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Abstract

Background: Crosstalk between integrins and FGF receptors has been implicated in FGF signaling, but the specifics of the
crosstalk are unclear. We recently discovered that 1) FGF1 directly binds to integrin avb3, 2) the integrin-binding site and
FGF receptor (FGFR) binding site are distinct, and 3) the integrin-binding-defective FGF1 mutant (R50E) is defective in
inducing FGF signaling although R50E still binds to FGFR and heparin and induces transient ERK1/2 activation.

Principal Findings: We tested if excess R50E affect DNA synthesis and cell survival induced by WT FGF1 in BaF3 mouse pro-
B cells expressing human FGFR1. R50E suppressed DNA synthesis and cell proliferation induced by WT FGF1. We tested if
WT FGF1 and R50E generate integrin-FGF1-FGFR ternary complex. WT FGF1 induced ternary complex formation (integrin-
FGF-FGFR1) and recruitment of SHP-2 to the complex in NIH 3T3 cells and human umbilical endothelial cells, but R50E was
defective in these functions. It has been reported that sustained ERK1/2 activation is integrin-dependent and crucial to cell
cycle entry upon FGF stimulation. We thus determined the time-course of ERK1/2 activation induced by WT FGF1 and R50E.
We found that WT FGF1 induced sustained activation of ERK1/2, but R50E was defective in this function.

Conclusions/Significance: Our results suggest that 1) R50E is a dominant-negative mutant, 2) Ternary complex formation is
involved in FGF signaling, 3) The defect of R50E to bind to integrin may be directly related to the antagonistic action of
R50E. Taken together, these results suggest that R50E has potential as a therapeutic in cancer.
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Introduction

Fibroblast growth factors (FGFs) constitute a family of heparin-

binding polypeptides involved in the regulation of biological

responses, such as growth, differentiation, and angiogenesis [1–4].

The biological effects of FGFs are mediated by four structurally

related receptor tyrosine kinases denoted FGFR1, FGFR2,

FGFR3, and FGFR4. The binding of FGF to its receptor results

in receptor dimerization and subsequent transphosphorylation of

specific tyrosine residues within the intracellular domain [1–4].

Activation of the receptor allows proteins containing Src

homology-2 (SH2) or phosphotyrosine binding (PTB) domains to

bind to sequence recognition motifs in the FGFR, resulting in

phosphorylation and activation of these proteins [5]. This leads to

the activation of intracellular signaling cascades. The main

signaling cascade activated through the stimulation of FGFR is

the Ras/MAP kinase pathway.

Since FGF signaling enhances multiple biological processes that

promote tumor progression [6], it is an attractive therapeutic

target. This is particularly important because therapies targeting

FGF receptors and/or FGF signaling not only affect the growth of

the tumor cells but also modulate tumor angiogenesis [7]. FGF1

and FGF2 are also pro-inflammatory growth factors [8] that play a

role in pathological angiogenesis in chronic inflammatory diseases.

Thus FGF signaling is a potential therapeutic target for

pathological angiogenesis in chronic inflammatory diseases.

Integrins are a family of cell adhesion receptors that recognize

extracellular matrix (ECM) ligands and cell surface ligands [9].

Integrins are transmembrane ab heterodimers, and at least 18 a
and 8 b subunits are known [10]. Integrins play an important role

in anchorage-dependent cell survival and proliferation [11].

Integrins transduce signals to the cell upon ligand binding, and

their functions are in turn regulated by the signals from within the

cell [9]. Ligation of integrins triggers a large variety of signal

transduction events that serve to modulate cell behaviors including

proliferation, survival/apoptosis, shape, polarity, motility, gene

expression, and differentiation.

