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Chronic kidney disease (CKD) is one of the increasingly serious public health concerns
worldwide; the global burden of CKD is increasingly due to high morbidity and mortality. At
present, there are three key problems in the clinical treatment and management of CKD.
First, the current diagnostic indicators, such as proteinuria and serum creatinine, are
greatly interfered by the physiological conditions of patients, and the changes in the
indicator level are not synchronized with renal damage. Second, the established diagnosis
of suspected CKD still depends on biopsy, which is not suitable for contraindication
patients, is also traumatic, and is not sensitive to early progression. Finally, the prognosis of
CKD is affected by many factors; hence, it is ineviatble to develop effective biomarkers to
predict CKD prognosis and improve the prognosis through early intervention. Accurate
progression monitoring and prognosis improvement of CKD are extremely significant for
improving the clinical treatment and management of CKD and reducing the social burden.
Therefore, biomarkers reported in recent years, which could play important roles in
accurate progression monitoring and prognosis improvement of CKD, were concluded
and highlighted in this review article that aims to provide a reference for both the
construction of CKD precision therapy system and the pharmaceutical research and
development.
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INTRODUCTION

CKD is one of the non-communicable diseases that, in a condition of persistently reduced
kidney function over 3 months, is considered a serious threat to folk health with high morbidity
on a global scale (Carney, 2020). With different pathogenesis, CKD gradually progresses to
irreversible nephron loss, which results in end-stage renal disease (ESRD) (Ruiz-Ortega et al.,
2020). A recent Global Burden of Diseases, Injuries, and Risk Factors Study, reported in Lancet
in 2020, indicated that 1.2 million people died from CKD in 2017, the 12th leading cause of
death worldwide, and the all-age mortality rate from CKD increased 41.5% worldwide between
1990 and 2017 (GBD Chronic Kidney Disease Collaboration, 2020). Meanwhile, the global all-
age prevalence of CKD increased 29.3% since 1990; however, the age-standardized prevalence
remained stable (1.2%, −1.1–3.5) (GBD Chronic Kidney Disease Collaboration, 2020).
Compared with other non-infectious diseases, the global age-standardized mortality and
prevalence rates for CKD are not declining, which indicates that increasing investment in
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diagnosis technology and targeted drug development, as well
as establishing sustainable healthcare infrastructure for CKD,
is a global priority (Okpechi et al., 2017).

CKD is generally characterized by glomerular filtration rate
(GFR) less than 60 ml/min/per 1.73 m2 or albuminuria 30 mg per
24 h and the existence of urinary and serum biomarkers
(Romagnani et al., 2017; Webster et al., 2017). Combined with
clinical manifestations, renal histopathology and albuminuria,
estimated glomerular filtration rate (eGFR), and the common
index of renal function are normally used instead of GFR to
diagnose CKD based on serum creatinine (Scr) level in clinical
practice (Romagnani et al., 2017; Webster et al., 2017). However,
the obvious limitation with the diagnostic criteria is the
concentration of Scr, which varies greatly based on gender,
age, muscle mass, muscle metabolism, overall body weight,
hydration status, and nutritional status, causing the changes in
Scr level to be not synchronized with the decreased renal function
(Goek et al., 2012; Ferguson et al., 2015). Meanwhile, the non-
renal processes such as fever and infection could affect the
assessment of proteinuria (Couser, 2017; Luis-Lima and
Porrini, 2017). Furthermore, proteinuria may persist some
time after healing primary renal diseases, leading to
unnecessary treatment for patients with renal diseases (Touma
et al., 2014). The limitations mentioned above could subsequently
impair clinicians’ abilities to accurately identify individuals at the
risk and prognosis of CKD when treatments may mitigate their
future risks as recommended in guidelines (Wouters et al., 2015).
Therefore, under high potential for mislabeling CKD status based
on eGFR and proteinuria, it is urgent and beneficial to investigate
sensitive diagnostic measures and novel biomarkers, which are
receiving increasing attention to improve the diagnostic and
prognostic efficiency and surveillance of CKD (Rysz et al., 2017).

With the development of genomics (Vivante and Hildebrandt,
2016; Graham et al., 2019; Morris et al., 2019;Wuttke et al., 2019),
transcriptomics (Lake et al., 2019), proteomics (Cañadas-Garre
et al., 2019; Dubin and Rhee, 2020; Verbeke et al., 2021), and
metabolomics (Hocher and Adamski, 2017; Gagnebin et al., 2018;
Kalantari and Nafar, 2019), the high-throughput and high-
resolution multi-omics interactive analysis strategy and
machine learning data mining would be beneficial to
investigate novel biomarkers for further understanding CKD
progression and prognosis, thereby advancing and improving
therapeutics (Davies, 2018). Owing to the increasing prevalence
of diabetes mellitus, hypertension, and environmental pollution
(Liu B et al., 2020) (exposed to PM 2.5 and PM 10), the cause of
CKD is complex and uncertain and the progression of CKD (5
stages based on eGFR or albuminuria) is multivariate that
ultimately leads to different CKD prognosis. The progression
of CKD could be alleviated when CKD was predicted or
diagnosed in an early stage. Unfortunately, the absence of
sensitive and specific biomarkers further complicates the early
prediction and diagnosis. Meanwhile, the healthcare
interventions aiming to delay the progression of CKD and
prevent negative outcomes are extremely limited (Wang Y. N
et al., 2019). As such, discovering novel biomarkers is urgently
needed for clinicians and researchers to have in-depth knowledge
of the highly interconnecting genetic and molecular networks;

