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a b s t r a c t 

With the soaring generation of hazardous waste (HW) during industrialization and urbanization, HW illegal 
dumping continues to be an intractable global issue. Particularly in developing regions with lax regulations, 
it has become a major source of soil and groundwater contamination. One dominant challenge for HW illegal 
dumping supervision is the invisibility of dumping sites, which makes HW illegal dumping difficult to be found, 
thereby causing a long-term adverse impact on the environment. How to utilize the limited historic supervision 
records to screen the potential dumping sites in the whole region is a key challenge to be addressed. In this study, 
a novel machine learning model based on the positive-unlabeled (PU) learning algorithm was proposed to resolve 
this problem through the ensemble method which could iteratively mine the features of limited historic cases. 
Validation of the random forest-based PU model showed that the predicted top 30% of high-risk areas could 
cover 68.1% of newly reported cases in the studied region, indicating the reliability of the model prediction. This 
novel framework will also be promising in other environmental management scenarios to deal with numerous 
unknown samples based on limited prior experience. 
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. Introduction 

Waste illegal dumping, referring to the open-dumping of waste with-
ut proper treatment, remains an intractable global issue, widely re-
orted in both developing and developed countries, such as Australia,
taly, and Pakistan, in recent years [1–7] . It has attracted worldwide
ttention because waste illegal dumping is a major source of soil and
nderground water pollution and will cause severe effects on human
ealth [5] . The consequence of hazardous waste (HW) illegal dumping
s of particular severity due to the toxicity, corrosiveness, and flamma-
ility of HW. For example, HW dumping in Campania, Italy has caused
igh incidences of cancer, respiratory illnesses, and genetic malforma-
ions in the dumping region [2] . With the soaring generation of HW
lobally, the environmental burden from HW illegal dumping remained
reater today than in any previous period and is set to intensify. 

As one of the largest economies in the world, China has generated a
arge amount of HW and the quantity increased dramatically by 128%
uring the last decade. Correspondingly, the environmental burden of
W illegal dumping is also unprecedented in China. A total of 1539 HW

llegal dumping cases were found nationwide by the special campaign
o combat environmental violations and crimes jointly launched by the
inistry of Environmental Protection and the Ministry of Public Security
∗ Corresponding author. 
E-mail address: wenfang@nju.edu.cn (W. Fang) . 
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n 2016 [8] . In addition, most of these cases had a massive scale, leading
o serious consequences. For example, 60,000 tons of strong alkali waste
ere illegally dumped on the Yangtze Riverside in Tongling and Chizhou
ity, which caused great concern at the national level [9] . 

To curb the HW illegal dumping, strict supervision and regulation
re urgent. However, one primary challenge for HW illegal dumping
upervision is that HW illegal dumping sites are difficult to be found
9 , 10] , thereby causing a long-term adverse impact on the environment.
o improve the accuracy and efficiency of supervision, some studies
ave combined Geographic Information System (GIS) [3 , 11 , 12] , multi-
actor spatial analysis [11] , factor analysis [6] , and discriminant analy-
is [13] to predict the distribution of illegal dumping sites, supporting
ccurate identification of these sites for following remediation. The ma-
or principle of these studies was to find other potential sites sharing
he same characteristics as the reported illegal dumping cases. Com-
only, at first, the key factors influencing the spatial distribution of

llegal dumping sites were identified based on historic cases. Then, the
ossibility of illegal dumping occurring in each candidate site was deter-
ined by integrating spatial data of the key factors. It has been revealed

hat various factors, including personal awareness [14] , the quantity and
ost of waste treatment [6 , 15 , 16] , location of road network [15–17] ,
oad accessibility [6] , degree of monitoring coverage [3 , 15] , and social-
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conomic development [16 , 18 , 19] , could influence the occurrence of
aste illegal dumping. 

Nevertheless, due to the limitation in enforcement resources, the
istoric cases of waste illegal dumping sites are always finite, which
hereby causes uncertainty in the identification of dominant factors of
llegal dumping occurrence. Also, the experience learned from the finite-
ize set of historic cases might not be well applicable in a large region,
hereby decreasing the accuracy of the prediction results of potential il-
egal dumping sites. In such cases, compared with traditional statistical
ethods, the positive-unlabeled (PU) learning algorithm [20–23] , a type

f semi-supervised machine learning (ML) algorithm [24] , emerges as a
ore promising tool to tackle this challenge. PU learning algorithm is
eveloped for the situation that one is given a finite set of data of interest
haring a particular property and wishes to find other targets sharing the
ame property from a large set of unlabeled samples [21] . It could incor-
orate not only the given finite labeled dataset but also large unlabeled
ata into the learning process to build a generalized model to discrimi-
ate the interesting targets from the large dataset [25 , 26] . The PU learn-
ng scheme has presented superior performances in many applications
o deal with numerous unknown samples based on limited experiences
23 , 27] , such as medical diagnosis and knowledge base completion. 