Recently we reported that FGF1 directly bound to integrin

avb3 and localized the integrin-binding site in FGF1 within or

close to the heparin-binding site, but distinct from the FGFR-

binding site [12]. An FGF1 mutant (the Arg-50 to Glu mutant,

R50E) was defective in binding to avb3, but still bound to FGFR

or heparin. We showed that R50E was defective in inducing DNA

synthesis, cell proliferation, and migration, while it still could

induce initial FGFR1 phosphorylation, FRS2a phosphorylation

and ERK1/2 phosphorylation [12]. We hypothesized that the
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direct binding of FGF1 to avb3 is a potential mechanism for

FGFR-integrin crosstalk. We predict that the defect of R50E is

located in the later steps of FGF signaling, and that R50E is a

useful tool for studying the role of integrins in FGF signaling.

In the present study, we demonstrate that the R50E mutant of

FGF1 suppressed FGF signaling induced by WT FGF1 in a

dominant-negative fashion. We studied the mechanism of the

antagonistic action of R50E. R50E induced transient ERK1/2

activation, but did not induce sustained ERK1/2 activation, which

is integrin-dependent and directly related to cell cycle entry

[13,14]. We found that WT FGF1 induced the FGFR-FGF-

integrin ternary complex formation, but R50E did not. Our results

suggest that R50E could not bring avb3 to FGFR due to defective

integrin-FGF interaction, and thereby disrupted subsequent

signaling steps. Thus integrin-FGF interaction plays a critical role

in FGF signaling and represents a novel therapeutic target.

Results

Dominant-negative effect induced by R50E
Our previous study shows that integrin-binding-defective R50E

is defective in inducing DNA synthesis, chemotaxis, and cell

proliferation, while it can bind to FGFR1 and heparin [12]. These

results suggest that FGF1 binding to integrins plays a role in FGF

signaling. If FGF1 needs to bind to both FGFR and integrins for

signaling, it is predicted that R50E that cannot bind to avb3 is not

only defective in signaling but suppresses signaling induced by WT

FGF1 in a dominant-negative manner. To assess this hypothesis,

we first tested if R50E competes with biotinylated WT FGF1 for

binding to the immobilized FGFR D2D3 fragment in ELISA-type

binding assays. We used the 3xA mutant that is defective in

binding to FGFR1 [12] as a control. We found that unlabeled

R50E effectively reduced the binding of biotinylated WT FGF but

the 3xA mutant did not (Fig. 1A). These results suggest that R50E

competitively blocked the binding of WT FGF1 to FGFR1, which

is consistent with our previous results that WT FGF1 and R50E

have similar affinity to FGFR1 using surface plasmon resonance

[12]. We next tested if R50E suppresses cell proliferation in a

competitive manner. BaF3 mouse pro-B cells that express human

FGFR1c (designated BaF3-FGFR1c) have been widely used to

sensitively detect cell proliferation that is dependent on exogenous

FGF [15]. We reported that WT FGF1 induced proliferation of

BaF3-FGFR1c cells, but R50E did not [12]. We found that excess

R50E blocked WT FGF1-induced BrdU incorporation in BaF3-

FGFR1c in a dose-dependent manner (Fig. 1B), suggesting that

R50E acts as a dominant-negative antagonist of FGF1-induced

DNA synthesis. We next tested if R50E affects cell proliferation

induced by WT FGF1 using MTS assays. We found that excess

R50E blocked WT FGF1-induced BaF3-FGFR1c cell prolifera-

Figure 1. R50E is a dominant-negative inhibitor of FGF
signaling. A.R50E competed with WT FGF1 for binding to the FGFR1
D2D3 fragment. Biotinylated FGF1 and increasing concentrations of
unlabelled FGF1 or FGF1 mutants were incubated with the immobilized
FGFR1 D2D3 fragment and bound biotinylated FGF1 was measured
with HRP-conjugated avidin. The 3xA mutation located at the predicted