then, the illumination of underlying mechanisms could be
conducive to assessing the risk of CKD as early as possible,
developing precise therapeutic strategies in progression, and
accurately evaluating the prognosis.

In this review, we highlighted the latest-reported biomarkers,
which incorporated progression monitoring and prognosis of
CKD. The specificity and functional correlation of these
biomarkers were discussed from the perspective of the
mechanism and clinical significance to provide a basis for the
further development of these biomarkers, the optimization of
CKD precise diagnosis and treatment schemes, and the targeted
medicine development.

PROGRESSION BIOMARKERS OF CKD

The pathogenesis of CKD progression is complex, which is
independent of the primary cause and leads to irreversible
nephron loss, ESRD, and death. It had been well-investigated
that parenchymal cell loss, chronic inflammation, fibrosis, and
reduced regenerative capacity of the kidney were the major
factors contributing to CKD progression. Exploring
biomarkers that could predict or monitor the progression of
CKD is a hot issue in current CKD research.

Renal Fibrosis
As the most important pathological manifestation in the
progression of CKD, renal fibrosis is part of the normal
repair process that is triggered in response to injury and
preserves the architecture and functional integrity of the
tissue. However, deregulation of this process is a decisive
factor leading to renal failure. After the renal injury, pro-
fibrosis factors such as connective tissue growth factor
(CTGF) (Yin and Liu, 2019), transforming growth factor-β
(TGF-β) (Miao et al., 2021a), sonic hedgehog (Shh) (Ren et al.,
2020), and Wnts (Hu et al., 2020) would be secreted by renal
tubular epithelial cells, intrinsic renal cells, macrophages,
lymphocytes, and other immune cells. These fibrogenic
factors would trigger transdifferentiation of various renal
cells into myofibroblasts, induce epithelial-to-mesenchymal
Transition (EMT), and promote the stimulation of
extracellular matrix (ECM) (Liu et al., 2018). In the early
stage of renal injury, the deposition of the fibrotic matrix
contributes to the repair of renal tissue before being
absorbed by repaired tissue. However, during the persistent
injury of CKD, the fibrotic matrix would be overdeposited (Ma
and Meng, 2019). Excessive ECM decreased the degradation
rate of ECM-degrading enzymes such as matrix
metalloproteinases (MMPs) and increased the deposition of
ECM. Damaged cells continued to secrete fibrogenic factors
and aggravated the process of fibrosis. These pathological
changes lead to the destruction of tissue structure, the
decrease of renal function and the ability of tissue repair,
and finally renal failure (Humphreys, 2018). Exploring the
biomarkers reflecting renal fibrosis could evaluate subtle
progression, estimate prognosis, and facilitate clinical
management of CKD individuals timely and accurately.
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MMPs
MMPs, a large family of endopeptidases, could affect CKD
progression through reshaping and degrading cellular ECM
components and regulating non-ECM molecules that play an
important role in the development of CKD, including adhesion
molecules, cytokines, and growth factors, under the strict
regulatory mechanisms (Lindsey et al., 2016). Overall, It had
been found that 11 members (MMP-1, MMP-2, MMP-3, MMP-
7, MMP-9, MMP-13, MMP-14, MMP-24, MMP-25, MMP-27,
and MMP-28) are expressed in the kidney.

Among them,MMP-9 plays themost representative role in the
progression of renal fibrosis. The expression of MMP-9 is low in a
normal physiological state but active in persistent renal injury. In
the experimental model of renal fibrosis, the expression of MMP-
9 was found in mesangial cells, glomerular cells, epithelial cells
and endothelial cells, fibroblasts, macrophages, and neutrophils
(Tan and Liu, 2012). Furthermore, inhibition of MMP-9 could
reduce the infiltration of neutrophils and other inflammatory
cells and reduce the degree of renal fibrosis (Wang H et al., 2019).
MMP-9 was also abnormally expressed in CKD patients. Urinary
MMP-9 levels were significantly higher in children with CKD
than those in age-matched healthy controls (Musiał et al., 2015)
and were increased in patients with focal segmental
glomerulosclerosis (Korzeniecka-Kozerska et al., 2013). In
addition, a cohort study involving 251 adults showed that the
increase in plasma MMP-9 could predict the progression of CKD
after 8.5 years with a risk ratio of 4.7 (Hsu et al., 2013). Above all,
current evidence supported the potential of MMP-9 as a
biomarker of CKD progression.

