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RNA-seq analysis of alternative pre-mRNA splicing has facilitated an unprecedented
understanding of transcriptome complexity in health and disease. However, despite
the availability of countless bioinformatic pipelines for transcriptome-wide splicing
analysis, the use of these tools is often limited to expert bioinformaticians. The need
for high computational power, combined with computational outputs that are complicated
to visualize and interpret present obstacles to the broader research community. Here we
introduce DJExpress, an R package for differential expression analysis of transcriptomic
features and expression-trait associations. To determine gene-level differential junction
usage as well as associations between junction expression and molecular/clinical features,
DJExpress uses raw splice junction counts as input data. Importantly, DJExpress runs on
an average laptop computer and provides a set of interactive and intuitive visualization
formats. In contrast to most existing pipelines, DJExpress can handle both annotated and
de novo identified splice junctions, thereby allowing the quantification of novel splice
events. Moreover, DJExpress offers a web-compatible graphical interface allowing the
analysis of user-provided data as well as the visualization of splice events within our
custom database of differential junction expression in cancer (DJEC DB). DJEC DB
includes not only healthy and tumor tissue junction expression data from TCGA and
GTEx repositories but also cancer cell line data from the DepMap project. The integration of
DepMap functional genomics data sets allows association of junction expression with
molecular features such as gene dependencies and drug response profiles. This facilitates
identification of cancer cell models for specific splicing alterations that can then be used for
functional characterization in the lab. Thus, DJExpress represents a powerful and user-
friendly tool for exploration of alternative splicing alterations in RNA-seq data, including
multi-level data integration of alternative splicing signatures in healthy tissue, tumors and
cancer cell lines.
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INTRODUCTION

Splicing of pre-mRNA is a crucial process in eukaryotic gene expression regulation. In addition to
canonical splicing, which leads to the inclusion of constitutive exons into the mature mRNA, the
transcriptome is subjected to alternative splicing. Alternative splicing can give rise to multiple
protein-coding isoforms from a single pre-mRNA and thus represents a major determinant for
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proteome diversity. Approximately 92%–94% of human genes
generate alternatively spliced transcripts, often with tissue-
specific regulation (Wang et al., 2008; Barbosa-Morais et al.,
2012). Alternative splicing is involved in a variety of cellular
processes, such as cell proliferation, differentiation, migration
and survival (Paronetto et al., 2016; Gallego-Paez et al., 2017).
Emerging data indicate that alternative splicing plays a critical
role in the pathogenesis of many diseases, including several
molecular subtypes of cancer (Oltean and Bates, 2014; Scotti
and Swanson, 2016; Jiang and Chen, 2021). Interrogating such
splicing abnormalities can facilitate identification of disease
drivers, drug resistance mechanisms, and molecules capable of
regulating pathological splicing events. Thus, exploration of
alternative and aberrant splicing phenotypes promises to shed
light on novel aspects of health and disease.

The recent release of transcriptome-wide RNA sequencing
(RNA-seq) data repositories such as The Cancer Genome Atlas
(TCGA) (Tomczak et al., 2015) and the Genotype-Tissue
Expression (GTEx) project (Lonsdale et al., 2013) have lifted
alternative splicing analysis opportunities to an unprecedented
level. However, a unified and accessible analysis strategy for this
data has largely been missing.

The gradual development of RNA-seq technologies and cost-
effective alternative splicing studies at the transcriptome level has
allowed the parallel evolution of bioinformatic tools for splicing
quantification and visualization. Most of these tools rely on two
main computational approaches: 1) quantification of the Percent
Spliced-In (PSI) metric, which uses the ratio between exon-exon
junction spanning sequencing reads that provide evidence for the
inclusion or exclusion of an alternatively spliced region [e.g., rMATS
(Shen et al., 2014), MISO (Katz et al., 2010), SUPPA (Alamancos
et al., 2015), SplAdder (Kahles et al., 2016), psichomics (Saravia-
Agostinho and Barbosa-Morais, 2019), AltAnalyze (Emig et al.,
2010), SpliceSeq (Ryan et al., 2012), VAST-TOOLS (Irimia et al.,
2014), MAJIQ (Vaquero-Garcia et al., 2016), LeafCutter (Li et al.,
2018) and Whippet (Sterne-Weiler et al., 2018)], and 2)

quantification and de-convolution of the entire set of reads
aligned to the gene to estimate transcript isoform abundance (e.g.,
Cufflinks (Trapnell et al., 2010), RSEM (Li and Dewey, 2011), Sailfish
(Patro et al., 2014), Salmon (Patro et al., 2017) and Kallisto (Bray
et al., 2016)) (see Table 1 for a comparison of these tools). Although
these bioinformatic tools have propelled transcriptome-wide
alternative splicing analysis forward, they suffer from significant
limitations. These include the need for high computational
resources and bash-based operation, restrictions of input file
formats, incomplete transcriptome annotation and consequently
inaccurate transcript/PSI quantification. Furthermore, these tools
suffer from complex static graphical outputs that are complicated
to visualize and interpret or lack the option for association of splicing
phenotypes to clinical or molecular data. These caveats are obstacles
for a straight-forward interpretation of the biological and
physiological relevance of alternative splicing in disease. Thus,
despite the large variety of available tools, there is still a high
demand for easy-to-use alternative splicing analysis strategies that
can incorporate comprehensive data visualization and integration
with external sample traits.

Here we introduce a novel differential junction expression analysis
pipeline, DJExpress, which is an R package for analysis of
transcriptomic features and expression-trait associations. DJExpress
runs on an average laptop computer (Supplementary Figure S1) and
provides a set of interactive and intuitive visualization formats.
DJExpress uses raw splice junction counts—derived from STAR
aligner (Dobin et al., 2013) or other junction quantification
algorithms—as input data to determine gene-level differential
junction usage. The statistical approaches implemented by
DJExpress include empirical Bayesian procedures to assess
differential junction expression between experimental conditions
and junction-level t-statistics tests to determine differences
between each junction and all other junctions within the same gene.

In contrast to the majority of existing pipelines, DJExpress can
handle both annotated and de novo identified splice junctions,
thereby allowing the characterization of novel splice events.

TABLE 1 | Feature comparison between DJExpress and other existing splicing analysis tools.

Tool GUI User-selected alignment
method

Non-annotated junctions
supported

Splicing pattern
visualization

Downstream trait
association

DJExpress Yes Yes Yes Yes Yes
MAJIQ Yes Yes Yes Yes No
Psichomics Yes Yes No Yes Yes
AltAnalize Yes Yes No Yes Yes
LeafCutter Yes No Yes Yes Yes
SplAdder No Yes Yes Yes No
rMATS No Yes Yes No No
SpliceSeq Yes No No Yes No
Whippet No No Yes Yes No
JunctionSeq No No Yes Yes No
MISO No No No Yes No
SUPPA No Yes No No No
Cufflinks No No Yes No No
Salmon No Yes No No No
RSEM No Yes No No No
Sailfish No No No No No
VAST-TOOLS No No No No No
Kallisto No No No No No
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Moreover, through gene-level differential junction usage calculation,
DJExpress identifies associations between junction expression and
molecular/clinical features using large matrix operations. An
additional more advanced feature of DJExpress involves weighted
junction co-expression network analysis (JCNA). JCNA-derived
junction expression modules can be correlated with phenotypes of
interest, thereby allowing differential splicing analysis on a systemic
scale. For downstreamprocessing, JCNAoutputs can be exported in a
format compatible with network visualization tools such as VisANT
and Cytoscape (Shannon et al., 2003; Hu et al., 2004).

In addition to these locally accessible features, DJExpress offers a
web-compatible graphical interface for the analysis of user-provided
data as well as the visualization of DJEC DB, a custom database of
cancer-specific splicing profiles and their association to external traits
from tumor samples and cancer cell lines. DJECDB includes not only
TCGA and GTEx data, but also cancer cell line data from the Cancer
Dependency Map (DepMap1) project. The integration of DepMap
data allows association of junction expression with functional

genomics features such as gene dependencies and drug response
profiles. This facilitates identification of cancer cell models for specific
splicing alterations that can then be used for functional
characterization in the lab.

Taken together,DJExpress represents a novel and versatile tool
to analyze and explore alternative splicing phenotypes in health
and disease.

METHODS

Differential Junction Expression Module
The data analysis workflow in the DJE module is depicted in
Figure 1. For differential junction expression (DJE) and junction
co-expression network analysis (JCNA), DJExpress uses quantified
raw reads aligned to exon-exon junction loci and the transcriptome
annotation as the primary input. Mapped and quantified junction
reads are typically generated from FASTQ or BAM files using
common RNA-seq alignment/quantification tools [e.g., STAR
(Dobin et al., 2013), TopHat (Trapnell et al., 2009), MapSplice
(Wang et al., 2010), Rsubread (Liao et al., 2019)] (Figure 2A).
Following the statistical principles in limma Bioconductor package
(Law et al., 2014; Ritchie et al., 2015), DJExpress first tests for
differential expression of genomic features (here splice junction
regions) using an initial input matrix of read count values as
rows and sample ids as columns. Count data is then transformed
to log2-counts per million (logCPM), and observation-level weights
based on mean-variance relationship are computed (using the voom
function from limma). Users can decide at this point whether to keep
the default expression threshold for filtering junctions prior to
hypothesis testing (10 minimum of read count mean per
junction) or to adjust the threshold based on the mean-variance
trend. A linear model is then fit per junction using a provided
experimental design, and empirical Bayes moderated t-statistics are
implemented to assess the significance level of the observed
expression changes.