Overall, the objective of this paper was to develop a general and en-
emble scheme based on a PU learning algorithm to predict the whole
patial pattern of HW illegal dumping risk according to limited supervi-
ion experience. This ensemble model contained 5,000 base classifiers
eveloped from newly constructed sub-datasets, each containing the his-
oric cases and unlabeled data sampled from the region we need to scan.
hese 5000 base classifiers could iteratively mine the characteristics of

imited historic cases and then be aggregated using bagging techniques
o predict the possibility of the unlabeled target being the illegal dump-
ng site. Results were verified by checking the consistency between the
igh-risk regions predicted by the model and the distributions of newly
eported HW illegal dumping sites which were not included in the train-
ng data. This study also shed light on how to predict the behavior of
nknown targets based on limited supervision experience in the field of
nvironmental management. 

. Materials and methods 

.1. Site description and data collection 

The study was carried out with data from Jiangsu, China. Jiangsu
s one of the most industrialized provinces in China and had an HW
uantity mass of ∼5,220,500 tons in 2020, ranking 3rd in China. The
ollected data used for model development included the illegal HW
umping sites and 7 predictor variables, including population density,
ross domestic product (GDP), distance to the nearest roads, distance
o the nearest waterways, industrial enterprise density, secondary land
se type, and HW generation quantity. These 7 predictor variables, rep-
esenting the socioeconomic characteristics, geographic features, and
W generation intensity, have been demonstrated to be strongly related

o the probability of HW illegal dumping [6-11 , 28] . HW illegal dump-
ng sites were screened from records of administrative supervision in
iangsu, China from 2013 to 2018. The data from 2013 to 2017 was
sed for model development and the data in 2018 was used for model
alidation. The data of predictor variables, except for distance to the
earest roads (2016), was in 2015. Considering that these 7 predictor
ariables used in this study were stable over a short period of several
ears, while some variables such as population density were updated
very 5 years or more, we made the hypothesis that the predicted data
ollected during 2015− 2016 can be used to predict the HW illegal dump-
ng risk during 2013− 2018, which is a five-year period with 2015 as the
idline. Detailed information about the data preparation could be found

n Supplementary Materials. 
We constructed a 1 km × 1 km modeling grid across the study region,

ith a total of 101,988 grid cells, for data integration. A total of 214
973
W illegal dumping sites reported in 2013− 2017 were spatially joined
ith the modeling grid. Cells with HW illegal dumping sites reported
ere defined as positive targets, while others were defined as unlabeled

argets. Except for the HW generation quantity, the other 6 predictor
ariables were prepared at a resolution of 1 km × 1 km (Supplementary
aterials). The data of HW generation quantity was at the city level and

he HW generation in the grid was defined as the total HW generation
uantity of the city to which the grid cell belongs. Finally, all the data
ere matched by their grid cell ID for model development. 

.2. Model development and evaluation 

An ensemble ML model, PU bagging, was adopted in this study to de-
elop the prediction model of HW illegal dumping risk, referring to the
elative possibility of HW illegal dumping occurring in a 1 km × 1 km
rid. The framework of the PU bagging model, including sample prepa-
ation, base classifier training, and results aggregation, was shown in
ig. 1 . 

S represents the set of all grid cells, and the S set is split up into a P
et and a U set; the P set consists of all positive cells (214) with HW ille-
al dumping sites; the U set consists of other unlabeled cells (101,774).
irst, with regard to sample preparation, a set of data Ui was randomly
elected from the dataset U and temporarily labeled as negative class.
hen the dataset Ui was combined with dataset P to form the mixed
ataset Mi for base binary classification modeling development [29] .
o ensure data balance, the size of dataset Ui was the same as dataset P.
hen, the sampling of dataset Ui was iterated 5000 times to ensure that
nlabeled grid cells could be well sampled and learned, which means
hat there were 5,000 Mi in total for model development. 