In addition to MMP-9, MMP-2 also shows a high
correlation with CKD progression. Nadkarni GN et al.
found that the increase of MMP-2 per unit of urine led to
a decrease in eGFR (0.1 ml/min/m2) during the 38-month
follow-up (AUC 0.74) (Nadkarni et al., 2016). Such results
were also confirmed by another 8-year follow-up study on
patients after coronary angiography: patients with higher
levels of MMP-2 are 2.5 times more likely to have a decline
in eGFR (Hsu et al., 2013). Moreover, a systematic review
showed that MMP-2 has the potential to identify patients at
risk of renal fibrosis that leads to worse renal outcomes
(Mansour et al., 2017). However, more evidence is still
needed to determine the role of MMP-2 in evaluating the
progression of renal fibrosis in CKD.

MMP-7 is a secreted zinc- and calcium-dependent
endopeptidase and a transcriptional target of canonical Wnt/
β-catenin signaling. It had been demonstrated that Wnt/
β-catenin could be activated in kidney disease and the level of
urinary MMP-7 might be used as a noninvasive surrogate
biomarker (Liu Z et al., 2020) and a therapeutic target for
renal fibrosis (Wozniak et al., 2021). Zhou et al. (2017)
conducted a cross-sectional study under measuring urinary
MMP-7 levels in a cohort of 102 patients with CKD compared
with normal subjects. It indicated that urinary MMP-7 levels,
elevated in kidney disorder patients, closely correlated with renal
fibrosis scores. Meanwhile, the knockout of MMP-7 could
ameliorate fibrotic lesions and matrix gene expression in mice.

The expression of E-cadherin protein could be preserved by the
genetic ablation of MMP-7 and substantially reduced the
expression of total and dephosphorylated β-catenin. Li et al.
(2021) reviewed that MMP-7 could activate the Wnt/β-catenin
signaling pathway after renal injury and urinary MMP-7may be a
noninvasive biomarker of profibrotic signaling in the kidney. In
contrast, they discovered that MMP-7 exerts protective effects on
the kidney as an adaptive response in cisplatin administration or
folic acid-induced AKI animal models. Therefore, further study
should be performed to explore the role of MMP-7 as a
therapeutic target of renal fibrosis.

Monocyte Chemotactic Protein 1
MCP-1 belongs to the chemokine family and has a strong
chemotactic effect on monocytes (Das et al., 2021). This
unique cytokine is mainly produced by chemokine in renal
intrinsic cells and macrophages in response to
hypercholesterolemia and other arterial injuries (Gregg et al.,
2017; Tam and Ong, 2020). MCP-1 plays an important role in
developing renal inflammation and fibrosis under the stimulation
of oxidative stress, cytokines, or growth factors.

It had been reported that MCP-1 was deeply implicated in
albuminuria and kidney dysfunction. The upregulation of MCP-1
was accompanied by the activation of IκB/NF-κB signaling in
CKD patients with macroalbuminuria; the similarity result had
also been found that the activation of NF-κB was accompanied by
significant upregulation of MCP-1 in CKD rats (Feng et al., 2019).
The researchers found in animal models that blocking MCP-1
receptors might suppress inflammation and alleviate
glomerulonephritis (Khalili et al., 2020). In addition, the
potential of MCP-1 as a biomarker of renal fibrosis has also
been confirmed in clinical trials. In a cohort study of 58 patients
with IgA nephropathy, urinary MCP-1 levels provided significant
additional non-invasive information for a better predictive
performance of the severity of interstitial fibrosis beyond
traditional markers (Segarra-Medrano et al., 2017). Recently, a
probabilistic sampling longitudinal cohort study involving 3,257
participants was found that the MCP-1 of CKD patients was
higher than that of non-CKD participants, and the level of MCP-
1 was negatively correlated with eGFR. Furthermore, this study
also proved that a high level of MCP-1 was an independent risk
factor for CKD death (Gregg et al., 2018). Nadkarni GN et al.
found that the ratio of urinary MCP-1 to creatinine was
associated with a sustained decline of more than 40% in eGFR
and showed better risk predictions than other traditional
indicators (Tam and Ong, 2020). Besides, a case-control study
also found that the level of MCP-1 was positively correlated with
the probability of CKD (Zhang et al., 2018). Another sensitivity
analysis involving 171 matched cases and controls suggested that
the ratio of urinary MCP-1 to creatinine was correlated with the
incidence of CKD stages (Musiał and Zwolińska, 2020). It
indicated that MCP-1 is of high predictive value in evaluating
the progression and prognosis of renal fibrosis in CKD.