FGF-FGFR binding site [1] was used as a negative control. The results
indicate that R50E competitively blocked the binding of biotinylated
WT FGF1 to FGFR fragment to the same extent as WT FGF1. * P,0.0001,
** P = 0.0002 (n = 3) compared to +3A. There is no significant difference
between WT and R50E at 10 mg/ml. B. R50E suppressed the DNA
synthesis in BaF3-FGFR1c cells induced by WT FGF1. We cultured BaF3-
FGFR1c cells in the presence of 1 ng/ml WT FGF1 and 25 or 50 ng/ml
R50E for 24 h instead of IL-3 and measured incorporation of BrdU.
Results are shown as means +/2SEM. * P,0.0001, ** P = 0.0003 by t-test
(n = 4) compared to No R50E. C. R50E suppressed the proliferation of
BaF3-FGFR1c cells induced by WT FGF1. We cultured BaF3-FGFR1c cells
in the presence of 1 ng/ml WT FGF1 and 100 or 200 ng/ml R50E for
24 h instead of IL-3 and measured cell proliferation by MTS assays.
Results are shown as means +/2 SEM. * P,0.0025, ** P = 0.0093 by
t-test (n = 3) compared to No R50E.
doi:10.1371/journal.pone.0010273.g001
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tion in a dose-dependent manner (Fig. 1C), suggesting that R50E

acts as a dominant-negative antagonist of FGF1-induced cell

proliferation. Taken together, our results suggest that R50E is a

novel competitive inhibitor of FGF signaling.

WT FGF1 induces ternary complex formation (FGFR1,
FGF1, and integrin b3) while R50E is defective in this
function

If the integrin avb3-binding site in FGF1 is distinct from that of

FGFR1 [12], FGF1 can simultaneously bind to avb3 and FGFR

(ternary complex formation). To directly demonstrate the ternary

complex, we stimulated the serum-starved NIH 3T3 cells with

FGF1 for 1 h and immuno-precipitated FGFR1 from cell lysates

using anti-FGFR1 mAb, and analyzed the immuno-purified

materials by Western blotting with anti-b3 antibody. We detected

integrin b3 in the immune complex when WT FGF1 was used but

did not detect integrin b3 when R50E was used (Fig. 2A). This

suggests that the ternary complex formation depends on the

integrin-binding function of FGF1. As a reciprocal experiment we

used anti-integrin b3 mAb instead of anti-FGFR1 antibody for

immuno precipitation, and detected FGFR1 and FGF1 in the

immune complex when WT FGF1 was used. However, we did not

detect FGFR1 or FGF1 when R50E was used (Fig. 2B). We

obtained similar results when cells were incubated for 10 min

instead of 1 h (data not shown). Taken together, these results

suggest that the simultaneous binding of FGFR1 and integrin

avb3 to FGF1 occurs during FGF signaling. Notably, the integrin-

binding-defective R50E mutant failed to induce ternary complex

formation, and this may be related to the dominant-negative effect

(Fig. 1).

To test if FGF1 induces the FGF1-avb3 complex formation in

other cell types, we stimulated the serum-starved HUVEC with wt

FGF1 and immunoprecipitated avb3 from cell lysates using anti-

FGFR1 mAb, and analyzed the immunoprecipitates by Western

blotting with anti-b3 antibody. We detected integrin b3 in the

immune complex only when wt FGF1 was used (Fig. 2C). As a

reciprocal experiment we used anti-integrin b3 instead of anti-

FGFR1 for immuno precipitation, and detected FGFR1 in the

immune complex upon wt FGF1 stimulation. However, we did not

detect the FGFR1-avb3 complex in the immunoprecipitates upon

R50E stimulation (Fig. 2C). These results suggest that the ternary

complex formation and the effect of the R50E mutation are not

cell-type specific.

It has been reported that the non-receptor tyrosine kinase Src is

recruited to activated fibroblast growth factor receptor (FGFR)

complexes through the adapter protein factor receptor substrate 2

(FRS2) [16]. We tested if R50E affects the levels of c-Src

activation. There was no difference in the levels of Src activation

between WT FGF1 and R50E (Fig. 2D). Also, c-Src is associated

with FGFR1 after WT FGF1 and R50E stimulation at

comparable levels (Fig. 2A), suggesting that FGF-integrin interac-

tion is not related to the c-Src recruitment to the FGF/FGFR

complex.

