated gene. Finally, SCS identifies a minimum set of controllers which 
cover a maximal set of DEGs, and the mutations are ranked by summing 
up the overall confidence of edges in these sub-networks. 

PRODIGY (Personalised Ranking Of DrIver Genes analYsis) [37] uses 
a global confidence-weighted undirected network of curated PPIs, 
meaning that each edge is assigned a value corresponding to the confi-
dence of that interaction. Mutated genes and expression data are taken 
as input, and DEGs are identified using the R Bioconductor package 
DESeq2 [47] comparing an individual tumour against the provided 
normal samples. Dysregulated pathways (using Reactome, KEGG, 
NCI-PID) are also identified by their significant enrichment of DEGs. To 
calculate the influence of a mutated gene on a dysregulated pathway, a 
small subnetwork is constructed for every mutation with every dysre-
gulated pathway. This subnetwork consists of nodes and edges from a 
mutated gene of interest, the genes in the pathway of interest, and all 
distance-1 neighbours of these nodes from the global network. Edge 
weights (costs) are assigned dependant on their confidence scores in this 
global network, and node weights (prizes) are assigned based on the 
level of differential expression. Finally, PRODIGY quantifies the influ-
ence of a mutated gene on each dysregulated pathway using a variant of 
the prize-collecting Steiner tree (PCST) problem, which aims to collect 
as many “prizes” (i.e. nodes) as possible, while paying the least cost, in 
essence to find the most reliable edges that connect a mutated gene with 
DEGs. Mutated genes are then ranked according to their overall influ-
ence score on a pathway. Because nodes with a high degree are assigned 
negative prize values, PRODIGY accounts for centrality bias. 

The most recently developed tool in this category, PersonaDrive 
[46], builds on the above methods. PersonaDrive, like Hit’nDrive, does 
not require paired tumour/normal expression data or a reference dataset 
of normal expression. It does, however, require that the individual 
sample of interest be part of a relatively large collection of samples, 
whose information it utilises in a unique way compared with the other 
methods. DEGs are defined binarily based on their expression versus 
other tumours in the group, and a bipartite graph is constructed con-
sisting of sample-specific mutated genes connected to DEGs that are not 
necessarily present in the given sample, however are present and con-
nected to the same mutated gene in at least one other sample. In this 
way, PersonaDrive utilises the information from other samples in the 
cohort when finding patient-specific drivers. The edge weights of this 
bipartite graph are determined by the number of known pathways in 
which a connected mutated gene and DEG exist, and these are normal-
ised by the similarity between the two samples from which the mutated 

Table 1 
Reference network influence algorithms. These programs evaluate the driver potential of a mutation based on its effect on a pre-defined reference network.  

Software Description Use of 
Expression 
Data 

Data Type Primary 
Language 

Year Ref. 

DawnRank Ranks mutated genes based on connectivity to DEGs using 
Google’s PageRank algorithm [46]. 

Quantitative Paired- or unpaired- 
Tumour/ 
Normal 

R 2014 Hou and Ma  
[36] 

OncoImpact Ranks mutated genes based on path length to frequently 
dysregulated genes and finds minimal set. 

Binary Tumour and 
reference healthy 
samples (external) 

Perl 2015 Bertrand et al. 
[43] 

Hit’nDrive Finds a minimum set of mutated genes with maximal coverage 
of a user-defined fraction of DEGs 

Binary Tumour Only Data 
From Collection of 
Patients 

C++ 2017 Shrestha et al. 
[44] 

Single Sample Controller 
Strategy (SCS) 

Creates basic transition network based on log2 fold-change 
values and identifies minimal transition network controllers. 

Binary Paired-Tumour/ 
Normal 

MATLAB 2018 Guo et al.  
[45] 

Personalised Ranking Of 
DrIver Genes analYsis 
(PRODIGY) 

Creates confidence-weighted subnetworks including mutated 
genes and dysregulated pathways and quantifies impact using 
the prize-collecting Steiner tree (PCST) problem. 

Quantitative Unpaired- Tumour/ 
Normal 

R 2020 Dinstag and 
Shamir [37] 

PersonaDrive Creates bipartite networks of mutated genes connected to 
DEGs from the same or similar samples, and ranks mutated 
genes based on the number of pathways in which it connects 
with a DEG. 

Binary Tumour Only Data 
From Collection of 
Patients 

Python 2022 Erten et al.  
[46]  
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gene and the DEG are from. This sample similarity is defined by their 
overlap of DEGs. Finally, mutations in a sample are ranked by their 
overall edge weights, this being the overall influence of mutations on 
dysregulated genes in their corresponding pathways. 