Dickkopf-3
DKK-3, a member of the glycoprotein family (DKK1-4) (Gröne
et al., 2017), is a recently discovered stress-induced tubular-
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derived renal biomarker for interstitial fibrosis (Federico et al.,
2016; Fang et al., 2020; Seibert et al., 2021). It mainly promotes
renal tubular epithelial cells producing fibrogenic molecules
secreted by stress stimulation (Schunk et al., 2021a).
Expression of DKK-3 in the developing kidney would cease
after kidney maturation and would reignite when the kidney
tissue is damaged (Seibert et al., 2021). Lipphardt et al. (2019)
have found that DKK3 could significantly reduce the area
percentage, total length, and bifurcation number of capillary
structures in renal microvascular endothelial cells.
Furthermore, it indicated that the nephropathy induced by
adriamycin could lead to the upregulation of the DKK-3 level
in renal tubular. As a result, DKK-3 could induce EMT and
impair angiogenic competence, giving rise to renal fibrosis. In
addition, DKK-3 could stimulate the expression of TGF-β, which
is recognized as an important factor leading to renal fibrosis
(Karamariti et al., 2018).

In the animal model of CKD, DKK-3 could regulate the signal
transduction of the Wnt/β-catenin signal pathway and induce
renal tubulointerstitial fibrosis (Schunk et al., 2021b). Another
cohort study showed that increased urinary DKK-3
concentration in patients with primary glomerular disease and
primary interstitial disease was significantly associated with
higher levels of tubulointerstitial fibrosis, and the significant
eGFR decline within 6 months is closely related to the level of
urinary DKK-3 (Zewinger et al., 2018). The results suggested that
DKK-3 might be a sensitive predictor in the early progress
of CKD.

5-Methoxytryptophan
5-MTP, converted by TPH-131, is an endogenous tryptophan
metabolite that could reduce the production of inflammatory
cytokines and thus ameliorate inflammation and tissue damage
by inhibiting NF-κB activation and the consequent inhibition of
COX-2 transcriptional activation.

In recent research, Chen D. Q et al. (2019) identified 5-MTP
for the first time as the most promising biomarker metabolite for
detecting early CKD. An untargeted metabolomics study of 2,155
participants, including patients with stage 1–5 CKD and healthy
controls, was performed, and the level of 5-MTP decreased with
the progression of CKD that strongly correlates with clinical
markers of kidney disease. Furthermore, the biological effects of
5-MTP were performed using UUO mice and HK-2 and HMC
cells. It indicated that 5-MTP attenuated the expression of the
pro-inflammatory factor NF-κB p65 and its target gene products
MCP-1 and COX-2 while increasing the expression of the anti-
inflammatory and antioxidant transcription factor Nrf 2 and its
target gene products HO-1 and NQO-1. In addition, 5-MTP
treatment could significantly attenuate the upregulation of the
pro-fibrotic proteins collagen I, fibronectin, wave protein and
α-SMA and reverse the downregulation of E-cadherin and
Thy1 in vivo and in vitro settings. The present study
demonstrated that 5-MTP could separate patients with early
stage CKD from healthy controls and serve as potential
biomarkers of the early stage of CKD.

1-Aminopyrene and 1-Hydroxypyrene
A recent study have discovered that aryl-containing
metabolites might have an important effect on chronic
kidney disease progression. Most importantly, two
polycyclic aromatic hydrocarbon metabolites, 1-
aminopyrene (1-AP) and 1-hydroxypyrene (1-HP), showed
strong positive and negative correlation with serum creatinine
and creatinine clearance, respectively. Miao et al. (2020), Miao
et al. (2021b) analyzed 5,406 urine and serum samples from
patients with stage 1–5 CKD using metabolomics; 1-AP and 1-
HP were identified and validated using longitudinal and drug
intervention cohorts and 5/6 nephrectomized and adenine-
induced rats. Furthermore, the increased levels of 1-AP and 1-
HP in serum and kidney tissues correlated with decreased
renal function in two rat models. Upregulated mRNA
expression of aryl hydrocarbon receptor and its target
genes, including CYP1A1, CYP1A2, and CYP1B1, were
observed in patients and rats with progressive CKD. It
indicated that 1-AP and 1-HP were demonstrated to
mediate renal fibrosis through activation of the aryl
hydrocarbon receptor signaling pathway and the
endogenous 1-AP and 1-HP are novel mediators of CKD
progression.

Inflammatory States
Inflammatory states, a common pathological change in all stages
of CKD progression, are essential in renal fibrosis and renal loss
and are closely associated with CKD complications (Akchurin
and Kaskel, 2015). The factors contributing to the inflammatory
states of CKD might include the increased production of pro-
inflammatory cytokines, acidosis, oxidative stress, recurrent
infections, and intestinal malnutrition.