Secondary, for each dataset Mi , 5 ML algorithms, k nearest neigh-
ors (KNN), random forest (RF) [30 , 31] , multi-layer percetron (MLP)
32] , logistic regression (LOG) [33] , and decision tree (DT) [34] , were
sed to train the binary classifier, respectively. To improve the training
rocess of ML models for rapid convergence, the input features were
ormalized to obtain a similar scale and distribution. Following nor-
alization, the dataset Mi was split up into training and testing sets at

he ratio of 8:2. The hyper-parameters (Table S2) for each algorithm
ere adjusted to improve accuracy based on 10-fold cross-validation

or the training data. Different hyper-parameters were included in vari-
us ML algorithms during the tuning process [35] . The performance of
ach classifier was evaluated by 6 metrics [36–39] for binary classifica-
ion, including accuracy, precision, recall, F1 score, the area under curve
AUC) [32 , 36] , and L&L metric [21 , 40] (Supplementary Materials). 

Third, for each ML algorithm, there were 5000 individual classifiers
rained from 5,000 datasets Mi . Each classifier was used to predict the
ossibility of an unlabeled dataset U being a positive class. Then the
esults of 5,000 classifiers were aggregated using a weighted average
ethod based on the accuracy of each classifier (PC, Eq. (1) ). Since the

ccuracy gives a good indication of the reliability of classifier, the accu-
acy of each base classifier was transformed into a weighting coefficient
sing the min-max normalization method, so that the results predicted
y the base classifier with higher accuracy could contribute more to the
nal aggregated results. The final results indicated the possibility of HW

llegal dumping occurring in the unlabeled cells: 

 𝐶 =
∑5000 

𝑖 =1 
[
𝐴𝑁𝑖 × 𝑃 𝐶𝑖 × 𝐼( 𝐿 &𝐿𝑖 ≠ 0) 

]

∑5000 
𝑖 =1 

[
𝐴𝑁𝑖 × 𝐼( 𝐿 &𝐿𝑖 ≠ 0) 

] (1)

here PC is the possibility of the cell belonging to the positive class,
mplying that HW illegal dumping occurred in this cell; PCi is the pre-
iction score of the cell being positive class assigned by classifier i; ANi is
he normalized accuracy of classifier i . Normalized values were obtained
sing the min-max normalization for the 5000 classifiers. L&Li is the
&L metric value of classifier i (Eq. S3). L&L metric is a comprehensive
erformance metric specifically designed for the PU learning model to
valuate whether the model can accurately retrieve more true positive
amples and fewer false positive samples from the unlabeled dataset.
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Fig. 1. The framework of the ensemble PU learning model. (a) Sampling of all the positive cells with HW illegal dumping sites and bootstrap resampling of 
unlabeled cells to obtain 5000 mixed datasets. (b) 5 ML algorithms (kK nearest neighbors (KNN), random forest (RF), multi-layer perceptron (MLP), logistic regression 
(LOG), and decision tree (DT)) were used to train the binary classifier for each dataset. (c) results of 5000 classifiers were aggregated using a weighted average 
method based on the accuracy of each classifier. 
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Materials. 
(L&Li ≠ 0) is an indicator function whose value is 1 when L&L ≠ 0 for
lassifier i ; otherwise, its value is 0. Based on this indicator function
(L&L ≠ 0) , the poor-performing classifiers whose L&L metric is 0 will
e discarded. 

.3. Model explanation 

The Shapley additive explanation (SHAP) method was adopted to
ompute the relative importance of all features. Extensively used in
oalitional game theory, the Shapley value currently provides a unique
olution to satisfy properties (local accuracy, consistency, and missing-
ess) desired for explanatory ML analysis [41 , 42] . This approach consid-
rs the learning process of the ML model as a game, where each feature
an generate a contribution to the prediction, and the contribution is
ndicated by SHAP value. However, it is noteworthy that SHAP analysis
uantified the importance of input feature based on its marginal effect
n the prediction results, and the importance might change with dif-
erent machine learning algorithms. Therefore, the SHAP analysis could
rovide only a preliminary interpretation of input features’ roles in the
rediction, but not the rigorous causal inference between input features
nd the response variable. 