Currently, few comparisons have been made between these methods 
other than within the algorithm publications. The authors of PRODIGY 
noted that both SCS and DawnRank appear to perform similarly to pure 
measures of network centrality [37], potentially stemming from their 
lack of control for centrality bias. To the best of our knowledge, none of 
these tools have been evaluated for their ability to detect drivers in vitro 
or in vivo. 

2.2. Network-based driver prioritisation using De-Novo networks 

The previously described algorithms model gene interactions as a 
simplified static network, however, in reality such networks are dy-
namic. It is understood that gene regulatory networks can “re-wire” in 
different biological conditions [48,49], thus a normal cell and a tumour 
cell will each have their own unique regulatory networks. Additionally, 
many interactions are likely cell type-specific. To address this, some 
algorithms do not rely on a reference GIN but instead build de novo 
patient-specific transition networks to identify driver genes using 
network control strategies. Transition networks model the changes that 
occur between normal and tumour networks, where edges between gene 
pairs are the alterations found to significantly trigger a state transition. 
Overall, this approach requires two steps, generating patient-specific 
transition networks and then identifying the controllers of these net-
works, namely the most likely driver genes. 

2.2.1. Creating a personalised transition network 
Currently, three main approaches exist for the de novo creation of 

patient-specific transition networks (Table 2). Single-sample network 
(SSN) [50] works by comparing an individual sample against an inde-
pendent reference cohort of control samples based on differential 
co-expression. First, the algorithm creates an aggregate network from 
the control samples using Pearson correlation coefficients (PCCn) as 
edges. Next, the single sample of interest is added to this data and PCC 
values are recalculated (PCCn+1), and the difference between these 
correlations is calculated (ΔPCC). Finally, the significance of this dif-
ference is determined by. 

the distribution and standard deviation of ΔPCC values and by per-
forming a z-test to determine inclusion in the SSN. Thus, the final SSN 
network shows pairs of genes with significant differential correlation, 
where a negative ΔPCC indicates a loss of correlation, and a positive 
ΔPCC indicates a gain of correlation. Importantly, the direction of the 
correlation (positive or negative) is no longer known. While the Pearson 
correlation is a common measure of association, it should be noted that 
this is a measure of linear association, while gene-regulatory relation-
ships are often nonlinear [53]. 

Linear Interpolation to Obtain Network Estimates for Single Samples 
(LIONESS) [51] is another method for creating patient-specific networks 

which, similarly to SSN, determines the individual network based on 
perturbation of an aggregate network. However, LIONESS takes a group 
of tumour samples and creates a network for each individual sample, 
meaning that, unlike SSN, LIONESS identifies differences in single tu-
mours versus other tumours, rather than comparing against healthy 
samples. Another difference is that LIONESS acts as a mathematical 
“wrapper” that is applied after user-specified edge-weights have been 
calculated, meaning that it is not limited to Pearson correlation co-
efficients. Firstly, an aggregate network is created based on all samples 
(n) in the cohort. Next, a single sample is removed from the aggregate 
network, and the edges are then recalculated (n-1). Because LIONESS 
considers the aggregate network as the linear average of all networks 
equally contributed to it, the perturbation of the network (n versus n-1) 
can be used to estimate the individual’s network by finding the differ-
ence of the two, scaling them by the total sample size, and then adding 
the perturbed network back. This can be repeated for every individual in 
the cohort. 

The third approach is the cell-specific network (CSN) [52], a tool 
originally designed for single-cell RNA sequencing data, which can also 
be applied to bulk RNA sequencing data. Like LIONESS, CSN takes a 
cohort of samples and produces a CSN for each sample. Briefly, to 
calculate the significance of an association between any pair of genes, a 
scatter plot is created for these genes and three boxes are drawn, one 
around the nearest neighbours of gene x, one around the nearest 
neighbours of gene y, and the third box is the intersection of the first 
two. By counting the number of points in each box, a statistical test can 
be performed which determines: i) whether there is an association be-
tween the two genes across the entire cohort, and ii) whether the 
expression of these genes in a given sample is significantly close to their 
expected relative values, given the association in the cohort. An 
advantage of this approach is that this allows CSN to identify nonlinear 
associations. An edge is drawn between two genes if the statistical value 
is above a given threshold, and therefore the edges in a CSN network are 
undirected and binary. This contrasts with LIONESS and SSN, wherein 
edges are weighted to indicate the strength of differential co-expression. 