Comparatively, inflammatory cytokines are the key to the
micro-inflammatory state of CKD. Inflammatory cytokines,
secreted by circulating monocytes and endothelial cells, could
induce micro-inflammatory states through the bloodstream. The
kidney receives 25% blood volume of the body and yet lacks
defense against inflammation and oxidative stress. Therefore, the
kidney becomes one of the organs most susceptible to
microinflammation (Mihai et al., 2018). Circulating
proinflammatory cytokines would activate renal micro-vessels,
especially endothelial cells and leukocytes, and lead to local
amplification of proinflammatory factors and reactive oxygen
species. These processes could affect adhesion molecules on the
cell surface and impair endothelial barrier function, activation of
the coagulation system, and receptor-mediated vascular
reactivity. The above inflammation-mediated changes may lead
to irreversible tubular damage and renal unit failure (Qian, 2017).
Therefore, using biomarkers such as proinflammatory cytokines
to understand the inflammatory state of CKD is not only of great
significance for evaluating the progress of CKD and judging the
prognosis but also providing guidance for improving the
inflammatory state of CKD through clinical intervention
measures such as diet, medicine, and dialysis (Akchurin and
Kaskel, 2015).
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Common Biomarkers of Inflammation
Multiple evidence have shown that the commonly
inflammatory indicators, such as IL-1, IL-6, C-reactive
protein (CRP), and tumor necrosis factor (TNF)-like weak
inducer of apoptosis (TWEAK), could effectively judge the
progression and prognosis of CKD. A study showed that
patients with chronic kidney disease with lower eGFR levels
had higher levels of plasma IL-1 β, IL-1RA, IL-6, TNF-α,
hypersensitive CRP, and fibrinogen and that the
inflammation score was inverted with GFR estimates and
urinary albumin/creatinine ratio (UACR) (Gupta et al.,
2012). A recent cohort study involving 3430 patients with
chronic renal insufficiency also found that increased levels of
TNF-α and decreased serum albumin in patients with chronic
renal disease were associated with rapid loss of renal function
(Amdur et al., 2016). Studies also have shown that TEWAK
worked as an important factor in inflammation-related renal
injury and accelerates the progression of CKD (Sanz et al.,
2014).

Inflammasome
The inflammasome is a large polyprotein complex induced by
lipopolysaccharide (LPS). It had been a hot spot in the field of
nephrology recently and was first reported as an innate immune
signaling pathway in 2002 (Martinon et al., 2002).

Intracellular NOD-like receptors (NLRs) play a key role in
forming and activating inflammatory bodies. They could form the
inflammatory complex and release proinflammatory cytokines
IL-1 β and IL-18 (Akchurin and Kaskel, 2015; Hutton et al.,
2016). NLRP3 inflammasome is closely related to apoptosis,
autophagy, and proinflammatory cytokines regardless of
traditional microbial innate immune stimulation; therefore, it
is of extensive significance for a variety of renal diseases (Chang
et al., 2014).

The role of NLRP3 in the formation of the inflammatory state
of CKD had been confirmed in animal experiments. In the model
of unilateral ureteral obstruction, the renal tubular injury,
inflammation, and fibrosis were less severe in NLRP3-
knockout mice (Vilaysane et al., 2010). In addition, a
bidirectional Mendelian randomization (MR) analysis showed
that elevated NLRP3 inflammasome had a profound impact on
the pathogenesis and severity of CKD (Jia et al., 2019). A clinical
cohort study also showed that the expression of NLRP3 mRNA in
CKD patients was significantly upregulated compared with that
of the control group (El-Deeb et al., 2019). However, although
NLRP3 has the potential to be used as a biomarker to evaluate the
progression of CKD, future research is needed to provide solid
evidence to evaluate its diagnostic performance.

Disorder of Gut–Kidney Axis
Since Ritz proposed the concept of “intestinal syndrome” at the
International Dialysis Conference in 2011 (Ritz, 2011), the
connection between the intestine and the kidney has been
extensively studied, and the “gut-renal axis” theory has been
derived. It is believed that the connection between the “gut-renal
axis” is two-way, indicating if the function of the gut is damaged,

the normal function of the kidney could be affected in various
ways and vice versa. Gut microbiota and their metabolites have
been investigated that could play significant roles in the “two-
way affection.” The disruption of gut microbiota may lead to
intestinal dysbiosis, intestinal barrier dysfunction, and bacterial
translocation; then indoxyl sulfate (IS), p-cresyl sulfate (PCS),
and trimethylamine-N-oxide (TMAO) were produced as a
result of gut microbiota alteration, which could be implicated
in the variant processes of kidney diseases development (Chen L
et al., 2019).

Recently, more evidence has shown that the crosstalk in the
“gut–kidney axis” is closely related to CKD progression. The
reduction in renal filtration capacity occurs commonly in renal
failure patients, leading to the accumulation of urea in the blood.
After urea diffuses into the intestinal tract, it will destroy the
tightly connected proteins of the colon, increase the permeability
of the intestinal tract (Vaziri et al., 2013), and lead to a flora
imbalance characterized by the proliferation of facultative
anaerobes (Wuttke et al., 2019; Litvak et al., 2018). The
increased intestinal permeability could cause bacteria and their
metabolites to enter the blood from the intestinal cavity,
accompanied by systemic inflammation. The disorders of
intestinal microflora (such as species richness, diversity,
composition, and function) change the selection of nutrients
and bioactive metabolites, resulting in the accumulation of
intestinal uremic toxins, the increase in the circulation LPS
levels, and the impairment of immune function, which are
considered as the key factors in the occurrence and
development of CKD and its complications (Le Chatelier
et al., 2013).