It has been reported that IGF1 induces recruitment of the SH2

domain-containing protein phosphatase SHP-2 to the tyrosine

phosphorylated integrin b3 cytoplasmic domain [17]. Also, FGF2

induces the recruitment of SHP-2 to the FGFR-FRS2a complex

and the sustained FRS2a phosphorylation, and these steps are

essential for sustained ERK1/2 activation [18,19]. We tested if the

R50E mutation affects recruitment of SHP-2. We detected SHP-2

in the ternary complex when WT FGF1 was used for stimulating

NIH 3T3 cells (Fig. 2A). Interestingly, we did not detect SHP-2 in

the immunoprecipitate from R50E-stimulated NIH 3T3 cells.

These results suggest that WT FGF1, but not R50E, induced the

recruitment of SHP-2 to the ternary complex, and that the ternary

complex formation and simultaneous recruitment of SHP-2 may

be critical in FGF signaling. We also tested if SHP-2 is critical for

FGF signaling using mouse embryonic fibroblasts deficient in

SHP-2 [20]. The levels of sustained FRS2a and ERK1/2 activity

upon WT FGF1 stimulation were lower in mouse embryonic

fibroblasts deficient in SHP-2 than control embryonic fibroblasts

(Fig. 2E). Taken together our results suggest that recruitment of

SHP-2 to the FGF/FGFR/integrin ternary complex is required

for FGF signaling.

R50E is defective in inducing sustained ERK1/2 activation
The present results suggest that R50E is defective in inducing

ternary complex formation because it is defective in direct binding

to integrins [12]. What is the consequences of the defective ternary

complex formation? It has been reported that sustained ERK1/2

activation is integrin-dependent [13] and crucial to cell cycle entry

[14] upon FGF stimulation. We thus hypothesized that R50E is

defective in inducing sustained ERK1/2 activation. We found that

R50E induced transient ERK1/2 activation to the extent similar

to that of WT FGF1 (until 3 h after stimulation), but could not

maintain high ERK1/2 levels after 6 h in NIH 3T3 cells (Fig. 3A

and 3C). Also, FRS2a phosphorylation (Fig. 3A and 3D) and

FGFR1 phosphorylation (Fig. 3B) followed the time-course similar

to that of ERK1/2. Both WT FGF1 and R50E induced FRS2a
and FGFR1 phosphorylation in 15 min, but FRS2a and FGFR1

phosphorylation more rapidly reduced in 6 h with R50E than with

WT FGF1. We obtained similar results with HUVEC (Fig. 3E):

transient ERK1/2 activity decreased more quickly when cells were

treated with R50E than with WT FGF1. These results show that

the direct binding of integrins to FGF1 is required for sustained

ERK1/2 activation. Since R50E induced transient activation of

FGFR1, FRS2a, and ERK1/2 [12], it is suggested that transient

induction of FGF signaling does not require the direct binding of

FGF to integrins. These findings suggest that the direct binding of

integrins to WT FGF1 plays a role in sustained activation of the

entire FGF signaling pathway.

Discussion

In the present study we establish that the integrin-binding-

defective R50E mutant of FGF1 is a dominant-negative antagonist

of FGF1. We demonstrated that excess R50E suppressed DNA

synthesis and cell proliferation induced by WT FGF1. Because

FGF1 binds to all known FGFR isoforms [15], it is expected that

R50E will block signaling by other members of the FGF family.