2.2.2. Identifying the controllers of a transition network 
Network control theory is a highly developed mathematical theory 

used in many engineering applications to identify the nodes that can be 
altered to produce the transition from one state to another. In a bio-
logical context, although biological networks are large, there is pre-
sumed to be a relatively small subset of nodes that, if controlled, can 
drive the entire network to any given state. Driver nodes act in response 
to input signals, which, in the case of cancer-related networks, are ge-
netic alterations [54]. Identifying such nodes is the goal of network 
control, and while the intricacies of network control algorithms are 
outside the scope of this review, their application in identifying the 
controllers in patient-specific transition networks will be briefly dis-
cussed below (Table 3). 

The maximum matching sets (MMS) method [55] was one of the first 
network control methods applied to biological networks. The MMS 

Table 2 
Sample-specific network construction methods. These tools use patient-specific 
data to build patient-specific correlation networks between genes.  

Software Data Type Measure of 
Association 

Year Ref. 

Single-Sample Network 
(SSN) 

Paired- 
Tumour/ 
Normal 

Linear 2016 Liu et al.  
[50] 

Linear Interpolation to 
Obtain Network 
Estimates for Single 
Samples (LIONESS) 

Tumour 
Only 

Unspecified 2019 Kuijjer 
et al.  
[51] 

Cell-Specific Network 
Construction (CSN) 

Tumour 
Only 

Linear and 
Nonlinear 

2019 Dai et al.  
[52]  

Table 3 
Transition network-control methods. These methods are designed to identify the 
key “control” nodes in a network which are responsible for the transition from 
one state to another.  

Software Network Type Year Ref. 

Maximum matching sets (MMS) Directed-Network, 
Linear 

2011 Liu et al. [55] 

Minimum dominating sets 
(MDS) 

Undirected- 
Network, Linear 

2012 Nacher and 
Akutsu [56] 

Directed Feedback Vertex Set 
(DFVS) 

Directed-Network, 
Non-Linear 

2017 Zanudo et al.  
[57] 

Nonlinear control of undirected 
networks algorithm (NCUA) 

Undirected- 
Network, Non- 
Linear 

2019 Guo et al. [54]  
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method utilises directed-networks and assumes linear dynamics. Firstly, 
a maximum matching set of edges in the network is identified, in other 
words, the maximum number of edges in the network such that no two 
edges share a common vertex. Once this is achieved, any remaining 
unmatched vertices with direct paths from the input signal to the 
matched nodes are considered as the driver nodes. It should be noted 
that MMS is the only approach to network control that is not 
non-deterministic polynomial-time hard (NP-hard). This means that it is 
the only method that can be completed in polynomial time without 
requiring the use of approximations. 

Like MMS, the minimum dominating sets (MDS) method [56] con-
siders the network as a linear dynamic network. Unlike MMS however, 
MDS does not require a directed network, and instead assumes that all 
edges are bi-directional, and that nodes are able to independently con-
trol all their outgoing links. This has been suggested to result in higher 
costs, and therefore underestimation of controllability [54]. The goal of 
MDS is to identify drivers as dominating set of nodes where every node 
in the network is either within the dominating set or is adjacent to it. 

Another method for determining the controllers in directed networks 
is the directed feedback vertex set (DFVS) approach [57]. This approach 
states that to drive a network to a desired endpoint, one needs to 
manipulate a set of driver nodes that intersects every feedback loop 
(cycle) in the network, that is, the feedback vertex set (FVS), as well as 
any source nodes, which are nodes without any incoming edges in the 
directed network. Identifying the minimal FVS is NP-hard, but a variety 
of algorithms exist to find close-to-optimal solutions. 

Similar to DFVS, the nonlinear control of undirected networks al-
gorithm (NCUA) [54] identifies transition network controllers based on 
FVS. In this algorithm, all edges are assumed to be bidirectional, and 
thus act as feedback loops. From the original network, NCUA constructs 
a bipartite graph, where the top node set is the original set of nodes, and 
the bottom node set is the edges of the original graph, and a minimum 
dominating set of nodes is selected which cover all edges in the graph. In 
a more recent publication, the authors built on this method using 
weight-NCUA to overcome the problem associated with their original 
method that can result in the identification of multiple possible driver 
node sets. Weight-NCUA takes edge weights of the original network into 
account, and instead of attempting to capture a maximum number of 
edges, it captures the maximum edge weights, and therefore is better 
able to find the optimal driver node set [58]. 