In this study, the SHAP values of all features were calculated using
00 samples for each base classifier, which were selected through the
-means clustering algorithm [43] to reduce the information loss and

mprove computational efficiency. Specifically, the K-means clustering
lgorithm divided the total 428 samples into 100 groups based on data
haracteristics for each base classifier. Then, one sample was randomly
rawn from each group to make up a dataset consisting of 100 samples
or SHAP calculation. These 100 samples with divergence were capa-
le of covering the characteristics of all the 428 samples in the training
ataset, explaining the whole model, and thereby avoiding information
oss. In addition, using these 100 samples to calculate the SHAP val-
es could decrease the computational cost by more than 75% compared
ith using all 418 samples in each base classifier to calculate SHAP
alue. The importance of each parameter for the base classifier was cal-
ulated by the mean absolute SHAP (MAS, Eq. (2) ) value of these 100
amples. Then for the PU bagging model with 5000 base classifiers, the
mportance of each feature was obtained using the weighted average
AS values (WMAS, Eq. (3) ) of 5000 classifiers based on the accuracy

f each classifier: 

AS 𝑖,𝑗 =
∑100 

𝑛 =1 𝑎𝑏𝑠 (SHAP 𝑛,𝑖,𝑗 ) 
100 

(2) 

MAS 𝑗 =
∑5000 

𝑖 =1 [AN 𝑖 × MAS 𝑖,𝑗 × 𝐼( 𝐿 &𝐿𝑖 ≠ 0)] 
∑5000 [AN 𝑖 × 𝐼( 𝐿 &𝐿𝑖 ≠ 0)] 

(3) 
𝑖 =1 

974
here SHAPn, i, j is the SHAP value of sample n in classifier i for feature
 ; MASi,j is the mean absolute SHAP value of 100 samples in classifier i for
eature j ; WMASi,j is the weighted average MAS value of 5000 classifiers
or feature j ; ANi is the normalized accuracy of classifier i ; I(L&Li ≠0) is
n indicator function (its value is 1 when L&L ≠ 0 in classifier i ; other-
ise its value is 0). 

.4. Model validation 

185 HW illegal dumping sites which were not included in the
raining data and reported in 2018 were used to validate the reliability
f the model results. Since the absolute values of HW illegal dumping
isk predicted by different models might not be identical, a relative risk
evel was used to quantify the risk of occurring HW illegal dumping at
ach cell, which will benefit the comparison among different models.
here were 10 relative risk levels based on the decile of PC values
cross the whole region. The risk decreases from level 10, referring to
he first decile, to level 1, referring to the tenth decile. A high relative
isk level was assigned when there was a high possibility of HW illegal
umping occurring in the target. Then, the relative risk level of cells
here the 185 HW illegal dumping sites belong were obtained and the

umulative percentage curves of the 185 cells as a function of risk level
ere plotted to check the consistency between the prediction results
nd the on-site survey. Among the 185 cells, more cells belonging to
igh relative risk levels indicated higher reliability of model prediction
esults. 

In addition, the reliability of the PU bagging-based model was
ompared with the traditional statistical method, discriminant analysis
DA), to demonstrate the superiority of the ML method developed in
his study. DA is a multivariate statistical analysis method that discrim-
nates the attribution of samples based on their features, which has
een widely used in risk evaluation and prediction [13] . In this study,
he DA model based on Fisher discriminant criteria was established to
redict the probability of cells being illegal HW dumping sites, referring
o the risk of HW illegal dumping. Briefly, a set of negative samples
ere selected randomly from the unlabeled dataset and then combined
ith the positive targets with HW illegal dumping sites (214) to form

he training dataset. Then the canonical discriminant function was built
s a linear combination of the 7 input features based on the training
ataset. Finally, for other unlabeled samples, the discriminant score
an be calculated according to the canonical discriminant function, and
he sample was projected to the negative or positive class based on the
istance of the discriminant score to the centroids. Detailed descriptions
f the DA method and results could be found in the Supplementary
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Table 1 

Average values of evaluation metrics for all PU models with different base 

classifiers . 