The linear model framework of limma is also used in parallel to
calculate differential junction usage, where significant differences in
log-fold changes in the fit model between junctions from the same
gene are tested (using the diffSplice function from limma). DJExpress
thereby identifies alternatively spliced regions in transcripts based on
two main features of splice junction expression: 1) Quantitative
changes in the abundance of individual junctions between
experimental groups, and 2) Differences in their expression levels
compared to the average expression of other junctions in the gene.

Following these criteria, splice junctions are classified based on
their absolute log-fold change (e.g., experimental condition A vs
B) and their relative log-fold change (target junction vs all other
junctions in the gene) in one of the following expression groups
(Figure 2B):

Group 0: Junctions without differential expression or
differential usage.
Group 1: Junctions with equal levels of differential expression
and differential usage, reflecting changes in splicing patterns
between experimental conditions (in this case, both absolute
and relative log-fold change values are similar, if not the same).

FIGURE 1 | General workflow of the DJE analysis module in DJExpress.
Junction quantification files (e.g., SJ.out.tab files from STAR aligner) and
transcriptome annotation files (gft file format) are provided by the user as input.
Junctions are then annotated with their corresponding genes and filtered
based on user-defined expression cutoffs. Differential junction expression is
then calculated between experimental conditions. Significant differences in
junction usage can be interactively visualized using the gene-wise PlotSplice
graph. When external trait data is provided, the DJE module can identify
significant junction-trait associations that can be further visualized using
SpliceRadar plots.

1https://depmap.org/.
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FIGURE 2 | Calculation of differential junction expression using the DJE module. (A) After alignment and quantification of RNA-seq reads supporting exon–exon
junctions, differential junction expression is analyzed and depicted using the gene-wise splice plot visualization method. The schematic shows 8 junctions (J1-J8) in
hypothetical gene, where each junction is plotted along the x-axis and ordered by genomic coordinate position. Relative log-fold change values (logFC), which indicate
the difference between the expression of the target junction vs the average junction expression in the gene is shown in the y-axis. Junctionswith logFC values above
a user-defined threshold (absolute logFC of 1.0 in the example) are considered as differentially used and colored blue or red in case of downregulation and upregulation,
respectively. (B) DJExpress determines alternatively spliced transcript regions based on both, alterations in their expression levels compared to the average expression
of other junctions the same gene (differential usage, based on relative logFC) and alterations in junction abundance between experimental conditions (differential
expression, based on absolute logFC). Junctions are then classified into four main groups. Group 0 corresponds to junctions without differential expression or differential
usage and is visually represented as grey points in the scatter plot. Group 1 (red box and red/blue points in the scatter plot) comprises junctions with similar values of
absolute and relative logFCs which reflects changes in splicing patterns between experimental conditions without confounding alterations in the total expression of the
gene. Group 2 (green box and green points in the scatter plot) represents junctions with differential expression but no differential usage or vice-versa, which indicates the
presence of altered total gene expression levels between conditions that explain observed differences. Group 3 (orange box and orange points in the scatter plot)
designates junctions with significant but dissimilar levels of relative and absolute logFCs, indicating the presence of both, total gene expression and local splicing
changes. Relative vs absolute logFC plots are produced within the output of the DJE module, where junctions are classified into specific groups according to the
significance of their logFC values and their position inside or outside of the distribution by ≥2 standard deviations. Arrows indicate example target junctions. (C) When
external sample trait data (e.g., clinical or molecular data) are provided by the user, DJExpress can identify significant junction-trait associations within a target
experimental condition using either correlation analysis, ANOVA test or linear regression models. If correlation is selected by the user (as in the depicted example), the

(Continued )
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Group 2: Junctions with differential expression but no
differential usage or vice versa, implying the occurrence of
generalized changes in expression across the gene, rather than
the presence of a differentially spliced region (in this case,
either the absolute or relative log-fold change value is not
significant).
Group 3: Junctions with divergent levels of differential
expression and differential usage, indicating concomitant
changes in splicing and total gene expression (in this case,
the absolute and relative log-fold change values can
substantially vary from each other).

One of the main features of DJE module’s approach is the
incorporation of an interactive gene-wise junction representation
(Figure 2A). This approach facilitates straight-forward visual
inspection of differential splicing across the gene and exploration
of supplementary information about each junction’s expression. This
includes the above-mentioned classification based on absolute and
relative log-fold change patterns, basic statistics on expression levels
(e.g., mean and median expression in each experimental condition,
number of samples expressing the junction, etc.) as well as the
identification of non-annotated and condition-specific junctions.
The latter are also called “neojunctions” in the DJExpress pipeline,
referring to junctions detected in the tested condition but are not
found in the control condition.

Junction-Trait Association Module
Further exploration of the potential physiological relevance of
alternative splicing is possible through the association of junction
expression to external sample traits (e.g., clinical or molecular data).
Significant junction-trait linkages are determined by large matrix
operations including correlation analysis, ANOVA test or linear
regression models [using cor and bicor from WGCNA (Langfelder
and Horvath, 2008) and Matrix_eQTL_engine from MatrixEQTL
(Shabalin, 2012)]. The top significant association can be visualized
though heatmap plots or alternatively, using the SpliceRadar plot
format (Figure 2C), where the coefficient of top-ranked correlations
is used to map each junction-trait association within a radar chart.
This graphical concept allows the users to simultaneously visualize
relevant associations between the expression of selected junctions
(e.g., the top most differentially expressed junctions or a subset of
junctions within a target gene) and external traits, as well as to
elucidate expression-trait patterns shared among junctions of interest
with potential biological relevance.

Junction Co-Expression Network Analysis
Module
A widely used approach for describing correlation networks in
systems biology is the weighted gene co-expression network
analysis (WGCNA, Langfelder and Horvath, 2008). WGCNA

is a screening method based on pairwise correlations between
features in gene expression data. This approach allows the
identification of clusters (or modules) of highly correlated
genes, intramodular hub genes and representative module
eigengenes (MEs). These can be used in the estimation of
module membership values for each gene as well as in
association analyses between modules and to external
sample traits. This technique has been frequently
implemented for the assessment of gene-network signatures
and for the identification of functional pathways and
candidate molecular biomarkers, integrating gene
expression and clinical/molecular data from physiological
and disease conditions (Oldham et al., 2008; Presson et al.,
2008; Ma et al., 2017; Vieira et al., 2019).

The weighted junction co-expression network analysis module
(JCNA) in DJExpress provides an implementation of WGCNA
algorithms (version 1.70.3, Langfelder and Horvath, 2008) in the
context of splice junction expression when sufficient sample size
is provided (≥15 samples within single experimental conditions
as suggested in the WGCNA guidelines) (Figure 3A). JCNA
initiates with a data pre-processing step where outlier samples
(clustered using the average linkage method) and lowly expressed
junctions are removed to ensure high confidence network
construction. Correlation matrices (e.g., using Pearson,
Spearman or the default biweight midcorrelation) (Wilcox,
2012) are then built for all pair-wise junctions. The full
network is subsequently specified by a weighted adjacency
matrix calculated with an appropriate soft threshold power
(Zhang and Horvath, 2005). Summary plots of a network
topology analysis are produced by JCNA (following WGCNA
guidelines) to aid users in the selection of the soft-thresholding
power around which scale-free topology in the junction network
is achieved.

Additional parameters such as minimummodule size, module
detection sensitivity or cut height of the hierarchical clustering
dendrogram for module definition can be introduced for junction
module identification (Figure 3B). Calculation of MEs is also
possible, where expression patterns of all junctions in a module
are summarized into a single expression profile. This measure is
then used in the correlation analysis with sample traits. Notably,
ME calculation reduces the computational burden of multiple
testing, which otherwise can be exceedingly high since junction
quantification datasets usually comprise millions of expression
features.

Users can either keep the output of a 1-pass JCNA or can
continue into a second round of network construction. During
this 2-pass JCNA, the gene expression-specific effect within
junction modules is subtracted. This is particularly relevant in
the context of junction-trait associations, since a considerable
number of co-expressing junctions are expected to cluster into
single modules as a result of intrinsic associations at the gene

FIGURE 2 | results are used to construct heatmap or SpliceRadar plots with target splice junctions (e.g., inclusion junctions (red) and exclusion junction (blue) in an exon
skipping event). In the case of SpliceRadars, positive correlation coefficients are located within the outer region (green) and negative correlation coefficients are found
within the inner region (grey) of the radar chart, allowing the visual inspection of multivariate trait associations to user-selected alternative splicing events.
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expression level. Here, 2-pass JCNA improves the identification
of true co-splicing signatures, since junctions from the same gene
or from highly correlated genes tend to cluster without any
specific association to splicing.

For 2-pass JCNA, gene expression-based networks
including correlations with a user-selected sample trait are
calculated (Figure 3C). The absolute value of junction
significance, which represents the correlation coefficient
between a given junction and the selected trait is plotted as
a function of the corresponding gene significance. Junctions
outside of the distribution by ≥ 2 standard deviations
(showing no correlation between junction and gene
significance for trait) are kept for network re-construction.
Thus, 2-pass JCNA strategy allows the user to further explore
associations between molecular/clinical traits and modules of

co-expressed splicing events that can be defined once gene
expression-related junction co-expression is identified and
removed from the network.