While we have discussed the creation of transition networks and the 
identification of network controllers as two separate steps, some 
methods combine these two analysis steps in one workflow for driver 
prioritisation (Table 4). For example, personalised network control 
(PNC) uses paired-SSN, followed by controller identification with NCUA 
[54]. pDriver on the other hand utilises the LIONESS algorithm to build 
the network, and finds drivers using MMS [59]. Unlike all the other 
algorithms discussed, pDriver also considers miRNA driver genes. 
Finally, PDGPCS [60] is a unique algorithm that utilises paired-SSN to 
create de novo patient networks, but then identifies controllers of this 
network using a very similar approach to PRODIGY. Namely, dysregu-
lated pathways are identified using pathway enrichment of DEGs (based 
on a log2 fold-change threshold between paired tumour and normal 
samples), and then for each mutated gene and each dysregulated 
pathway, a PCST model is used to rank drivers using differential 

expression as a node prize and making the paired-SSN edge-weights 
inversely proportional to edge costs. 

While some attempts have been made to assess and compare these 
methods, none of these progressed beyond in silico validation ap-
proaches, with no patient data benchmarked. Guo et al. [54] compared 
all the individual network construction and control methods in combi-
nation with each other. They found CSN and SSN to be superior to 
LIONESS, and the undirected network control methods (MDS and 
NCUA) performed better than the directed control methods for identi-
fying driver genes in the CGC database. Importantly, the authors also 
identified that results were highly dependent on the network type 
(directed or undirected). Bhuva et al. [48] recently produced a frame-
work for the evaluation of differential co-expression measures based on 
simulated network data, which is directly applicable to the measures 
used to generate patient-specific networks. They concluded that while 
Pearson correlation can be robust for analysis of differential 
co-expression, entropy-based methods may be a better alternative, 
particularly when dealing with lower sample sizes. 

2.3. Limitations of network-based driver prioritisation 

2.3.1. General limitations 
The tools discussed in this section offer exciting prospects in this 

area. However, each method carries its own limitations. Already dis-
cussed throughout are the issues of centrality bias and the quantitative 
utilisation of expression data. OncoImpact and PRODIGY are the only 
two algorithms to directly account for centrality bias by penalising the 
selection of drivers with very high degrees. Additionally, many of the 
methods take expression data and convert this into binary classification 
of DEGs vs non-DEGs, which discards useful quantitative information 
that could be utilised in the analysis as is done by PRODIGY and 
DawnRank. 

Another fundamental limitation of many of the reference-network 
based approaches is their use of PPI networks as a substitute for regu-
latory GINs. In extension, by considering the linkage of mutated genes 
with DEGs in a network, the implication is that the edges in this network 
are expected to indicate regulatory interactions. However, PPI networks 
do not necessarily indicate regulatory interactions. The most appro-
priate type of network would be a functional interaction network, which 
includes PPIs that activate or inhibit proteins, along with molecular 
interactions representing expression regulation. Unfortunately, such 
relationships are less well-known, and this means that these networks 
are usually far smaller. 

2.3.2. Limitations of application 
In addition to these limitations, there are other factors that affect the 

usability of these algorithms and the ability to compare them, contrib-
uting to poor adoption. For example, while all the algorithms aim to 
prioritise drivers in an individual patient, it is still a requirement that 
these individuals either be a member of a collection of patients, or that 
some external set of reference samples is available. This adds further 
complications, due to the need to account for batch effects in the data 
when integrating multiple cohorts, including differing sample prepara-
tion and composition, for example, stromal and immune cell content. In 
addition, PNC, Hit’nDrive, and the de novo methods do not rank their 

Table 4 
Driver prioritisation methods that utilise de novo networks.  

Software De novo Network 
Strategy 

Driver-Prioritisation / Network Control 
Strategy 

Data Type Primary 
Language 

Year Ref. 

Personalised Network Control 
(PNC) 

Paired-SSN NCUA Paired-Tumour/ 
Normal 

MATLAB 2019 Guo et al.  
[54] 

pDriver LIONESS MMS miRNA and mRNA, Tumour 
Only 

R 2021 Pham et al.  
[59] 

PDGPCS Paired-SSN PCST Paired-Tumour/ 
Normal 

MATLAB 2022 Zhang et al.  
[60]  
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results like the others but only provide lists of predicted drivers. If these 
lists are very long, confidence in the validity of individual drivers be-
comes low and it is difficult to compare the results against ranked 
methods. In this case, user-defined ranks could be designed based on 
factors such as network-degree of the drivers with DEGs. Additionally, 
lists of driver genes produced by all these algorithms do not give indi-
cation as to whether those drivers are over-active or underactive in the 
cancer. This is a crucial missing piece of information when using these 
predicted drivers to forecast the efficacy of target therapies. 