Metric PU-KNN PU-RF PU-MLP PU-LOG PU-DT 

Accuracy 0.73 0.72 0.70 0.70 0.65 
Precision 0.74 0.75 0.76 0.78 0.68 
Recall 0.74 0.71 0.65 0.60 0.62 
F1 score 0.74 0.72 0.67 0.67 0.64 
AUC 0.73 0.72 0.70 0.70 0.65 
L&L 1.05 1.01 0.94 0.88 0.81 
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. Results and discussion 

.1. Model performance 

According to binary classification algorithms used in the PU model
raining, there are five types of PU bagging models, namely PU-DT, PU-
NN, PU-LOG, PU-MLP, and PU-RF, developed in this study. Each PU
agging model had 5,000 base classifiers and the average values of eval-
ation metrics for these 5,000 classifiers were shown in Table 1 . Based
n the 6 evaluation metrics, the PU-KNN and PU-RF outperformed than
ther three models and thus were selected for future discussion. The av-
rage accuracy of PU-KNN and PU-RF were 0.73 and 0.72, respectively.
he probability distribution curves of the evaluation metrics for 5000
lassifiers were shown in Fig. 2 . It was obvious that for PU-KNN and
U-RF, all 6 evaluation metrics varied within a certain narrow range.
or example, 99.64% and 99.08% of the 5,000 base classifiers had an
ccuracy > 0.6, illustrating the stability and robustness of the models.
ven though the model of PU-MLP also had good performance in the
verage value of evaluation metrics, the recall of 5,000 base classifiers
ig. 2. Probability distribution curves of 6 evaluation metrics, (a) Accuracy, (b) 
lassifiers in different PU bagging models. 

975
id not perform consistently well, showing a wide range between 0.3
nd 1.0. 

.2. Model interpretation 

Influences of input parameters on the risk of HW illegal dump-
ng were investigated using the SHAP method as shown in Figs. 3 , 4 .
ig. 3 displayed the probability distributions of MAS values of all 5000
ase classifiers for PU-KNN and PU-RF. An information-dense summary
f how each feature impacted the prediction results in a single sample
as displayed in Fig. 4 . 

As shown in Fig. 3 c, for PU-KNN, the importance of 7 features was
ound to follow the order of industrial enterprise density > land use type
 HW generation quantity > distance to the nearest roads > distance

o the nearest waterways > GDP > population density. The first three
ost important features of industrial enterprise density, land use type,

nd HW generation quantity accounted for 68.05% of the total WMAS
alues. 

For industrial enterprise density, the samples with low feature val-
es were mainly on the left side, while the points with high feature
alues were mainly on the right side ( Fig. 4 a), suggesting the positive
orrelation between industrial enterprise density and the predicted risk
f HW illegal dumping [44] . This interaction indicated that in areas
ith more developed industries, the probability of discovering illegal
umping sites might be higher, which was consistent with most previ-
us studies [3 , 6 , 11] . For example, Biotto et al. [11] revealed that the
resence of open areas in industrial zones was significantly associated
ith illegal waste dumping. Jordá-Borrell et al. [6] reported that there
ere 44.31% of the dumping sites located near industrial zones. This

s because many enterprises tend to dump HW illegally in nearby ar-
as to diminish transportation costs. In contrast, there were still some
tudies that reported that uncontrolled landfills were always located
AUC, (c) Precision, (d) Recall, (e) F1 score, and (f) L&L score, for all 5000 base 
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Fig. 3. The distribution of the mean absolute SHAP values for 5,000 base 

classifiers in (a) PU-KNN and (b) PU-RF and the importance ranking of 7 

predictor variables for (c) PU-KNN and (d) PU-RF. The mean absolute SHAP 
value (MAS) reflects the contribution of each feature to the prediction results in 
each base classifier. The feature importance was obtained using the WMAS of 
all 5,000 base classifiers. IED denotes industrial enterprise density; LUT denotes 
land use type; HWG denotes HW generation; DNW denotes the distance to the 
nearest waterways; DNR denotes the distance to the nearest roads; GDP denotes 
the total GDP per unit area; PD denotes population density. 
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Fig. 4. SHAP values for all input descriptors with 5000 data points in- 

cluded in the model of (a) PU-KNN and (b) PU-RF. There were 5000 data 
points obtained from 50 different base classifiers, which were randomly selected 
from 5000 base classifiers. IED denotes industrial enterprise density; HWG de- 
notes HW generation quantity; DNW denotes distance to the nearest waterways; 
DNR denotes distance to the nearest roads; GDP denotes the total GDP per unit 
area; PD denotes population density. 
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n remote areas far from the origination [19] . The difference among
hese studies may result from a trade-off between the transportation
ost and the risk of being punished. Land use type ranked second to
he industrial enterprise density in terms of feature importance for PU-
NN. To identify the land use type which was more likely to occur HW

llegal dumping, the density distribution curves of HW illegal dump-
ng risk for different land use types were depicted as shown in Fig.
8. The prediction results revealed that the probability of HW illegal
umping occurring in construction land was higher than the other five
ajor land use types. In addition, the urban land was most likely to