It has been reported that receptor binding of heparin-binding

growth factors (HB-GFs), such as FGF, is regulated by interactions

with heparan sulfate proteoglycans [21]. We demonstrated that

the R50E mutation, however, did not affect heparin-FGF1

interaction in surface plasmon resonance study [12]. Thus it is

unlikely that the effect of the R50E mutation on FGF signaling is

explained by its effect on FGF-heparin interaction. The presence

of heparin in the experimental system is unlikely to affect the effect

of the R50E mutation on FGF signaling. It is also unlikely that the

effect of the R50E mutation on FGF signaling is due to its effect on

FGFR binding, since we showed that R50E binds to FGFR1 at

levels comparable to that of WT FGF1 in competitive binding

assays (this study) and in surface plasmon resonance studies [12].

We studied the mechanism of the dominant-negative effect of

R50E. We presented evidence that WT FGF1 co-precipitation of

integrin avb3 and FGFR1, and recruitment of SHP-2 to the

complex, while R50E was defective in these functions. Since R50E

can still bind to FGFR1 and heparin [12], it is likely that the defect
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in integrin binding is related to its antagonistic action in FGF

signaling, and that crosstalk between integrins and FGFR is

mediated by the direct binding of integrins to FGF. Since R50E

cannot bring integrin avb3 to the FGF/FGFR complex, R50E

effectively interrupts the subsequent FGF signaling events. It has

been recently reported that WT FGF2 induced co-precipitation of

avb3 and FGFR in HMVEC [22]. Thus it is possible that FGF2

induces intracellular signals through ternary complex formation.

It has been established that the duration of ERK pathway

signaling determines the proliferative response of cells [14]. The

induction of cell cycle re-entry requires sustained ERK signaling

and the subsequent activation of successive waves of gene

expression, culminating in a set of proliferative genes that includes

cyclin D1 [14]. FGF causes sustained ERK pathway activation

and promotes proliferation. cyclin D1 expression is not activated

by transient ERK signaling but is only triggered after sustained

activation of this pathway [23,24]. We presented evidence that

WT FGF1 maintained ERK1/2 activation after 6 h of stimulation

(sustained ERK1/2 activation), while R50E was defective in this

function. It has been reported that sustained ERK1/2 activation is

integrin-dependent [13] upon FGF stimulation. Upon initiation of

angiogenesis with FGF2 on the chick chorioallantoic membrane,

endothelial cell ERK activity is detected as early as 5 min yet is

sustained for at least 20 h. The transient ERK activity (5–120 min)

is refractory to integrin antagonists, whereas the sustained activity

(4–20 h) depends on integrin avb3, but not b1 integrins [13]. It is

thus likely that the ability of R50E to disrupt DNA synthesis and

cell proliferation induced by WT FGF1 may be a consequence of

its defect in integrin binding and inability thereby to induce

sustained ERK1/2 activation. However, how integrins are

involved in inducing sustained ERK1/2 activation is unclear at

this point.

Materials and Methods

Materials
WT FGF1, the R50E mutant of FGF1, and the FGFR1 D2D3

fragment were synthesized as described [12]. Human umbilical

endothelial cells (HUVEC) (Cascade Biologics, Portland, OR)

were cultured under the same conditions as NIH 3T3 cells

(ATCC, Manassas,VA) except for the use of M200 medium

supplemented with low serum growth supplement (Cascade

Biologics) instead of DMEM containing10% FCS. HUVEC were

used between passage 3 and 6. Embryonic fibroblasts from SHP-2

deficient mice were kindly provided by Gen Sheng-Feng

(Burnham Institute, La Jolla, CA). The antibodies were obtained

from the following sources: anti-polyclonal FGFR1 from Abgent

(San Diego, CA); anti-phospho FGFR1 (Tyr-653/Tyr-654) from

Biosource (Camarillo, CA); anti-FRS2a, and anti-FGF1 from

Santa Cruz Biotechnology (Santa Cruz, CA); anti-phospho-FRS2a
(Tyr-196), anti-p44/42 MAPK (ERK1/2), anti-phospho-p44/42

MAPK (ERK1/2) (Thr-202/Tyr-204), anti-integrin polyclonal

integrin b3, anti-c-Src, anti-phospho-c-Src (Tyr-416), and anti-

SHP-2 antibodies from Cell Signaling Technology (Danvers, MA).