Almost all approaches for driver-gene prioritisation involve the so-
lution of NP-hard problems, meaning that the time taken to find the true 
underlying solution increases exponentially with input size. Because of 
this, most of the algorithms use heuristic approaches to approximate the 
solution, which usually give very good results with much lower 
computational complexity, but do not guarantee an optimal solution. 
Instead of using these approximations, Hit’nDrive and PNC formulate 
the driver prioritisation problems as Integer Linear Programming (ILP) 
problems which require mathematical optimisers, namely CPLEX [61] 
and Gurobi [62] respectively, in order to find optimal solutions using 
variants of the branch and bound algorithm. These optimisers are pro-
prietary licenced software which limits user uptake. 

2.3.3. Validation 
So far, rigorous benchmarking studies using either in vitro or in vivo 

data to determine the efficacy of these tools are lacking. In general, the 
algorithms are created and then validated based on their ability to detect 
“known” driver genes from a “gold-standard” database. Indeed, a pre-
vious study had performed a comparison of many driver prioritisation 
tools, however performance was measured based on the successful 
prediction of ‘canonical’ drivers, and additionally did not focus on 
personalised methods [63]. The problem with this approach is that these 
driver genes do not act in isolation, and thus in a different genetic 
context in a different patient they may not carry the same potential to 
drive tumour growth. Additionally, this approach diminishes the po-
tential to identify rare or novel drivers in a patient. 

One way to potentially improve current validation approaches is by 
using simulated data such as that created by Bhuva et al. [48], which 
simulates the effect of genetic mutations under the user’s control. 
However, such approaches often fail to generalise and result in 
over-fitted algorithms. Another approach, proposed by the creators of 
PersonaDrive [46], is to incorporate cell line drug-sensitivity data into 
the validation protocol. However, for these algorithms to progress to 
clinical use, their ability to identify driver genes in vitro or in vivo is 
specifically required. 

2.3.4. Differential expression in single samples 
As mentioned before, although these methods are intended to iden-

tify drivers in individual patients, some of them require a cohort of 
patients as input, and this is due to the requirements of identifying DEGs. 
The typical approach to identifying DEGs is to compare gene expression 
in paired tumour and normal samples. However, the commonly used 
differential expression analysis tools have been designed for cohort-level 
statistical analyses with a minimum requirement of three biological 
replicates. While useful for identifying DEGs at a cohort level, 
attempting to calculate the statistical significance of a change in 
expression of any gene in a single tumour requires a fundamentally 
different approach. Methods like DawnRank, OncoImpact, SCS, PROD-
IGY, and PersonaDrive attempt this through using a 1-versus-all 
approach, or by assigning a log2 fold-change cut-off. However, there are 
a variety of other approaches (Table 5). 

Some tools designed for cohort-level DEG analysis have implemented 
features into their existing algorithms to deal with non-replicate data, 
including DESeq2 [47], NOISeq [64] and GFOLD [65]. These tools only 
work with paired tumour and normal samples from a single patient to 
make this comparison. To address the lack of biological replicates, 
DESeq2 assumes that most genes will not be DEGs, and, therefore, uses 

tumour and normal samples as their own replicates to calculate mean 
variance, which is then used to calculate statistical significance of in-
dividual genes. GFOLD and NOISeq-Sim attempt to simulate variance 
based on Poisson and multinomial distributions, respectively. These 
solutions, however, are only an estimate of technical replicates at best, 
and cannot give any indication of biological variance of gene expression. 

RankComp [66] and, more recently PenDA [67], are two tools with 
similar approaches that identify DEGs based on their expression in rank 
order. By doing so, these tools improve the statistical power of their 
analyses because they consider a great number of genes rather than 
comparing single genes in isolation. Both methods require a collection of 
tissue-specific, normal reference samples to compare against a single 
tumour sample. RankComp converts the expression of genes in these 
reference samples into a rank-ordered list and performs a pairwise 
comparison of all genes to identify gene-pairs with stable ordering in 
normal samples, and subsequently identifies genes in tumour samples 
for which this stable ordering is reversed, using a Fisher’s Exact test to 
find whether the gene is consistently up or down-regulated relative to its 
stable pairs. PenDA uses the reference samples to construct a local list of 
genes whose expression is higher or lower than a given gene. The 
rank-ordered list of genes in the tumour sample is reviewed and PenDA 
considers whether the local list of genes with higher or lower expression 
than a given gene has changed, and if this meets a statistical threshold. 
These approaches are advantageous in that they do not require matched 
normal samples for a patient. Of course, any time that external refer-
ences samples are utilised in this way, systemic issues will likely arise 
due to batch effects. As such, neither of these tools have been validated 
in vitro, but instead only by their ability to detect DEGs in silico in 
controlled, simulated data. Regardless, it could be of interest to combine 
these approaches with the driver-prioritisation algorithms. 