Furthermore, as in the case of WGCNA pipeline, the
resulting junction modules from JCNA can be also
exported to network graphical tools such as Cytoscape or
VisANT for further visual exploration and customization
(Figure 3D).

Run Time and Memory Benchmarks
For run time and memory consumption benchmarks of
function within the DJE module (DJEimport, DJEannotate,
DJEprepare and DJEanalyze), we used STAR-derived junction
quantification files from the TCGA COADREAD tumor
sample cohort. DJExpress pipeline was applied 10 times on

FIGURE 3 |General workflow of JCNAmodule inDJExpress. (A) For the DJExpress JCNAmodule, the user needs to provide junction read counts (or the output of
the DJEanalize function) and a transcriptome annotation file. After removing outlier samples and lowly expressed junctions, a first round of co-expression analysis is
performed where junction modules and module/junction vs trait associations are calculated. The user can continue into a second round of network construction, where
co-expression analysis and trait association is produced using gene expression data. This information is used to identify and remove junction-trait correlations from
the network that reflect gene expression-based associations. The remaining junction set is used to re-construct junction co-expression modules and module-trait
correlations. (B) Dendrogram schematic of clustered junctions with assigned modules based on a dissimilarity measure (1-TOM) as described for WGCNA (Langfelder
and Horvath, 2008). (C) Heatmap schematic of correlations between junction module eigengenes (MEs) and different sample traits. (D) Schematic representation of
interaction networks of junctions within a co-expression module that can be produced using Cytoscape or VisANT visualization tools. Junctions belonging to the same
gene are indicated by the same color.
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two cores of a macOS X 11.6.1 system with 2.3 GHz Quad-
Core Intel Core i5 processor and 16 GB of memory, RStudio
Desktop 1.4. 1106 and R 4.0.5. Each run was performed on
datasets with increasing number of samples (e.g., 10, 20, 40,
60, 80, 100, 200, 400,600, 800, 1000) and 100,000 randomly
retrieved splice junctions. For the differential junction
expression analysis using DJEanalyze, samples were
randomly divided into two groups using Bernoulli

distributed values with a 50% probability of success
(Supplementary Figure S1).

Data Collection for Differential Junction
Expression in Cancer Database
Using the pipelines described for the DJE and JCNAmodules, we
generated DJEC DB, a custom database of cancer-specific splicing

FIGURE 4 | Schematic representation of DJEC DB data generation. DJEC DB takes STAR-based junction quantification across cancer tissue types and normal
tissue extracted from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database respectively. Significant differences in junction usage
between tumor and normal tissues were produced following DJE module pipeline. Cancer type-specific DJE with supplementary information (e.g., statistics summary,
absolute vs relative logFC group, etc.) as well as gene-wise splice graphs and domain-annotated gene models with the position of user-selected junctions can be
also visualized. Differentially expressed junctions in COADREAD were used as example data for junction co-expression network analysis (JCNA). Associations between
DJE and TCGA-associated trait data including microsatellite instability (MSI), mutations (MUT), genomic alterations (GA) and pathway alterations (PA) can be explored
within the “JT association” section. Junction quantification data from cell lines within DepMap repository was also introduced in the “CCLE junctions” section, allowing the
user to identify cancer cell models for specific splicing alterations and splicing-trait associations that can be used for functional characterization of splicing-trait
associations in the lab (TCGA tumor type abbreviation codes are as follows: ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive
carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, diffuse
large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, chromophobe renal cell
carcinoma; KIRC, clear cell renal clear cell carcinoma; KIRP, papillary renal cell carcinoma; LAML, acute myeloid leukemia; LGG, lower-grade glioma; LIHC,
hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous adenocarcinoma; PAAD,
pancreatic adenocarcinoma; PCPG, phaeochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectal adenocarcinoma; SARC, adult soft
tissue sarcoma; SKCM, cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumor; THCA, thyroid carcinoma; THYM, thymoma; UCEC,
uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma).
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profiles and their association to external traits from tumor
samples and cancer cell lines (Figure 4). DJEC DB can be
accessed through a graphical interface based on the shiny
package (version 1.6.0) and includes healthy and tumor tissue
data for 9,842 human samples across 32 different tumor types
from TCGA, 3,235 normal post-mortem tissue samples from
GTEx and 1,019 cancer cell lines from the DepMap Project.

Alignment of GTEx and TCGA RNA-seq data sets to the
GRCh37 reference genome and subsequent splice junction
quantification, as well as removal of low-quality tissue samples
was previously done (Kahles et al., 2018) using the STAR aligner
tool with the following arguments:

STAR --genomeDir GENOME --readFilesIn READ1 READ2
--runThreadN 4 --outFilterMultimapScoreRange 1 --outFilter
MultimapNmax 20 --outFilterMismatchNmax 10 --alignIntron
Max 500000 --alignMatesGapMax 1000000 --sjdbScore 2 --align
SJDBoverhangMin 1 --genomeLoad NoSharedMemory --limit
BAMsortRAM 70000000000 --readFilesCommand cat --outFilter
MatchNminOverLread 0.33 --outFilterScoreMinOverLread 0.33
--sjdbOverhang 100 --outSAMstrandField intronMotif --out
SAMattributes NH HI NM MD AS XS --sjdbGTFfile GEN
CODE_ANNOTATION --limitSjdbInsertNsj 2000000 --out
SAMunmapped None --outSAMtype BAM SortedBy
Coordinate --outSAMheaderHD @HD VN:1.4 --outSAMattrRG
line ID::<ID> --twopassMode Basic --outSAMmultNmax 1

We used the raw junction counts from this study as the basis
for DJEC DB. For this, differential junction expression analysis
was implemented comparing junction abundance between each
TCGA cancer type and all GTEx normal tissues. Cancer-specific
changes in junction expression can be accessed through the DJE
Module section in the DJECDBweb application (Supplementary
Figure S2). Here, users can select target junctions to visually
explore interactive splice plots and differentially expressed
junctions in the context of protein domain and post-
translational modifications annotated within the Prot2HG
database of protein domains mapped to the human genome
(Stanek et al., 2020).

In addition to RNA-seq data, the TCGA repository contains
an extensive molecular and clinical annotation for tumor
samples, including additional omics data (genotyping, DNA
methylation, etc.) as well as multiple tumor classifications and
clinical records of the patient. This data collection allows
comprehensive correlation analyses between junction
expression and tumor/patient traits. The junction-trait (JT)
module section of DJEC DB (Supplementary Figure S3)
contains significant linkages found between differentially
expressed junctions and microsatellite instability (MSI) or
altered oncogenic signaling pathways based on mutations,
copy-number changes (CNV), mRNA expression, gene fusions
and DNAmethylation (Sanchez-Vega et al., 2018). This approach
is an adaptation of the Matrix eQTL method (Shabalin, 2012),
which uses large matrix operations of linear and ANOVAmodels
containing covariates to account for external factors such as
tumor grade or age of the patient.

Moreover, an exemplary co-expression network analysis can
be also found within the JCNA section, where users can
interactively explore junction expression modules as well as

the results of junction-traits associations in TCGA colorectal
(COADREAD) tumors (Supplementary Figure S4). This
implementation of WGCNA algorithms included the removal
of junctions with excessive missing values and sample
outliers after sample hierarchical clustering using the
goodSamplesGenes function (Langfelder and Horvath, 2008).
The subsequent soft-thresholding procedure ensures a scale-
free network, which emphasizes strong correlations between
junctions and penalizes weak correlations. The scale-free
network was constructed using the blockwiseModules function
which converts the correlation matrix into a strengthened
adjacency matrix that summarizes the association between all
junctions.

Gene-trait correlation matrices were also calculated and used
to identify and remove junctions whose correlation to external
traits was gene expression-dependent. Junction co-expression
modules were identified by dividing the junction expression
dendrogram into branches using a dynamic tree cutting
algorithm with medium sensitivity for cluster splitting
(deepSplit = 2). Different colors were then assigned to the
modules for subsequent visualization. MEs significance values
and correlations between MEs and clinical traits were also
calculated. The same was done for individual junction-to-trait
correlations.

To implement cancer cell line junction expression data into
DJEC DB, we downloaded fastq files from CCLE (available
through the Sequence Read Archive (SRA) under accession
number PRJNA523380) and carried out alignment and
junction quantification with the same strategy that was
previously used for TCGA and GTEx data (Kahles et al.,
2018). This data was then integrated with DepMap functional
genomics data in the CCLE DJE and CCLE SpliceRadar sections
of DJEC DB (Supplementary Figure S5). CCLE DJE comprises
the results of DJE analysis in cancer cell lines within the same
tissue of origin versus fibroblasts used as “healthy” control cell
lines. Significant correlations between differentially expressed
junctions and gene expression, CRISPR gene effect or drug
response values (DepMap 21Q3 Public, 2021) are found
within CCLE SpliceRadar. Here, users can plot SpliceRadar
charts with selected junction-trait associations. These database
components aim to facilitate the identification of cancer cell
models for specific splicing alterations and junction-trait
associations that can be further studied for functional
characterization in the lab.