ccur HW illegal dumping among the 21 secondary land use types.
lso, the tight affinity between land use type and the illegal dumping
ite has been well reported in previous studies. Similar to this study,
uesada-Ruiz et al. [13] reported that urban cadastral surfaces, areas
lose to sports facilities, and the areas with the highest building densi-
ies tended to be predicted with greater illegal landfill potential occur-
ence. Conversely, some studies revealed waste illegal dumping is likely
o occur in rural areas. For example, Jordá-Borrell et al. [6] showed
hat up to 60.23% of the sites were located in rural areas, which were
escribed as ‘agrarian’, ‘uncultivated’, and ‘rustic’. These areas far from
he urban center, temporarily unoccupied, and not very isolated, may be
ttractive to HW illegal dumping. Although the most relevant land use
ype to illegal dumping varied in different studies due to study regional
ifferences, it is identical that land use factor has a significant influence
n the occurrence of HW illegal dumping [3 , 9 , 13] . As for HW genera-
ig. 5. Risk levels of HW illegal dumping across the studied region predicted by

llegal dumping sites (185 sites in total) used for model validation. All maps in this s

976
ion quantity, there was a positive correlation between its feature value
nd the predicted risk of HW illegal dumping, which means that HW
llegal dumping tended to occur in cities with higher HW generation. If
he waste generation of an area is higher than its capacity to dispose of
he waste, there may be a high possibility of local enterprises illegally
toring or dumping waste [14 , 15] . 

For PU-RF, the importance of 7 features followed the order of in-
ustrial enterprise density > distance to the nearest roads > population
ensity > GDP > land use type > distance to the nearest waterways
 HW generation quantity ( Fig. 3 d). The feature importance of PU-RF
odel was slightly different from PU-KNN. The influence of distance

n the nearest roads was more significant on PU-RF than PU-KNN. The
rst two most important features of industrial enterprise density and
istance to the nearest roads accounted for 66.89% of the total WMAS
alues. 

Concerning the feature of distance to the nearest roads, samples with
igh values for the variable distributed on the left side ( Fig. 4 b), showing
egative correlations with the predicted risk of HW illegal dumping.
his implies that zones with lower distances to roads had a higher risk
 (a) PU-KNN and (b) PU-RF. Black dots denote the location of newly reported 
tudy are generated based on the standard map GS(2019)1822. 
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Fig. 6. The distribution of newly reported HW illegal dumping sites at each 

risk level and cumulative percentage curves for the model of DA, PU-KNN, 

and PU-RF . 
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f occurring HW illegal dumping, which was consistent with previous
tudies [7 , 13 , 14] . For instance, a study conducted in Israel reported that
7% of all the detected illegal waste sites were found at a distance of
ess than 1 km from main roads [3] . Tasaki et al. [28] revealed that
ost uncontrolled dumping sites occurred in areas within a distance of
00 m from roads. Proximity to main roads is positively correlated with
he occurrence of illegal dumping since it affects the accessibility to a
otential dumping site [10 , 13] . 

.3. Model prediction and validation 

The spatial patterns of HW illegal dumping risk across the whole
tudy region predicted by PU-KNN and PU-RF models were shown in
ig. 5 . It was evident that the spatial patterns of HW illegal dumping
isk predicted by PU-KNN and PU-RF were similar to each other. There
ere large and continuous high-risk areas in the southern part and scat-

ered high-risk centers in the northern part of the study region. It was
onsistent with the spatial distribution of historic reported HW illegal
umping sites and the majority (74.9%) of these cases from 2013 to
018 occurred in the southern region. The high-risk areas in the south-
rn part could be associated with the distribution of industrial enter-
rise (Fig. S7) as implied by the feature importance analysis [3] . The
cattered high-risk centers in the northern part were almost located in
he urban, rural residential, and construction land, which was congruent
ith the finding that the illegal dumping sites were likely to occur in the
rban-rural transition areas [9] . It was interesting that some high-risk
ones identified by PU-RF overlapped with the main roads and transport
ubs due to the significant influence of proximity to roads on the illegal
umping risk for PU-RF. 