3. Machine learning-based driver prioritisation 

Given the rise in prevalence of machine learning in the life sciences, 
one may expect to find this implemented in the field of driver- 
prioritisation. Indeed, this approach has shown promise for large 

Table 5 
Methods for identifying differentially expressed genes in individual samples.  

Software Description Data Type Year Ref. 

GFOLD Combines fold change and 
statistical significance, 
assumes Poisson distribution 
in the absence of biological 
replicates and estimates 
uncertainty. 

Paired- 
Tumour/ 
Normal 

2012 Feng et al.  
[65] 

DESeq2 In the absence of biological 
replicates, assumes that 
most genes will not be 
differentially expressed, and 
uses the two conditions 
(tumour/normal) as their 
own replicates to calculate 
mean variance. 

Paired- 
Tumour/ 
Normal 

2014 Love et al.  
[47] 

RankComp Creates ranked-ordered list 
of genes, looks for gene pairs 
with stable ordering across 
reference samples and then 
finds genes with reversed 
order. 

Tumour 
Only 

2015 Wang et al.  
[66] 

NOISeq- 
Sim 

Simulates technical 
replicates assuming a 
multinomial distribution. 
Only a simulation of 
technical replicates. 

Paired- 
Tumour/ 
Normal 

2015 Tarazona 
et al. [64] 

PenDA Creates ranked-ordered list 
of genes, compares local 
ordering of a gene in a 
sample of interest versus a set 
of reference samples. 

Tumour 
Only 

2020 Richard 
et al. [67]  
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cohort data with several tools being recently developed (DriverML [68], 
DeepDriver [69], CHASM [30], and AI-Driver [70]). However, only a 
few machine learning approaches have been developed for personalised 
driver-identification (Table 6). These methods involve training models 
to recognise driver mutations based on features or descriptors of genes, 
and are advantageous compared with network-based approaches, 
because they often only rely on genomic data. Additionally, once the 
model has been trained, these algorithms can be applied to single 
samples. 

For example, support vector machines (SVMs) are a popular super-
vised machine-learning method for binary classification. In essence, 
SVM systematically transforms data into higher dimensional spaces until 
it finds a space in which the two classes of interest (in this case, driver 
and non-driver) can be separated with a maximal margin by a hyper-
plane. iCAGES [71] is a SVM method trained on 11 ANNOVAR [75] 
annotation features, and requires both true positive and true negative 
annotation of driver genes for training, which is based on external 
annotation of canonical drivers. iCAGES is limited by the ability of its 
ANNOVAR features, which are almost all measures of sequence con-
servation, to differentiate drivers from non-drivers, and by the fact that 
true-negative drivers are paradoxically impossible to define when 
considering the issue of personalised, rare driver detection. sysSVM2 
[72] is the updated version of sysSVM [76], which improves on the 
iCAGES method by utilising a semi-supervised one-class SVM classifier. 
Supplied with true positives only, one-class SVM can build a model that 

creates a boundary around true positives to separate them from the other 
data. Therefore, this removes the requirement to be able to label true 
negative driver genes. sysSVM2 is trained using 26 gene-based features 
including information about mutations, copy number, tissue expression, 
essentiality, network interactions, and genetic evolution. 

Similarly, driveR [73] is another machine learning model trained on 
26 genetic features including a metaprediction of mutation neutrality, 
copy number alteration, cancer-sepcific phenolyzer scores, COSMIC 
hotspot mutations and membership in cancer-related KEGG pathways. 
Instead of SVMs, driveR uses a supervised multi-task learning model for 
logistic regression to classify mutated genes as “driver genes” or 
“non-driver genes” in a cancer-type specific manner, unlike the previous 
two examples whose predictions are cancer-type agnostic. However, 
driveR suffers the same limitation as iCAGES in that both “true posi-
tives” and “true negatives” need to be defined for the training data. 