RESULTS

The DJExpress toolbox incorporates both an R package
(containing DJE and JCNA modules) and a user-friendly
Shiny-based web application for a visual exploration of DJEC
DB as well as custom DJE analysis for user-provided junction
quantification data. Input files can either be STAR aligner-derived
“SJ.out.tab” files (containing splice junction counts per sample in
tab-delimited format) or any other junction quantification files as
long as they contain junction IDs as first columns, following the
format chr:start:end:strand (e.g., chr1:123:456:1, where positive
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or negative strand are coded as 1 and 2, respectively). In the
following paragraphs, we describe the use of DJExpress and DJEC
DB in detail and use case studies to demonstrate how DJExpress
and DJEC DB can be utilized to identify and computationally
explore alternative splice events across cell lines and patient
samples.

Differential Junction Expression and
Junction-Trait Association Analyses in
Cancer Cell Lines
To demonstrate the workflow of DJExpress, we analyzed cancer
cell lines from the DepMap repository, comprising 13 tissue types
that contain ≥30 individual cell lines per tissue (brain, breast,
colon/colorectal, gastric, head and neck, kidney, leukemia, lung,
lymphoma, myeloma, ovarian, pancreatic and skin cancer).
Table 2 summarizes the results of DJE analysis module per
tissue, using junction expression in fibroblasts as normal
control condition. Users can explore this data in the DJE-
CCLE section of DJEC DB.

DJExpress identified on average of 1,918 differentially used
junctions (FDR < 0.05 and |logFC| > 1), including previously
described alternative splicing events in cancer, such as the
downregulation of ACTN1 exon 19b (Gardina et al., 2006;
Thorsen et al., 2008; Bielli et al., 2018), VCL exon 19 (Gardina
et al., 2006; Thorsen et al., 2008), the upregulation ofNUMB exon
12 (Misquitta-Ali et al., 2011; Bechara et al., 2013; Zhang et al.,
2014; Zong et al., 2014), MAP3K7 exon 12 (Munkley et al., 2019;
Qiu et al., 2020; Oh et al., 2021), CTNND1 exon 20 (Yanagisawa
et al., 2008; Sebestyen et al., 2015; Wang et al., 2020), and EXOC1
exon 11 (Ray et al., 2020; Zhang et al., 2020), as well as of exons
contained within the variant domain in CD44 (Shirure et al.,
2015; Chen et al., 2018; Wang et al., 2018; Chen et al., 2020)
(Figure 5; Supplementary Figure S6). Moreover, the gene-wise
visualization of differential junction expression allowed the
identification of complex alternative splicing patterns and
isoform switches in cancer, such as the case of the co-
regulated inclusion of exon 11 and exclusion of exon 40 in
MYO18A in lymphoma and myeloma, the complex local event

involving exons 15–18 in MARK3 in leukemia, lymphoma,
myeloma, breast, colon, gastric, lung and pancreatic cancer, or
the isoform switches in RGS3 in breast, colon, gastric, lung,
ovarian and pancreatic cancers, and INPP5B in pancreatic
cancer cell lines (Figure 6; Supplementary Figures S7, S8).
These data demonstrate that DJExpress can not only reliably
identify previously described alternative splicing events but can
also facilitate the discovery and visualization of complex splice
events within annotated splice regions.

Notably, an average of 3,563 non-annotated splice junctions
per tissue and 292 neojunctions (defined as junctions not detected
in control fibroblast cell lines) were also discovered by the DJE
analysis module (Table 2). Here, the visualization of non-
annotated junctions within the gene-wise DJE plots allowed us
to identify the presence of previously unknown splicing events,
including exon skipping, alternative 3′ splice sites, alternative 5′
splice sites and alternative first and last exons (Supplementary
Figure S9). Moreover, DJE plots also revealed the presence of
novel splice junctions with genomic coordinates that suggest the
presence of exons so far not described in the human
transcriptome annotation (Figure 7; Supplementary Figure
S10). These newly identified splicing events are potentially
linked to cancer physiology and their functional
characterization could be subject of future studies.
Nevertheless, to further illustrate the capabilities of DJExpress
and DJEC DB, we next focused on a well-described alternative
splicing switch in NUMB mRNA.

Case Study 1: SpliceRadar-Based
Identification of NUMB Alternative Splicing
Regulators
NUMB encodes for a key determinant of cell fate that regulates
the trafficking of surface proteins such as Notch, integrins and
E-cadherin and can undergo alternative splicing (Nishimura and
Kaibuchi, 2007; McGill et al., 2009; Teckchandani et al., 2009;
Wang et al., 2009). Inclusion of NUMB exon 12 is frequently
observed in different types of cancer, leading to a 48 amino acid
extension of the proline-rich region (PRR) of the NUMB protein

TABLE 2 | Summary of DJE module junction statistics in CCLE.

CCLE tissue Quantified
junctions

DE
junctions

DE junctions in
Group

1

DE junctions in
Group

2

DE junctions in
Group

3

Novel
junctions

Neojunctions

Brain 120,611 846 74 73 14 3,456 110
Breast 123,349 2,153 499 431 247 3,426 255
Colon 122,639 3,363 663 722 409 3,400 336
Gastric 126,487 2,335 540 486 293 3,806 320
Head-Neck 119,194 2,398 440 391 144 3,573 316
Kidney 117,989 1,231 185 143 119 3,574 164
Leukemia 123,295 3,668 631 1,060 511 3,563 514
Lung 130,297 2,327 386 549 154 3,403 368
Lymphoma 122,911 3,795 689 1,012 524 3,772 354
Myeloma 119,528 3,307 727 678 420 3,734 398
Ovarian 122,251 1,603 295 283 238 3,512 241
Pancreatic 121,817 2,528 448 418 308 3,614 220
Skin 120,200 2,036 186 357 247 3,498 197
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(Chen et al., 2009; Zhang et al., 2014; Lu et al., 2015; Rajendran
et al., 2016). This longer NUMB isoform (Numb-L) was found to
promote proliferation, whereas the shorter isoform (Numb-S)

promotes differentiation of cancer cells (Verdi et al., 1999). In
lung cancer, the splicing factor QKI represses the inclusion of
NUMB alternative exon through competing with a core splicing

FIGURE 5 | Expression profile and gene context of known alternative splicing events in cancers detected by DJExpress using cancer cell line data. Examples of
known cancer-specific splice events are shown as gene-wise splice plots with relative logFC values (upper panels) and gene model plots with exon-to-protein domain
annotation (lower panels). (A,B) show gene-wise splice plots of exon inclusion events in NUMB and ACTN1 mRNA in breast and lung cancer cell lines, respectively.
(C,D) show gene-wise splice plots of exon skipping events inMAP3K7 and VCLmRNA in gastric and breast cancer cell lines, respectively (Numbers on the x-axis in
the upper panels indicate the first, last and differentially used junctions in the respective gene. Grey area indicate threshold for significance (|logFC| > 1.0). Downregulated
and upregulated junctions with |logFC| above threshold and significant FDR (<0.05) are shown in blue and red, respectively. These same junctions are indicated within the
gene model plots as dashed arcs connecting upstream and downstream exons. Colors within exonic regions indicate the presence of protein domains and/or post
translational modifications (PTMs) annotated within the Prot2HG protein domain database. Arrows below gene model plots indicate direction of transcription. Coding
and UTR exons are illustrated as long and short exons respectively. Junctions with both absolute and relative logFC above the threshold (|logFC| > 1.0) but no significant
FDR (>0.05) for at least one of them are shown in black).
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factor SF1, thereby inhibiting proliferation and Notch signaling
(Zong et al., 2014).

This well-documented NUMB isoform switch was also
detected with DJExpress, which showed a ~16-fold (log2 ~4-
fold) upregulation of NUMB exon 12 inclusion junctions in
breast cancer cell lines compared to fibroblasts (Figure 5A). A
similar NUMB splice pattern was observed across other cancer
types (data not shown). Furthermore, by using DJExpress JT
module, we corroborated the positive correlation between QKI
gene expression and NUMB exon 12 exclusion (Figure 8A).
Moreover, SpliceRadar-based visualization identified additional
positively and negatively correlated splicing regulators, including
SRPK2 and RBFOX2, which have both previously been implicated
in the regulation of NUMB alternative splicing (Lu et al., 2015).
Thus, our data suggests that the control of NUMB alternative
splicing in cancer may involve a more complex regulatory
network than previously thought. These data demonstrate that
DJExpress can not only validate known associations with splice
events but can also, through functionality of the SpliceRadar tool,
identify additional regulatory networks that may be altered in
cancer.

DJECDB incorporates gene dependencies and drug response data
from the DepMap repository. We thus expanded the landscape of
phenotypic associations to NUMB alternative splicing in lung cancer

cell lines (Figure 8B). Pathway enrichment analysis of significantly
associated gene dependencies revealed enrichment of components
within the mTOR and insulin signaling pathways. This is consistent
with previous studies, which suggested that activated ERK signaling is
a common mechanism that regulates NUMB isoform expression in
breast and lung cancer cells (Rajendran et al., 2016) (Figure 8C).
Similarly, SpliceRadar plots using top correlations with drug response
values also revealed associations between the expression of exon-
inclusion junctions in NUMB and cell survival rates after treatment
with several compounds targeting PI3K/mTOR and ERK MAPK
signaling (Supplementary Figure S11). These data reinforce the
notion of a functional connection between NUMB exon 12 inclusion
and pro-inflammatory signaling cascades.