Indoxyl Sulfate
Tryptophan metabolites from gut microbiota have been
demonstrated to participate in renal fibrosis as aryl
hydrocarbon receptor ligands. Indole derivatives are derived
from tryptophan metabolism pathways modulated by gut
microbiota directly or indirectly. IS is a metabolite of indole
produced by tryptophan through the intestinal flora (including
E. coli) (Evenepoel et al., 2009). IS could activate the renin-
angiotensin-aldosterone (RAS) system (Sun et al., 2012), induce
cell senescence and apoptosis (Han et al., 2018), and promote
EMT (Kim et al., 2012), thus accelerating the progression of
fibrosis, renal dysfunction, and CKD.

A variety of trials had confirmed the value of IS in predicting
CKD. A study showed that at the earliest stage of CKD, the
change of IS is proportional to the severity of the disease (Kim
et al., 2020). Serum IS levels in CKD patients were directly related
to dialysis events; therefore, IS might potentially predict the
progression of advanced CKD (Wu et al., 2011). Moreover, a
recent cohort study involving 100 CKD patients and 30 patients
with normal renal function showed that the level of IS reflected
the degree of renal impairment and peaked in the late stage of
CKD (Wu et al., 2020). IS could be used as a novel biomarker for a
thorough evaluation of CKD progression and future research is
needed to provide solid evidence to evaluate its diagnostic
function.
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P-Cresyl Sulfate
PCS is produced through the transformation of cresol by
intestinal epithelial cells. PCS induces renal injury and fibrosis
by inhibiting klotho gene expression, activating the RAS/TGF-β
pathway (Sun et al., 2012), inducing EMT, and causing NADPH
oxidase-driven ROS (Watanabe et al., 2013). A prospective
observational trial involving a cohort of 268 patients with
specific CKD stages showed that serum total PCS was
independently associated with renal progression (Barrios et al.,
2015). Another cohort study of 4,439 individuals with different
eGFR also demonstrated that PCS was negatively correlated with
eGFR and PCSmight gradually increase along the early process of
CKD (Chen L et al., 2019). Furthermore, several studies have also
shown that PCS levels in patients with CKD are associated with
poor prognosis, including death (Shafi et al., 2015; Lu et al., 2016).
Since the change of PCS might be sensitive to the slight process of
early CKD, it could be a valuable predictor for CKD progression.

Trimethylamine N-Oxide
TMAO, one of the major uremic toxins, is byproduct of bacterial
metabolism of phosphatidylcholine, choline, or L-carnitine. It
had been confirmed to be elevated in patients with CKD and
closely associated with a decreased renal function (Tang et al.,
2015). Chen et al. investigated that both plasma and urine TMAO
were significantly elevated in 180 CKD patients compared to
those of 120 age-matched healthy controls patients by
determining their fasting plasma and urine samples by UPLC-
HDMS-metabolomics and quantitative real-time RT-PCR
techniques. The concentration of TMAO in CKD patients
plasma had been shown to directly correlate with plasma
concentration of urea and creatinine, indicating the close
association of TMAO with the degree of renal insufficiency
(Chen et al., 2017).

TMAO might induce oxidative stress by inhibiting the
expression of the oxidative stress inhibitor SIRT1, increasing
H2O2, and reducing SOD activity (Ke et al., 2018). TMAO
could affect systemic inflammatory response (Missailidis et al.,
2016) by regulating inflammatory inducers (IL-6, TNF-α, and so
on), promoting the phosphorylated NF-κB to enter the nucleus
(Seldin et al., 2016), and activating the expression of
inflammasomes (Boini et al., 2017). In clinical practice, a
cohort study of 80 patients at all stages of CKD observed
significant increases in urinary and plasma TMAO levels in
the CKD group and significantly higher levels in stage 4 CKD
(Wu et al., 2020). Consistent results have been reported in an
experiment that TMAO level was negatively correlated with renal
function decline and returned to normal after kidney
transplantation (Missailidis et al., 2016). Furthermore, TMAO
was an independent predictor of mortality in patients with CKD.

Gut Microbiota
Microflora refers to all the coexisting microorganisms living in
the host, which are mainly composed of bacteria, viruses, archaea,
fungi, and unicellular eukaryotes (Evenepoel et al., 2017; Castillo-
Rodriguez et al., 2018; Cosola et al., 2018). It has been estimated
that there are at least 35,000 different microorganisms in the

human body (Frank et al., 2007). Under normal circumstances,
the intestinal microflora is mainly composed of five phyla, among
which Firmicutes and Bacteroidetes account for the largest
proportion in the colon, followed by Actinobacteria,
Verrucomicrobia, and Proteobacteria (Vaziri, 2012).