An alternative machine learning approach is utilised by IMCDriver 
[74]. This tool applies inductive matrix completion (IMC), to identify 
candidate driver genes in an individual. Matrix completion techniques 
attempt to impute missing values in a matrix, however, these techniques 
are unable to generalise to new samples that are not present in the 
training dataset, meaning they are transductive. The purpose of IMC is to 
introduce external information about similarity between items in the 
matrix, which will allow the model to infer missing values when a new 
sample is added to the matrix, making it inductive. In this case, IMC is 
employed to address the incompleteness of known driver genes. None-
theless, IMCDriver is limited by its approach in obtaining external 
similarity information. Since it is often prohibitively difficult to acquire 
high quality external similarity information, methods have been pro-
posed to allow inductive matrix completion using only the data available 
in the matrix [77]. This is the approach utilised by IMCDriver, which 
puts emphasis upon and defines functional similarity of genes by their 
co-mutation. In reality, genes of interest are often the ones that are 
mutated mutually exclusively. Genes that are functionally similar are 
rarely mutated together in a patient [78]. It would be of great interest to 
build on this method in future by incorporating a more suitable measure 
of gene-similarity, such as co-expression. Finally, it should be noted that 
IMCDriver only considers genes that are mutated in at least one sample 
in the training group, thus limiting its ability to detect rare or novel 
drivers. 

3.1. Limitations of machine learning-based driver prioritisation 

Taken together, the identification of driver genes using machine- 
learning approaches has previously been considered an ineffective 
approach [12]. First, given the reliance on gold-standards, all these 
approaches are only as reliable as the available sets of canonical drivers. 
Additionally, gene-expression data is highly variable, which can greatly 
affect the accuracy of the model, which is likely why current 
machine-learning implementations do not utilise this data. Furthermore, 
machine learning often requires very large datasets. Also, deep-learning 
and machine-learning approaches are often criticized for being 
“black-box” approaches, a challenge in large complex systems. In 
essence, as the training data becomes larger and more complex, as is the 
case for gene network data, the biological interpretation of the results 
becomes convoluted. It therefore becomes nearly impossible to under-
stand the underlying logic used by the machine learning algorithm to 
identify driver genes. As such, Frohlich et al. [12] describe algorithms on 
a spectrum of interpretability, with machine-learning models on one end 
and fully mechanistic models on the other. 

4. Considerations for performing driver gene prioritisation 

The limitations and advantages of both the general categories of 
algorithms and the individual algorithms themselves have been broadly 
summarised in Table 7. Due to the lack of benchmarking and compari-
son of these algorithms that has been performed to date, and the limited 

Table 6 
Driver prioritisation methods that utilise machine learning.  

Software Learning 
Model 

Training 
Features 

Primary 
Language 

Year Ref. 

iCAGES Support 
Vector 
Machine 
(SVM) 

11 ANNOVAR 
mutation 
annotations 

Perl 2016 Dong et al. 
[71] 

sysSVM2 One-Class 
Support 
Vector 
Machine 
(SVM) 

26 Features 
including: 
ANNOVAR 
mutation 
annotations, 
copy number, 
essentiality, 
tissue 
expression, 
genetic 
evolution and 
network 
interaction 

R 2021 Nulsen et 
al . [72] 

driveR Lasso 
Regression 
Multi-Task 
Learning 
(MTL) 

26 Features 
including: 
mutation 
annotation 
metaprediction, 
copy number, 
hotspot 
mutations, 
tissue-specific 
Phenolyzer 
score, KEGG 
cancer pathway 
membership 

R 2021 Ulgen and 
Sezerman  
[73] 

IMCDriver Inductive 
Matrix 
Completion 
(IMC) 

No external 
training 
features. 
Trained using 
similarity 
between 
samples (shared 
mutated genes) 
and similarity 
between genes 
(co-mutation 
across samples) 

Python 2021 Zhang 
et al. [74]  

R. Gillman et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 21 (2023) 5028–5038

5036

utilisation of these algorithms in in vitro and in vivo experiments, rec-
ommendations for researchers can only be based on theoretical capa-
bilities. To this end, of the network-based approaches, PRODIGY and 
PersonaDrive incorporate the most information. Thus, this in theory 
gives them the best chances of identifying true drivers. Similarly, 
sysSVM2 and driveR are the machine learning models trained on the 
most varied features. Therefore, these should provide the best results 
from this category. However, clearly future work is required to validate 
these opinions. 

4.1. Future directions 

Given the growing recognition of a need for personalised approaches 
to cancer treatment, it is surprising to find that although a diverse range 
of elegant approaches to driver prioritisation have been implemented, 
they appear to remain in their relative infancy with several limitations to 
overcome. Inherent to all these approaches, is the limitation of statistical 
power when working with single samples. Moreover, as discussed, all 
the algorithms mentioned in this review that utilise transcriptomic in-
formation are designed for use with bulk-RNAseq data. With the recent 
rapid growth of single-cell sequencing technologies with ever-improving 
accuracy and depth capability, it seems inevitable that these technolo-
gies will revolutionise our ability to investigate changes in single pa-
tients with improved confidence, and thus new tools are required to 
harness these innovations. Additionally, it is worth noting the emerging 
appreciation for consensus methodologies in bioinformatics [79,80]. It 
is likely that the most accurate tool for identifying driver genes will be 
one that considers a consensus output from multiple diverse approaches, 
such as that used by ConsensusDriver [63] which combines driver ranks 
from several cohort-level methods. 