Taken together, these results illustrate the potential of the
DJExpress pipeline to identify bona fide differentially expressed
splice junctions and reveal physiologically relevant associations
between junction expression and various external traits. Thus,
DJExpress can be used to support and generate hypotheses
regarding the potential molecular mechanisms involved in the
regulation and physiological consequences of alternative splicing.

DJEC DB Data Summary
TCGA project is a large-scale oncology study that has allowed the
comprehensive characterization of multiple cancer types using a

FIGURE 6 | Co-regulated splicing events within MYO18A transcript in blood cancer. Differentially used junctions as depicted in the gene-wise splice plot in
MYO18A indicate the concomitant inclusion of exon 11 and exclusion of exon 40 in Myeloma and Lymphoma cell lines. Gene model plot with Prot2HG-based domain
annotation suggest that these co-regulated splicing events involve exonic regions containing known MYO18A phosphorylation sites (brown), as well as regions
comprising the core myosin-like ATPase motor domain, MYSc_Myo18 (orange).MYO18A gene-wise splice plot in lymphoma is used as example (Numbers on the
x-axis in the upper panels indicate the first, last and differentially used junctions in the respective gene. Grey area indicate threshold for significance (|logFC| > 1.0).
Downregulated and upregulated junctions with |logFC| above threshold and significant FDR (<0.05) are shown in blue and red, respectively. These same junctions are
indicated within the gene model plots as dashed arcs connecting upstream and downstream exons. Colors within exonic regions indicate the presence of protein
domains and/or post translational modifications (PTMs) annotated within the Prot2HG protein domain database. Arrows below gene model plots indicate direction of
transcription. Coding and UTR exons are illustrated as long and short exons respectively. Junctions with both absolute and relative logFC above the threshold (|logFC| >
1.0) but no significant FDR (>0.05) for at least one of them are shown in black).

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 2 | Article 78689811

Gallego-Paez and Mauer Alternative Splicing Analysis With DJExpress

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


FIGURE 7 | DJE analysis suggests the presence of differentially spliced non-annotated exons in cancer cell lines. Gene-wise splicing as well as gene model plots
show non-annotated splice junctions whose gene location indicates the presence of exons not described in the human transcriptome annotation. (A) Differentially
expressed non-annotated junctions between exon 37 and 38 located in the vicinity of the CNH (dark green) and PH (orange) domains in CIT. (B) Differentially expressed
non-annotated junctions between exon 12 and 13 in SPIRE1, which contain the Spir-box domain (pink) involved in the interaction between SPIRE1 and formin
(FMN)-type actin nucleators, as well as protein phosphorylation sites (yellow). (C) Differentially expressed non-annotated junctions between exon 13 and 14 inHSP90B1
occurring within the HSP90 chaperone domain (green). ForCIT and SPIRE1 gene-wise splice plots, breast cancer is used as example. ForHSP90B1, lung cancer is used
as example (Numbers on the x-axis in the upper panels indicate the first, last and differentially used junctions in the respective gene. Grey area indicate threshold for
significance (|logFC| > 1.0). Downregulated and upregulated junctions with |logFC| above threshold and significant FDR (<0.05) are shown in blue and red, respectively.
These same junctions are indicated within the gene model plots as dashed arcs connecting upstream and downstream exons. Colors within exonic regions indicate the
presence of protein domains and/or post translational modifications (PTMs) annotated within the Prot2HG protein domain database. Arrows below gene model plots
indicate direction of transcription. Coding and UTR exons are illustrated as long and short exons respectively. Junctions with both absolute and relative logFC above the
threshold (|logFC| > 1.0) but no significant FDR (>0.05) for at least one of them are shown in black).
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FIGURE 8 | SpliceRadar plots of top trait associations toNUMB alternative splicing in lung cancer. (A) Expression of splice junctions supporting exon 12 inclusion in
NUMBmRNA was correlated to the expression of a panel of manually curated splicing regulators in lung cancer cell lines. The top-ranked correlation coefficients (FDR <
0.05 and |rho| > 0.2) were used to construct the SpliceRadar chart with splicing factors depicted along the spokes, revealing a general trend of anti-correlation patterns to
splicing factor expression between inclusion (red and dark red) and exclusion (blue) junctions. Previously known associations to NUMB splicing were corroborated
(e.g., QKI, RBFOX2 and SRPK2), and novel associations with similar correlation levels were identified, suggesting a more complex regulatory network of NUMB
alternative splicing than previously described. (B) SpliceRadar plot showing top-ranked correlations (FDR < 0.05 and |rho| > 0.2) between exon inclusion junction
expression in NUMB and gene dependencies (defined as gene loss effect on cell survival) using DepMap CRISPR screen data. Anti-correlation patterns of dependency
values and expression of inclusion and exclusion junctions are also observed as in the case of panel (A). (C) KEGG pathway enrichment analysis using gene names of
significantly associated dependencies ranked by correlation coefficient. The enrichment plot shows top over-represented pathways within NUMB splicing-correlated
gene dependencies (Dot size represents the number of genes in each KEGG pathway, color gradient indicates significance level of adjusted p-values).
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catalogue of clinical and molecular data, including RNA
sequencing from thousands of patients across multiple tumor
types. This resource harbors an excellent opportunity for cancer
researchers and clinicians to explore and define tumor-specific
transcriptomic signatures, and to integrate them with additional
external traits such as mutations, copy number variations (CNV)
or microsatellite instability (MSI). These features of TCGA can
facilitate identification of novel therapeutic or diagnostic
biomarkers. However, TCGA alternative splicing analyses,
particularly the association of splice events with clinical and
molecular traits, is currently not available in an accessible way.

To fill this gap, we generated DJEC DB, a platform that
provides an integration of differential junction expression
analysis with TCGA molecular and clinical data. For this, we
used splice junction quantification from a recently published
study (Kahles et al., 2018) where TCGA and GTEx RNA-seq
samples were re-analyzed using 2-pass STAR alignment, thereby
allowing identification of annotated and de novo splice events.
Additionally, we quantified junction expression in cancer cell
lines from CCLE fastq files and integrated this data with
functional genomics data sets from the DepMap repository.

DJEC DB comprises four main sections: 1) Differential
Junction Expression (DJE) in TCGA vs GTEx tissue, 2)
Junction-Trait (JT) associations using external clinical and
molecular sample data, 3) Junction Co-expression Network
Analysis (JCNA) using junction expression in colorectal
(COADREAD) tissue samples as example dataset, and 4)

Differential Junction Expression in cancer cell lines and
association with DepMap functional genomics data (DJE-
CCLE).

The DJE section comprises summary statistics and
visualization options for an average of 6,345 differentially
expressed junctions across the 32 tumor tissue types analyzed
(FDR <0.05 and |logFC| > 2, Table 3). In the JT section, an
average of 674 statistically significant associations are shown
between differentially expressed junctions and altered
oncogenic signaling pathways determined by the presence of
mutations, CNVs, altered gene expression, gene fusions, DNA
methylation and MSI (in the case of COADREAD tumors).

To exemplify the use of the JCNA approach, we selected the
372 samples from the TCGA COADREAD tumor cohort to
construct a junction co-expression network (see methods for
details). For this, we used a minimummodule size of 20 junctions
and an unsigned network type, meaning that the weight of
connection between nodes (junctions) is calculated
irrespectively of the direction of the association, so modules
can contain both, positively and negatively correlated junctions
(Supplementary Figure S4).

From a total of 7,404 junctions filtered by their gene
expression-independent association to sample traits, 36
expression modules were found for this tumor type, with an
average of 206 junctions per module. Module-trait associations
were also determined throughout the correlation between ME
expression values and tumor stage, MSI, mutations in TP53,

TABLE 3 | Summary of DJE and JT junction statistics in DJEC DB.

TCGA tissue
cohort

Sample size Quantified junctions DE junctions Associations to
genomic alterations

Associations to
mutations

Associations to
pathway alterations

ACC 79 13,827,029 2,335 1 2 —

BLCA 408 14,369,479 2,935 215 274 —

BRCA 1,083 15,445,200 3,740 334 306 15
CESC 304 14,260,819 4,808 14 20 —

CHOL 36 13,786,637 8,446 10 10 —

COADREAD 372 14,315,224 5,534 49 44 —

DLBC 48 13,822,896 6,150 9 5 —

GBM 165 13,995,214 12,781 2 4 —

HNSC 500 14,592,967 5,745 49 117 2
KIPAN 738 14,965,143 2,836 92 93 1
LGG 526 14,536,867 6,771 6,708 6,061 404
LIHC 372 855,905 4,996 97 99 —

LUAD 516 14,681,817 3,931 153 149 —

LUSC 500 14,804,638 4,721 107 114 10
MESO 82 13,866,293 4,078 — — —

OV 199 16,204,728 8,509 9 10 —

PAAD 178 13,981,645 4,942 26 26 —

PCPG 183 14,428,362 8,973 228 228 —

PRAD 497 1,166,561 4,097 85 94 —

SARC 257 14,106,882 1,810 12 50 —

SKCM 471 14,106,882 3,436 16 11 —

STES 535 18,214,111 7,155 418 330 —

TGCT 156 14,050,087 9,684 14 14 —

THCA 500 14,437,693 4,885 699 714 37
THYM 118 13,939,486 3,860 30 31 —

UCEC 179 14,038,958 9,241 114 99 —

UCS 56 13,829,412 9,091 6 5 —

UVM 80 13,809,902 9,285 — — —
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EGFR, KRAS and BRAF genes, as well as expression across six
splicing factor gene modules previously calculated from gene
expression data.