Methods
Western blot analysis. NIH 3T3 cells or HUVEC were

grown to 70–80% confluence, and starved in DMEM

supplemented with 0.4% FCS for 16 h. The cells were then

treated with wild type (WT) or mutant FGF1 (5 ng/ml) in the

presence of 5 mg/ml heparin for 15 min–24 h at 37uC. Then, cells

were washed twice with ice-cold PBS, and lysed with the lysis

buffer (PBS containing 1% NP240, 0.5% Sodium deoxycholate,

0.1% SDS, protein inhibitor cocktail (Sigma), 1 mM PMSF,

20 mM NaF, and 1 mM Na3VO4.). Protein concentrations in the

cell lysates were determined using the BCA protein assay kit

(Thermo Scientific). Equal amounts of proteins were analyzed by

SDS-PAGE in a 4–12% polyacrylamide gel and standard Western

blot analysis protocol. Bound antibodies were detected with HRP-

conjugated anti-mouse or anti-rabbit IgG (BioRad), and Super

Signal WestPico (Thermo Scientific). Blots were imaged and

quantified by Multi Gauge V3.0 software (Fuji film Co.).

Immunoprecipitation. Cells cultured in 10-cm dishes were

suspended in 300 ml of lysis buffer containing 20 mM Hepes,

pH 7.4, 100 mM NaCl, 10% glycerol, 1 mM MgCl2, protease

inhibitor cocktail (Sigma), 1 mM PMSF, 20 mM NaF, 1 mM

Na3VO4 and 1.0% NP-40. After a 30-min incubation on ice, we

clarified the lysates by centrifugation at 14,000 rpm for 20 min

and adjusted the protein concentration to 2.5 mg in 750 ml lysis

buffer, then incubated with 20 ml of protein G-Sepharose

(Invitrogen) conjugated with 1.5 mg of anti-FGFR1 (M2F12)

mAb (Santa Cruz), 5 mg of rat anti-integrin b3 mAb (MBL), or

mouse anti human integrin b3 mAb (AV10) for 24 h at 4uC. After

washing with the same lysis buffer except for 0.5% NP-40 three

times, we solubilized the immune complex by adding SDS sample

buffer to the resin and analyzed by Western blot analysis.

Competitive binding of WT and mutant FGF1 to the

FGFR1 D2D3 fragment. The FGFR D2D3 fragment, which

contains the FGF-binding site, and the 3xA mutant of FGF1 were

prepared as described [12]. We coated wells of 96-well microtiter

plates with (100 ml PBS containing 1 mg/ml FGFR D2D3) for

overnight at 4uC, and the remaining protein binding sites were

blocked with BSA. We then added 100 ml Tyrode-HEPES buffer

that contains biotinylated WT FGF1 (1 mg/ml) and non-labeled

WT FGF1 or mutant FGF1 (0–10 mg/ml) and incubated for 3 h at

room temperature. The 3xA FGF1 mutant that is defective in

FGFR binding site [12] was used as a control. After extensive

washing with Tyrode-HEPES buffer, we determined bound

biotinylated WT FGF1 using HRP-conjugated streptavidin and

peroxidase substrate (3,39,5,59-tetramethylbenzidine, TMB).

DNA synthesis and proliferation of BaF3 cells that

express human FGFR1c isoform. We maintained mouse

pro B BaF3 cells that express human FGFR1c (BaF3-FGFR1c,

kindly provided by David Ornitz, Washington University, St.