The microflora is responsible for metabolizing dietary
components and improving digestion by expressing several
enzymes (Plata et al., 2019). The microflora, with its metabolic
activity, could affect the health of the host by interfering with the
physiology, nutrition, metabolism, and immune system (Le
Chatelier et al., 2013); (Human Microbiome Project
Consortium, 2012). Researchers have investigated that obesity,
type 2 diabetes (T2DM), and cardiovascular diseases (CVD)
might be associated with complex interactions between gut
microflora and human hosts (Gurung et al., 2020; Zhou et al.,
2020).

Emerging evidence also suggested that intestinal microflora
plays an important role in the occurrence and development of
CKD (Vanholder and Glorieux, 2015; Nallu et al., 2017).
Therefore, the changes of intestinal microflora might provide a
possibility for measuring the progression of CKD. Barrios et al.
found that the changes in Ruminococcaceae, Christensenellaceae,
and Lachnospiraceae families were significantly correlated with
eGFR at the early stage of CKD (Barrios et al., 2015).
Furthermore, Wu and his colleagues found that accessory
Escherichia coli (AUC 0.78; 95% CI 0.7–0.87) and
pseudobutyric acid bacillus (AUC 0.76; 95% CI 0.67–0.84)
could effectively distinguish CKD from the health control
compared to urinary protein/creatinine ratio and sterins
Collinsella stercoris has shown excellent performance in
identifying healthy people and early CKD patients (Wu et al.,
2020). This indicated that microflora could be a valuable tool to
evaluate the progress of CKD, especially in the early stage.

BIOMARKERS FOR EARLY DIAGNOSIS OF
CKD COMPLICATIONS

The progression of CKD is associated with various complications,
which have a higher prevalence and intensity with the decrease of
renal function. CKD complications could result in highmorbidity
and mortality that reduce the quality of life. It has been reported
that CVD, hypertension, anemia, mineral bone disorders, volume
overload, electrolyte, and acid-base abnormalities are common
complications of CKD. The high morbidity and mortality of CKD
complications have brought a considerable burden on global
medical resources. A better understanding of CKD-related
complications might help optimize the diagnosis, prevention,
and management of CKD.

Cardiovascular Disease Based on CKD
CVD is a common complication in CKD patients, which is
negatively asssociated with the renal function (Herzog et al.,
2011). According to the American kidney data system report
published in 2013, for CVD patients, co-occurrence of CKD
might increase the risk of heart failure from 18.5 to 43% and the
risk of acute myocardial infarction from 6.4 to 15% (Diez Roux
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et al., 2016). In addition, a cohort study based on prospective
populations found that early CKD patients without vascular
disease were associated with a subsequent risk of coronary
heart disease (Briasoulis and Bakris, 2013; Zhang et al., 2019).
It has been found that risk factors attributed to impaired renal
function, such as inflammation, oxidative stress,
hyperphosphatemia, hypercalcemia, and secondary
hyperparathyroidism, could increase cardiovascular risk in
patients with renal disease (Frank et al., 2007).

Thus, accurate assessment of cardiovascular risk is critical to
the daily treatment decisions of patients with CKD. However,
conventional markers of myocardial injury, such as troponin
(Yeh Michoset al., 2014) or brain natriuretic peptide (Takase and
Dohi, 2014), may generally be chronically elevated due to the
decrease of clear renal function, which cannot accurately assess
the risk of cardiovascular events in patients with CKD. Therefore,
it is urgent to find more accurate new biomarkers. Currently,
several biomarkers have been found with great potential.

Galectin-3
As a beta-galactoside binding protein, Gal-3 is ubiquitous in cells
and it could be secreted into the extracellular space by epithelial
cells, endothelial cells, and macrophages (Wang and Guo, 2016)
in the kidney and heart. It had been indicated that Gal-3 could
play an important role in initiating cardiac fibrosis and
ventricular remodeling (Gleissner et al., 2017). Gal-3 could
modulate kidneys pro-inflammatory effects, regulate growth,
differentiation, proliferation of the cells and moreover mediate
aldosterone-induced fibrosis of the heart and blood vessels
(Calvier et al., 2013; Madrigal-Matute et al., 2014; Vergaro
et al., 2016). Furthermore, researchers have found that Gal-3 is
also highly expressed in injured kidneys and is involved in the
progression of renal fibrosis (Nikolic-Paterson et al., 20112014).
O’Seaghdha CM et al. found that higher plasma Gal-3 levels were
associated with a rapid decline in eGFR based on an analysis of
kidneys from 2,450 patients who were followed for an average of
10 years (O’Seaghdha et al., 2013). Considering its important role
in the progression of both cardiac and renal fibrosis, Gal-3 has the
potential to predict the risk and prognosis of CVD in patients
with CKD.