Finally, the DJE-CCLE section contains the results of the
differential junction expression analysis of normal fibroblast
cells vs cancer cell lines clustered by tissue of origin, as

FIGURE 9 | Differentially expressed non-annotated junctions in SPIRE1 are also found in the context of primary tumor tissue. Differential expression of junctions
suggesting the presence of a non-annotated exon in SPIRE1 mRNA were not only identified in cancer cell lines (see Figure 7B) but are also found in BRCA, LUAD,
KIPAN, PRAD, and THCA TCGA cohorts. Caption of DJEC DB DJE analysis in KIPAN is shown as example. The exon inclusion event can be found by filtering for
differentially expressed junctions following cutoff criteria of <0.05 for FDR and |logFC|>1.0 (Panel 1) and then selecting any of the two inclusion junctions based on
their genomic coordinates (Panel 2). DJEC DB displays gene-wise splice plots (Panel 3) as well as domain-annotated gene model plots (Panel 4).
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described above. Significant correlations between junction
expression and functional genomics data obtained from the
DepMap repository are displayed in a summary table and
selected association patterns can be visualized using
SpliceRadar plots.

Search and Browse DJEC DB
Within the DJE section, users can first define the target tumor
tissue type as well as the logFC and FDR cutoffs for the
significance in differential expression (Supplementary Figure
S2). A table with the summary statistics is displayed and specific
target genes or junctions can be selected by the users in order to
display gene-wise splice plots as well as a zoomable gene model
plots with exon-to-protein domain annotation. In addition,
junction-trait associations in TCGA can be explored within
the JT section following user-defined tumor tissue type and
external molecular trait options (Supplementary Figure S3).

For the JCNA section using the TCGA COADREAD sample
cohort, a junction dendrogram with expression module
assignment, as well as a module-trait association heatmap are
displayed (Supplementary Figure S4). For intramodular
analysis, users can select specific modules and traits to
visualize module-to-trait significance plots, as well as module
networks in interactive format. Both are helpful in identifying
centrally located intramodular hub junctions with high module
membership as well as high significance for selected traits. This
allows the user to generate testable hypotheses about junction
module expression, regulation and association to cancer
phenotypes that can be implemented in validation experiments.

Similar interactive visualization can be also found within the
DJE-CCLE section. Here, users can select the tissue of origin, the
significance cutoff for differential expression, as well as target
genes/junctions and junction-trait associations to be displayed in
gene-wise splice and SpliceRadar plots (Supplementary
Figure S5).

Case Study 2: Cancer Cell Line DJE
Signature Is Recapitulated by Tumor Tissue
Analysis in DJEC DB
One of the central features of DJEC DB is the possibility to
interrogate the presence of alternative splicing patterns observed
in cancer cell lines in the context of tumor tissues. NUMB, VCL,
MAP3K7 and EXOC1 exon skipping events are examples of
known splicing events that can be also observed in tumor
tissue (Supplementary Figures S12–S15). Notably, the
presence of a differentially expressed non-annotated exon
between exon 12 and 13 in SPIRE1, which we detected in
cancer cell lines (Figure 7B), was also identified in BRCA,
LUAD, KIPAN, PRAD, and THCA cohorts by DJEC DB data
using gene-wise splicing visualization (Figure 9). This suggests
that the alternative inclusion of this previously unknown region
in SPIRE1 transcript may be a common feature across different
cancer types in vitro and in vivo. These data demonstrate the
applicability of DJEC DB in identifying and cross-validating
potentially oncogenic alternative splicing patterns both in
cancer cell lines and tumor tissue.

The JT module in DJEC DB provides a workflow to associate
junction expression with user-provided molecular or clinical
traits. In the case of CTNND1 splicing event, we found
significant associations between the expression of exon 20
inclusion junctions and TP53 mutation status in BRCA, as
well as with amplification of CCND1 gene and epigenetic
silencing of CDKN2A in STES (Supplementary Figure S16).
This is consistent with previous studies indicating that CCND1
isoforms expression regulates cell proliferation and cell cycle
progression by controlling the levels of cyclin proteins in
cancer cells (Chartier et al., 2007; Jiang et al., 2012; Liu et al.,
2014).

Taken together, these data corroborate DJEC DB as a valuable
bioinformatics resource for the exploration and visualization of
differential junction expression, as well as for the interrogation of
physiologically relevant junction-trait associations in the context
of global splicing analysis in cancer cell lines and tumor tissue.

DISCUSSION

With the increasing availability of NGS data sets, the possibility to
perform transcriptome-wide alternative splicing analysis has
become a commonality rather than an exception in disease
research. Nevertheless, computational analysis pipelines that
allow the broad research community to effortlessly interrogate
alternative splicing phenotypes are largely missing.

Our custom pipeline, DJExpress, aims to address this issue.
With DJExpress, we have incorporated multiple existing
algorithms in a novel computational approach for differential
splicing analysis, which is suitable for analysis of small-scale as
well as large-scale splice junction datasets. Moreover, DJExpress
allows the analysis of millions of exon-exon boundaries per
sample, using limma’s statistical framework. Limma’s
algorithm has been shown to be highly accurate for gene
expression analysis (Law et al., 2014; Corchete et al., 2020;
Gerard, 2020), although a comprehesive analysis of accuracy
for splicing is beyond the scope of this work and remains as a
future direction. Nevertheless, the implication of limma
methodology proved to be highly flexible. This is not only the
case in terms of model specification (any contrast in a linear
model including the use of continuous as well as categorical
predictors can be related to differential junction expression) but
also for the various parameters introduced into the fit model,
including posterior variance estimators, observation weights and
variance modelling. These features, together with limma’s
additional data pre-processing methods such as variance
stabilization, all help to improve inference of differential
junction expression.

Importantly and similar to gene expression studies (Peixoto
et al., 2015), removing or accounting for both known and
unknown confounding factors (e.g., technical biases such as
batch effects, or population structure such as molecular or
clinical subtypes) is crucial when analyzing alternative splicing
phenotypes in RNA-Seq data sets (Slaff et al., 2021). Confounding
factors can greatly increase the numbers of false positives and
negatives, which ultimately will affect interpretation of potential
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biological relationships. Thus users should test for potential
known confounder effects in their data, for example by using
PCA or UMAP plots, and use dedicated tools to correct for
confounders such as limma, ComBat, RUV, SVA and
MOCCASIN (Leek, 2014; Risso et al., 2014; Zhang et al., 2020;
Slaff et al., 2021).

Apart from these statistical aspects, DJExpress provides a
comprehensive framework to graphically summarize
differential splicing. The adapted limma-based visualization
approach allows inspection of alternative splicing not only at
the level of individual junction loci, but also in the presence of
more complex splicing patterns. These can involve
simultaneous changes in the expression of multiple
junctions across the entire gene. This is particularly
advantageous, considering that existing splicing analysis
tools are either focused on the definition of local alternative
splicing events which can be both simple (exon skipping,
alternative 3′ or 5′ splice sites, etc.) or complex
(simultaneous occurrence of multiple splice events in a
given mRNA), or only allow detection of known transcript
isoforms. Thus, most previous tools disregard the
simultaneous visual representation of the full spectrum of
up- and down-regulated splicing patterns in a gene that is
retrieved through junction quantification. Broadly used
exceptions are LeafCutter (Li et al., 2018) and MAJIQ
(Vaquero-Garcia et al., 2016), which can both also represent
complex splicing changes across the entire mRNA.

Notably, the differential junction usage analysis by
DJExpress does not allow a direct assessment of intron
retention events, which require intron and intron-exon
junction read counts for their quantification. Nevertheless,
dedicated tools such as MAJIQ (Vaquero-Garcia et al., 2016),
IRFinder (Middleton et al., 2017), iREAD (Li et al., 2020) or
S-IRFinder (Broseus and Ritchie, 2020) are specifically
designed for quantification of intron retention events and
are thus well-suited for this specific type of analysis.

Recently, RNA-seq data from TCGA and GTEx was
integrated within a large transcriptomic profiling workflow,
including splicing quantification of more than 20,000 human
normal and tumor tissue samples (Kahles et al., 2018).
Although this study provided unified splicing data across
healthy and tumor tissue, the analysis is based on the
construction of complex splicing graphs across thousands
of samples and genes which are difficult to access and
interpret. Furthermore, approaches to explore the data in a
graphically visualized format were not the scope of this
previous study. This limited the availability and
accessibility of this data for the general research
community as well as the feasibility of splicing-trait
association analyses using genomic, epigenetic, and clinical
records available within the TCGA repository. These points
are addressed by DJExpress and DJEC DB which facilitate easy
access, analysis and visualization of cancer splicing data.
Moreover, by providing a simple analysis workflow for
custom data sets, our pipeline is not restricted to cancer
researchers but can be used to pursue a broad variety of
alternative splicing-related scientific questions.

In conjunction with the usability of the DJExpress for
differential splicing analysis and visualization using custom
RNA-Seq data, the multidimensional integration of cancer
data within DJEC DB represents a comprehensive resource of
cancer-specific splicing signatures and junction-trait associations.
We demonstrated that our pipeline has the potential to unveil
novel splicing-related molecular signatures, which may
contribute to improved patient stratification and more
effective cancer treatment strategies. Moreover, the integration
of DepMap data allows association of junction expression with
molecular features such as gene dependencies and drug response
profiles. This will help researchers to identify cancer cell models
for specific splicing alterations that can then be used for
functional characterization in the lab.