5. Conclusion 

In recent years, significant advances have been made in the field of 

Table 7 
Overall advantages and limitations of driver prioritisation approaches.  

Driver Prioritisation 
Approach 

Advantages Limitations 

Network-Based Driver 
Prioritisation Using 
External Reference 
Networks  

• Utilises patient-specific 
changes in gene expres-
sion to evaluate the ef-
fect of a mutation in a 
patient-centric manner  

• Requires genomic and 
transcriptomic 
information  

• Dependent on external 
reference network  

• Requires a cohort of 
patients for making 
comparisons which may 
need to be batch- 
corrected  

• Network-based 
approaches in general 
are susceptible to 
centrality bias 

DawnRank  • Uses differential 
expression information 
quantitatively  

• Requires paired tumour/ 
normal expression data 

OncoImpact  • Has measures to combat 
centrality bias  

• Uses differential 
expression information 
qualitatively  

• Requires reference 
healthy expression data 

Hit’nDrive  • Utilises integer linear 
programming  

• Requires only tumour 
expression data  

• Requires additional 
licenced software 
(CPLEX)  

• Coded in proprietary, 
licenced language 
(MATLAB)  

• Uses differential 
expression information 
qualitatively 

SCS   • Uses differential 
expression information 
qualitatively  

• Requires reference 
healthy expression data 

PRODIGY  • Uses differential 
expression information 
quantitatively  

• Incorporates additional 
pathway information  

• Has measures to combat 
centrality bias  

• Requires reference 
healthy expression data 

PersonaDrive  • Requires only tumour 
expression data  

• Incorporates 
information from other 
similar samples  

• Incorporates additional 
pathway information  

• Uses differential 
expression information 
qualitatively 

Network-Based Driver 
Prioritisation Using 
De-Novo Networks  

• Utilises patient-specific 
changes in gene expres-
sion to evaluate the ef-
fect of a mutation in a 
patient-centric manner  

• Does not rely on 
external reference 
networks  

• Requires genomic and 
transcriptomic 
information  

• Requires a cohort of 
patients for making 
comparisons which may 
need to be batch- 
corrected  

• Network-based 
approaches in general 
are susceptible to 
centrality bias 

PNC  • Utilises integer linear 
programming  

• Requires additional 
licenced software 
(Gurobi)  

• Coded in proprietary, 
licenced language 
(MATLAB)  

• Requires paired tumour/ 
normal expression data 

pDriver  • Also considers miRNA 
drivers  

• Requires miRNA 
expression data  

Table 7 (continued ) 

Driver Prioritisation 
Approach 

Advantages Limitations 

PDGPCS  • Incorporates additional 
pathway information  

• Coded in proprietary, 
licenced language 
(MATLAB)  

• Requires paired tumour/ 
normal expression data 

Machine Learning- 
Based Driver 
Prioritisation  

• Only requires genomic 
information  

• Can theoretically be 
expanded to include 
more features  

• Once the model is 
trained, truly requires 
only a single patient  

• Models are reliant on 
accuracy of “known 
driver gene” databases  

• “Black-box” approaches 
without mechanistic 
interpretability 

iCAGES   • Training model requires 
true positive and true 
negative drivers  

• Only uses ANNOVAR 
annotations as training 
features 

sysSVM2  • Only true positive 
drivers are required for 
training  

• Expanded list of training 
features  

driverR  • Expanded list of training 
features  

• Cancer-type specific  

• Training model requires 
true positive and true 
negative drivers 

IMCDriver   • Does not utilise any 
external similarity 
features  

• Similarity based on co- 
mutation  
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cancer driver-prioritisation, but less attention has been assigned to 
methods which focus on single tumours. This review discussed some of 
the computational approaches designed for this purpose, most of which 
are network-based approaches that combine genomic and tran-
scriptomic sequencing data, but also include machine-learning ap-
proaches which require only genomic data. While each new method 
builds upon the last and attempts to address their inherent limitations, 
minimal independent evaluation of these methods exists regarding 
whether the drivers predicted are biologically meaningful in vitro and in 
vivo, and whether they can be therapeutically targeted. Given the po-
tential of these methods to progress the realisation of personalised 
medicine for individual cancer patients, it is essential that such evalu-
ations are performed. 
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