The model validation revealed that most of the newly reported sites
ere located in the high-risk region predicted by PU-KNN and PU-RF.
uantitative analysis ( Fig. 6 ) showed that the percentage of newly re-
orted dumping sites located in the region with the highest risk level
as 31.9% for PU-RF and 27% for PU-KNN. Moreover, the percentage
eclined with the decrease in the risk level. The cumulative percentage
urves indicated that for PU-RF, the regions with risk levels 8–10 cov-
red 68.1% of the newly reported sites, and the corresponding value
or PU-KNN was 62.2%. This implied that most of the illegal dumping
ccurred in the predicted high-risk regions which accounted for only
0% of the total area, verifying the accuracy of the model to predict the
hole spatial patterns of HW illegal dumping risk. 

In addition, the results predicted by PU-KNN and PU-RF were more
ccurate than the traditional multivariate statistical method, the DA
odel. As shown in Fig. 6 , compared with two PU models, fewer newly

eported dumping sites (53%) were located in the high-risk regions (with
 risk level of 8–10) predicted by the DA method, indicating the infe-
977
iority of the DA model than the PU learning methods. Therefore, the
U model provides a reliable method to screen the high-risk and focal
reas for supervision, which will greatly improve the cost-effectiveness
nd efficiency of HW illegal dumping supervision [1] . 

. Conclusion 

With the rapid economic development all over the world, there is an
nprecedented increase in HW generation during industrialization and
rbanization [9 , 14] . At the same time, the environmental burden from
llegal dumping of HW driven by enterprises’ motivation to avoid treat-
ent costs is set to intensify, particularly in developing regions with

ax regulations. In this context, curbing illegal dumping and mitigating
he serious impact of open-dumping waste on the environment are es-
ential tasks for HW management [15] . One dominant task in dealing
ith HW illegal dumping is to find out and remediate the sites in time,

hereby avoiding the long-term adverse impacts of the dumped waste,
hile the invisibility of waste illegal dumping sites makes it challeng-

ng to accurately detect these sites [3] . Utilizing the limited supervision
nowledge about the distribution of HW illegal dumping sites to predict
he potential dumping sites is a key solution to address the challenge. 

In this study, an ensemble ML framework based on PU learning was
roposed to calculate the possibility of the location being the HW illegal
umping sites, thereby supporting screening the regions with a high like-
ihood of HW illegal dumping occurrences. Compared with traditional
ultivariate statistical analysis, the PU learning model could improve

he model accuracy by iteratively mining the features of the HW illegal
umping sites. The validation of the PU-RF model showed that 68.1%
f the newly reported sites were in the regions with the top 30% high-
st predicted risk. That is to say, the enforcement department can focus
n only 30% of the regulation region, but find out about 70% of ille-
al dumping sites. It implied that enforcement based on the risk maps
redicted by this novel model could increase the efficiency by more
han one-fold than the random supervision from the spatial perspective.
eanwhile, the PU bagging model interpretation revealed that HW il-

egal dumping is likely to occur in zones with high industrial enterprise
ensity and proximity to roads. 

Some limitations remain and deserve further study. The first limita-
ion is that there existed some bias in prediction results. For example,
ome reported HW illegal dumping sites occurred in the predicted low-
isk areas. The limitation in prediction accuracy might be mainly at-
ributable to lacking consistent records of HW illegal dumping for mod-
ling development. The limited quantity of illegal dumping cases caused
he data imbalance with a large size (101,774) of unlabeled data but a
mall size (214) of positive data, which may affect the performance of
he model [29] . Also, due to the cases’ quantity limitation, illegal land-
ll, open-air stacking, and illegal transfer are taken into consideration
s HW illegal dumping cases in a wide sense. With the improvement
n data size and normativity of HW illegal dumping records, the model
erformance could be further improved. Also, considering the data ac-
essibility and reliability, only 7 predictor variables, representing the
ocioeconomic characteristics, geographic features, and HW generation
ntensity, were taken into consideration for model development. When
ata is available, introducing more relevant input features, such as prox-
mity to a video surveillance network, might bring more information for
odel development. Another limitation is some simplified assumptions
e have made, such as the socioeconomic characteristics and geographic

eatures remaining stable over a short period of time, so that the pre-
ictor data collected during 2015− 2016 was used to predict the HW il-
egal dumping risk during 2013− 2018, a five-year period with 2015 as
he median. However, despite these limitations, this PU learning model
as superior performance and higher accuracy than traditional statis-
ical methods. This scheme proved practical in resolving the challenge
f leveraging limited authentic observations to predict the behaviors of
ost objects during environmental enforcement. 
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