Another recently established cancer splicing repository,
RJunBase (Li et al., 2021), follows a similar splicing analysis
strategy as DJEC DB. While focusing on back-splice and fusion
junctions, RJunBase provides splicing patterns at junction level
and median junction expression information in GTEx and TCGA
samples. However, it lacks differential junction expression
analyses between cancer and healthy tissue and does not
include association of splice events with molecular or clinical
data. Thus, compared to RJunBase, DJEC DB not only includes
differential junction expression analyses but also provides
functional associations of splicing changes with phenotypic
traits. These features make DJEC DB a comprehensive data
base that can facilitate the discovery of novel cancer-related
aberrant splicing patterns with potential phenotypic
consequences.

Taken together, DJExpress provides researchers with a
comprehensive toolbox for exploration of alternative splicing
phenotypes in health and disease, and, with DJEC DB,
includes multi-level data of alternative splicing signatures in
healthy tissue, tumors and cancer cell lines.
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Supplementary Figure 1 | Performance evaluation of DJE module. Median (A) and
log2 median (B) process time following 10 repetitions of data import (DJEimport),
junction annotation (DJEannotate), expression filtering (DJEprepare), normalization
and differential junction expression analysis (DJEanalyze) within the DJE module of
DJExpress. (C) Median memory consumption (in bytes) of the entire DJE module.
Error bars represent standard deviations. Default settings with increasing sample
size and random relative group sizes are used in the analysis.

Supplementary Figure 2 | Interactive DJE visualization in tumors using DJEC DB.
(A) Start interface of the DJE section in DJEC DB. Panel 1 highlights the selection
option section. Users can define the TCGA tumor type, and the significance cutoff for
differential junction usage based on minimal |logFC| and FDR values. Panel 2 shows
the downloadable summary statistics table for junctions passing the selected cutoff.
Here, users can filter junctions by browsing specific gene IDs, junction IDs or
genomic coordinates. After selecting a target junction by clicking over it on the table,
gene-wise splice plots as well as junction in domain-annotated gene model context
(Panels 3 and 4 respectively) can be interactively visualized. Hovering over each
junction in the gene-wise splice plot displays a box with summarized DJE
information, including relative and absolute logFC values, FDR values and
expression group of the selected junction. Colors within exonic regions in the
gene model plot indicate the presence of protein domains and/or post-
translational modifications (PTMs). The position of the selected junction within
the gene model plot is indicated by a dashed arc whose color correspond to the
type of differential expression (blue for downregulation and red for upregulation).
Specific regions within the gene model plot (e.g., position of the selected junction)
can be further explored by cursor selection, which displays a zoomed image version
of the selected gene region. (B) KIF13A exon inclusion event in BRCA TCGA cohort
is used as an example. Significance cutoff was set to |logFC| > 2.0 and minimal FDR
cutoff of 0.05. The two exon inclusion junctions are shown in red within the gene-
wise splice plot, and the gene model plot indicate the position of the selected
junction, which happens close to an annotated phosphorylation site of the protein.

Supplementary Figure 3 | Visualization of JT section within DJEC DB. This section
contains the results of the junction-trait association analyses using ANOVA and linear
models from Matrix eQTL methods (Shabalin, 2012). Differentially expressed
junctions within each TCGA tumor type were associated to microsatellite
instability (MSI) or altered oncogenic signaling pathways based on mutations,
copy-number changes (CNV), mRNA expression, gene fusions and DNA
methylation (Sanchez-Vega et al., 2018). Users can select the tissue of interest,
as well as the trait to which junction expression is associated (Panel 1). A
downloadable summary statistics table is displayed (Panel 2), where specific
genes, junctions, genomic coordinates or traits can be browsed. When a
specific association is selected from the table, interactive junction-trait
association boxplots are displayed (Panel 3) and hoovering over them shows

summarized statistics of the analysis. The image contains the example of the
association between a differentially expressed junction in the transcript of S100
Calcium Binding Protein A14 (S100A14) and MSI, with high levels of MSI (MSI-H) in
tumors (violet) being associated to significantly more inclusion levels of the junction
than low levels of MSI (MSI-L) (red) and microsatellite stable (MSS) (blue) colorectal
tumors.

Supplementary Figure 4 | Junction Co-expression Network Analysis (JCNA) of
TCGA COADREAD in DJEC DB. (A) JCNA section comprises the results of the
junction co-expression analysis across the 372 samples from the TCGA
COADREAD tumor type. 7,404 junctions where clustered into 36 expression
modules. The dendrogram of clustered junctions is displayed (panel 2), where
each branch in the figure represents one junction, and every color below represents
one co-expression module. The heatmap of module-trait associations (panel 3)
based on correlation coefficients between junction modules and traits is also shown
(blue and red indicate positive and negative correlations respectively). Traits are in
the x-axis and junction modules with their respective assigned letter and color are in
the y-axis. Traits analyzed include Microsatellite instability (MSI), BRAF, KRAS EGFR
and TP53 mutation status, tumor stage and 6 co-expression modules of splicing
factors calculated for COADREAD samples (SFG1-6). (B) Interactive scatter diagram
of module membership vs. junction significance is shown when users select specific
traits and modules within the selection options section (panel 1). (C) For the selected
module, an interactive junction network is also displayed. Each node in the network
represents a single junction. Junctions are colored based on gene ID. Users can
select target genes within the network to highlight their respective junctions (e.g.,
EDEM2 junctions in the zoomed image).

Supplementary Figure 5 | Visualization of junction-trait associations using
DepMap gene dependencies within JT-CCLE section in DJEC DB. This section
contains the results of the junction-trait correlation analyses using junction
expression and genome-wide gene dependency screens in cancer cell lines.
Users can select the tissue of interest, as well as the absolute correlation
coefficient cutoff to be used for SpliceRadar visualization (panel 1). A
downloadable correlation matrix is displayed (panel 2), where specific genes,
junctions, genomic coordinates or traits can be browsed. When specific
junctions are selected (maximum 3) from the table, interactive SplicePlots with
top 50 junction-dependencies correlations are displayed (panel 3). An example of
significant associations between MYO18A exon 40 expression and gene
dependencies in lymphoma cell lines is shown.

Supplementary Figure 6 | Illustration of known alternative splicing in cancer using
DJEC DB. (A) Cancer-specific inclusion of exon 11 in EXOC1 involving differentially
used junctions 11, 12 and 13. The alternative splicing events occurs within the
C-terminus Sec3_C domain (pink) and adjacent to several phosphorylation sites
(brown) as depicted by the domain-annotated gene model plot. (B) Exon 20
inclusion event in CTNND1, involving junctions 20 and 23. This exon localizes at
the C-terminal domain ofCTNND1 and in the vicinity of several phosphorylation sites
as indicated in the gene model plot. (C) Differentially used junctions are depicted
within the gene-wise splice plot in CD44 (downregulated junction indicating the
exclusion of the variable region and upregulated junctions indicating the inclusion of
exons 7–14 within the variable region). Gene model plot with Prot2HG-based
domain annotation indicate that the variable region in CD44 correspond to the
proteolytically cleavable extracellular Stem domain (dark gold) as previously
described. For differential junction expression in EXOC1, CTNND1 and CD44,
colon, pancreatic and breast cancer cell line are shown as examples,
respectively. (Numbers on the x-axis in the upper panels indicate the first, last
and differentially used junctions in the respective gene. Grey area indicate threshold
for significance (|logFC| > 1.0). Downregulated and upregulated junctions with |
logFC| above threshold and significant FDR (< 0.05) are shown in blue and red,
respectively. These same junctions are indicated within the gene model plots as
dashed arcs connecting upstream and downstream exons. Colors within exonic
regions indicate the presence of protein domains and/or post translational
modifications (PTMs) annotated within the Prot2HG protein domain database.
Arrows below gene model plots indicate direction of transcription. Coding and
UTR exons are illustrated as long and short exons respectively. Junctions with both
absolute and relative logFC above the threshold (|logFC| > 1.0) but no significant
FDR (> 0.05) for at least one of them are shown in black. Junctions with either relative
or absolute logFC below the indicated threshold are shown in grey).

Supplementary Figure 7 | Example local complex event in MARK3 transcript in
several cancer types. (A) Differentially used junctions as depicted in the gene-wise
splice plot and gene model plot in MARK3 indicate the presence of a splicing event
involving several co-regulated junctions between exons 15–18 (the event accounts
for a double exon skipping event, where several exon-exon junctions, including an
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alternative 3′ splice site event are downregulated). CCLE Breast cancer vs fibroblast
analysis cell lines is used as example. (Numbers on the x-axis in the upper panels
indicate the first, last and differentially used junctions in the respective gene. Grey
area indicate threshold for significance (|logFC| > 1.0). Downregulated and
upregulated junctions with |logFC| above threshold and significant FDR (<0.05)
are shown in blue and red, respectively. These same junctions are indicated within
the gene model plots as dashed arcs connecting upstream and downstream exons.
Colors within exonic regions indicate the presence of protein domains and/or post
translational modifications (PTMs) annotated within the Prot2HG protein domain
database. Arrows below gene model plots indicate direction of transcription. Coding
and UTR exons are illustrated as long and short exons respectively. Junctions with
both absolute and relative logFC above the threshold (|logFC| > 1.0) but no
significant FDR (>0.05) for at least one of them are shown in black). (B)
DJEplotSplice function in DJExpress allows the alternative interactive visualization
of all found junctions for a target gene within the original junction quantification data,
including those removed after coverage filtering. The full gene-wise plot of MARK3
reveals the presence of 1084 junctions detected across all analyzed samples.
Junctions filtered out for differential analysis based on user-defined expression
cutoffs are shown in clear grey. DJEplotSplice output offers an additional read
coverage information across the gene using the loess fit of median junction read
count (blue line) as readout. Numbers in the x-axis of the read coverage plot indicate
genomic coordinates of MARK3 gene structure.