Figure 2. WT FGF1 induced FGFR1-FGF-avb3 ternary complex formation, but R50E was defective in this function. We
immunoprecipitated the FGFR1-avb3 complex from cell lysates with anti-FGFR1 (A) or anti-b3 mAb (B), and analyzed the immuno-purified materials
by Western blot analysis. A. WT FGF1 induced co-immunoprecipitation of integrin b3 and SHP-1 with FGFR1 using anti-FGFR1, but R50E was defective
in this function. B. WT FGF1 induced co-immunoprecipitation of FGFR1 with integrin b3 using anti-integrin b3, but R50E was defective in this
function. We stimulated serum-starved NIH 3T3 cells with 5 ng/ml WT FGF1 or R50E for 1 h in the presence of 5 mg/ml heparin. C. Co-precipitation of
integrin b3 and FGFR1 upon FGF1 stimulation in HUVEC. Serum-starved HUVEC were stimulated by 5 ng/ml WT FGF1 or R50E with 5 mg/ml heparin
for 1 h. Cell lysates were immunoprecipitated with anti-FGFR1 or anti-b3 monoclonal antibody, and the immunoprecipitates were analyzed by
Western blotting. D. WT FGF and R50E similarly activated c-Src. We stimulated serum starved NIH 3T3 cells with WT FGF1 or R50E, and cell lysates
were analyzed by Western blotting using antibodies specific to phospho-c-Src or c-Src. E. Time-course of embryonic fibroblasts from SHP-2 (2/2) or
control mice. Serum starved cells were treated with WT FGF1 or R50E (5 ng/ml) for the time indicated and cell lysates were analyzed by Western
blotting.
doi:10.1371/journal.pone.0010273.g002
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Figure 3. R50E is less effective in inducing sustained ERK1/2 activation in NIH3T3 cells. A. Time-course of ERK1/2 activation and FRS2a
activation induced by WT FGF1- or R50E-stimulated cells. We stimulated serum-starved cells with 5 ng/ml WT FGF1 or R50E at indicated time points
and analyzed cell lysates by Western blotting using anti phospho-FRS2a, phospho-ERK1/2, total-FRS2a, or ERK1/2 antibody. A representative data is
shown from several independent experiments. B. Time-course of WT FGF1 or R50E induced FGFR1 phosphorylation. We stimulated serum starved
cells with 5 ng/ml WT FGF1 or R50E in the presence of 5 mg/ml heparin, and analyzed cell lysates by Western blotting. A representative data is shown
from several independent experiments. C. ERK1/2 activation levels more rapidly reduced in cells stimulated with R50E than cells stimulated with WT
FGF1. Lysates of cells stimulated with R50E or WT FGF1 were analyzed by Western blotting using anti phospho- or total FRS2a antibody. Fold increase
of ERK1/2 signals (phosphorylated protein/total protein) is shown with control ‘‘time 0’’ as 1. Data are shown as means +/2 SEM of triplicate
experiments. ERK1/2 activation at 6 h with R50E is significantly lower in than with WT FGF1 (* P,0.05, n = 3). D. FRS2a phosphorylation levels reduced
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Louis, MO) in a medium containing 0.5 ng/ml IL-3 as described

[15]. DNA synthesis was measured by BrdU assays. Briefly, 20,000

cells per well were incubated with WT or R50E FGF instead of IL-

3 at 37uC for 24 h in a 96-well assay plate in a RPMI medium

containing 0.5% FCS and 2 mg/ml heparin. Cells were then

incubated with BrdU for 4 h. Incorporated BrdU were measured

by cell proliferation ELISA kit (Roche) at 370 nm. For

proliferation assays, cells were maintained with WT or mutant

FGF1 instead of IL-3. Cell proliferation was assessed based on the

ability of the cells to convert MTS (3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) into

formazan, using the Aqueous Cell Proliferation Assay Kit

(Promega, Madison, WI). Cells were plated in 96-well plates

(16104 cells/well), and then incubated with DMEM containing

10% FBS at 37uC in 5% CO2 atmosphere. Twenty ml of MTS

reagent was added to each well at the indicated time period.

Relative cell number was measured based on increased

absorbance at 490 nm.

Statistical analysis. Statistical analysis was performed using

Prism software (GraphPad software).
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