Supplementary Figure 8 | Examples of isoform switches detected by DJExpress in
cancer cell lines. Visualization of differentially used junctions within gene-wise splice plots
and gene model plots reveals cases of upregulation and downregulation of specific
transcript isoforms. (A) INPP5B gene-wise splice plot in pancreatic cancer cell lines
indicates the presence of one upregulated junction and a series of consecutive
downregulated junctions at the 5′ region of the gene. When compared to the
transcript isoform annotation for INPP5B, this pattern is indicative of downregulation
of the long INPP5B isoform (bottom right) containing five additional exons at the 5′ region
which corresponds to the Type II inositol 1,4,5-trisphosphate 5-phosphatase PH protein
domain (INPP5B_PH) (green), while the short isoform (top right) containing an alternative
first exon downstream of the INPP5B_PH domain appears upregulated. (B) RGS3
isoform switch is also observed in breast, colon, gastric, lung, ovarian and pancreatic
cancers. The series of upregulated junctions belongs to a long isoform version of RGS3,
while downregulated junctions correspond to a shorter transcript variant with an
alternative downstream promoter. This short isoform shares its second and third
exon with the long isoform but differs in four downstream exons containing the
Regulator of G protein Signaling (RGS_RGS3) (brown) protein domain. RGS3 gene-
wise splice plot in gastric cell lines is shown as example (Numbers on the x-axis in the
upper panels indicate the first, last and differentially used junctions in the respective gene.
Grey area indicate threshold for significance (|logFC| > 1.0). Downregulated and
upregulated junctions with |logFC| above threshold and significant FDR (<0.05) are
shown in blue and red, respectively. These same junctions are indicated within the gene
model plots as dashed arcs connecting upstream and downstream exons. Colors within
exonic regions indicate the presence of protein domains and/or post translational
modifications (PTMs) annotated within the Prot2HG protein domain database. Arrows
below gene model plots indicate direction of transcription. Coding and UTR exons are
illustrated as long and short exons respectively. Junctions with both absolute and relative
logFC above the threshold (|logFC| > 1.0) but no significant FDR (>0.05) for at least one of
them are shown in black. Junctions with either relative or absolute logFC below the
indicated threshold are shown in grey).

Supplementary Figure 9 | Example of alternative splicing event types identified by
DJExpress. Differentially used non-annotated junctions are representative of different types
of alternative splicing events. (A) XRCC6 gene-wise splice plot in breast cancer cell lines
indicates the presence of an alternative 3′ splice site (A3’SS) in exon 6. This event occurs
within the Von Willebrand factor type A protein domain (vWA_ku) (pink) known to be
involved in protein-protein interactions. (B) An alternative first exon (AFE) event is detected
in BIN1 in lymphoma cell lines. The downregulated first exon is known to contain a region
required for interaction with BIN2 (orange). (C) Detection of an alternative 5′ splice site
(A5′SS) involving the first exon of LDLRAP1 in myeloma. (D) The upregulated junction in
C11orf58 in brain cancer cell lines indicates the presence of both, an alternative 5′ splice
site (A5′SS) and an alternative 3′ splice site (A3′SS) in exon 2 and 3, respectively, which
occurs inside the region corresponding to the Small acidic protein family (SAMP) domain
(pink) (Numbers on the x-axis in the upper panels indicate the first, last and differentially
used junctions in the respective gene. Grey area indicate threshold for significance (|logFC|
> 1.0). Downregulated and upregulated junctions with |logFC| above threshold and
significant FDR (<0.05) are shown in blue and red, respectively. These same junctions
are indicated within the gene model plots as dashed arcs connecting upstream and
downstream exons. Colors within exonic regions indicate the presence of protein domains
and/or post translational modifications (PTMs) annotated within the Prot2HG protein

domain database. Arrows below gene model plots indicate direction of transcription.
Coding and UTR exons are illustrated as long and short exons respectively. Junctions with
both absolute and relative logFC above the threshold (|logFC| > 1.0) but no significant FDR
(>0.05) for at least one of them are shown in black).

Supplementary Figure 10 | Example of a differentially spliced non-annotated exon in
cancer cell lines. Differentially expressed non-annotated junctions indicate the presence of
an exon inclusion event (junctions 18–20) between exon 17 and 18 involving the actin-
binding module (I_LWEQ) (violet) in TLN1 as observed in the domain-annotated gene
model plot. TLN1 plots in breast cancer cell lines are used as example (Numbers on the
x-axis in the upper panels indicate the first, last and differentially used junctions in the
respective gene. Grey area indicate threshold for significance (|logFC| > 1.0).
Downregulated and upregulated junctions with |logFC| above threshold and significant
FDR (<0.05) are shown in blue and red, respectively. These same junctions are indicated
within the genemodel plots as dashed arcs connecting upstreamanddownstreamexons.
Colors within exonic regions indicate the presence of protein domains and/or post
translational modifications (PTMs) annotated within the Prot2HG protein domain
database. Arrows below gene model plots indicate direction of transcription. Coding
and UTR exons are illustrated as long and short exons respectively. Junctions with both
absolute and relative logFC above the threshold (|logFC| > 1.0) but no significant FDR
(>0.05) for at least one of them are shown in black).

Supplementary Figure 11 | SpliceRadar plot of top associations between NUMB
alternative splicing and drug treatment response in lung cancer. Expression of splice
junctions involved in the exon inclusion event ofNUMBwas correlated to cell survival
rates after drug treatment using DepMap drug screens data in lung cancer cell lines.
The top-ranked correlation coefficients (FDR < 0.05 and |rho| > 0.2) were used to
construct the SpliceRadar plot. A general trend of anti-correlation patterns with
inclusion (red and dark red) and exclusion (blue) junctions are observed. Boxes
indicate drugs targeting PI3K/mTOR and ERK MAPK signaling.

Supplementary Figure 12 |DJEsectionofDJECDBshowingsummary statistics table,
gene-wise splice plots and gene model plots of NUMB in TCGA BRCA. The two
upregulated junctions indicating the inclusion of exon 12 in NUMB are shown in red
within the gene-wise splice plot and the selected junction in the summary statistics table is
also highlighted within the genemodel plot (Panel 1 highlights the selection option section.
Panel 2 contains the summary statistics table. Panel 3 and 4 show the gene-wise splice
plot and the domain-annotated gene model plot, respectively).

Supplementary Figure 13 | Downregulation of exon 19 in VCL illustrated by DJE
section in DJEC DB. Exon inclusion junctions are shown in blue within the gene-wise
splice plot and the selected downregulated junction in the summary statistics table is
also shown within the gene model plot. CESC TCGA results are shown as example
(Panel 1 highlights the selection option section. Panel 2 contains the summary
statistics table. Panel 3 and 4 show the gene-wise splice plot and the domain-
annotated gene model plot, respectively).

Supplementary Figure 14 |Cancer-specific upregulation of exon 12 inMAP3K7 as
shown in DJEC DB. Exon inclusion and exclusion junctions are highlighted in red and
blue respectively within the gene-wise splice plot. The selected upregulated junction
in the summary statistics is illustrated within the genemodel plot. COADREAD TCGA
results are shown as example (Panel 1 highlights the selection option section. Panel
2 contains the summary statistics table. Panel 3 and 4 show the gene-wise splice
plot and the domain-annotated gene model plot, respectively).

Supplementary Figure 15 | Cancer-specific alternative splicing in EXOC1 as shown in
DJEC DB. Junctions indicating the upregulation of exon 11 in EXOC1 are shown in red
within the gene-wise splice plot. The selected upregulated junction in the summary
statistics is illustrated within the gene model plot. LUAD TCGA results are shown as
example (Panel 1 highlights the selection option section. Panel 2 contains the summary
statistics table. Panel 3 and 4 show the gene-wise splice plot and the domain-annotated
gene model plot, respectively) (Panel 1 highlights the selection option section. Panel 2
contains the summary statistics table. Panel 3 and 4 show the gene-wise splice plot and
the domain-annotated gene model plot, respectively).

Supplementary Figure 16 | Significant associations using Matrix eQTL methods
between CTNND1 exon 20 inclusion event and genomic alterations in TCGA are
shown within the JT section of DJEC DB. Selecting “Associations with Genomic
Alterations” and “BRCA” tumor type within the selection panel (Panel 1), followed by
“CTNND1” gene ID browsing within the summary statistics table (Panel 2) displays
the significant association to TP53 mutation. Box plots show decreased exon
junction expression in the presence of TP53 mutation (MUT), compared to wild-
type (WT) tumor samples (Panel 3). amplification of CCND1 gene and epigenetic
silencing ofCDKN2A are also significantly associated toCTNND1 alternative splicing
event in TCGA STES (Panel 4).
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