A postmortem analysis of a four-dimensional study of 1,168
diabetic HD patients showed that circulating Gal-3 levels were
negatively correlated with renal function and were four to five
times above the reference range; meanwhile, Gal-3 was associated
with cardiovascular events (Drechsler et al., 2015). Studies with
5,226 patients have confirmed that the level of Gal-3 increased by
1% and the risk of all-cause death increased by 37.9% in CKD
patients (Zhang et al., 2019). In summary, Gal-3 could be an
effective biomarker for predicting cardiovascular events in CKD.

Soluble ST-2
As amember of the IL-1 receptor family, ST-2 contains two forms
as soluble ST-2 (sST-2) and transmembrane ST-2 (ST-2L).
Elevated sST-2 might be highly associated with adverse
outcomes in patients with CVD, acute and chronic heart
failure, or even death (Dieplinger et al., 2014; Savic-Radojevic
et al., 2017). It has been approved by FDA as a new type of

biomarker for clinical use to evaluate risk stratification and
treatment guidance for patients with acute and chronic heart
failure (Aimo et al., 2017; Dalal et al., 2018).

In recent years, emerging evidence suggested its potential role
as a biomarker for predicting cardiovascular events in CKD. A
study confirmed that heart failure patients with elevated sST-2
and eGFR<60 ml/min/1.73 m2 had a significantly increased risk
of death (Bayes-Genis et al., 2013). A head-to-head comparison
study with Gal-3 in patients with chronic heart failure also
demonstrated that sST-2 performed better than Gal-3 and
could predict 5-year risk of cardiovascular death (Bayes-Genis
et al., 2014). The significant correlation between plasma sST-2
levels and the progression of CKD to ESRD was also confirmed in
a recent cohort study involving 219 patients who participated in
the German Chronic Kidney Disease (GCKD) study (Mirna et al.,
2020). All the evidence demonstrated the importance of sST-2 in
evaluating the cardiovascular risk of CKD.

Growth Differentiation Factor-15
As a member of the TGF-β cytokine family, GDF-15 is
widespread in mammalian tissues, including the prostate,
intestinal mucosa, and kidney (Unsicker et al., 2013). It has
been found to be involved in cancer, obesity, and
cardiovascular and kidney diseases (Nair et al., 2017). Previous
studies suggested that GDF-15 might take parts in tissue
inflammation, oxidative stress, and injured cardiomyocyte
repair and show anti-apoptosis and anti-hypertrophy effects
(Kempf et al., 2006).

Several clinical studies have found that higher levels of GDF-
15 are associated with poor prognosis, including CVD, heart
failure, and death in patients with CKD (Daniels et al., 2011; Breit
et al., 2012; Lindman et al., 2015; Bansal et al., 2019). Meanwhile,
GDF-15 is associated with CKD events and rapid decline in renal
function. Adding GDF-15 to clinical covariates could also
improve the prediction of CKD events (Ho et al., 2013). These
studies confirmed that the increase of GDF-15 may be a
physiological signal of early heart failure, and GDF-15 is
helpful in evaluating the risk of CVD in patients with CKD.

Diabetic Nephropathy
Diabetic nephropathy (DN) could occur in approximately
30–40% of patients with diabetes and also account for the
major cause of CKD (Tesch, 2017; Qi et al., 2018; Umanath
and Lewis, 2018). Hyperfiltration and albuminuria in the early
stage are the typical presentation of DN, followed by a progressive
renal function decline and eventually progressed to CKD (Sagoo
and Gnudi, 2020). Early diagnosis may prompt interventions and
improve prognosis. Recent researches have reported that
traditional risk factors such as proteinuria could not effectively
predict DN progression, particularly in GFR decliners without
increased albuminuria (Yamamoto et al., 2018). Consequently,
delayed initiation of clinical therapy might preclude adequate
prevention of progression to ESRD (Yamamoto et al., 2018).

Developing novel biomarkers is essential not only for
diagnosing high-risk patients and predicting disease
progression at the incipient stage but also for identifying new
players in the pathogenesis of glomerular injury in diabetes.

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7853757

Yan et al. Biomarkers of Chronic Kidney Disease

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Currently, several biomarkers have been extensively investigated
for predictive performance on early prediction and diagnosis of
DN (Gluhovschi et al., 2016).

CypA
CypA, a cytoplasmic protein, has isomerase activity and could
catalyze the trans-to-cis change of the peptide bond on the
proline residue (Hoffmann and Schiene-Fischer, 2014). CypA
could act as inflammatory mediators under the stimulation of
oxidative stress, inflammation, and hypoxia and participate in the
process of inflammation and apoptosis by affecting multiple
processes of transcriptional signal transduction (Sherry et al.,
1992; Kim et al., 2004; Suzuki et al., 2006). In the kidney, CypA
exists mainly in proximal tubules and renal tubular injury has
been proved to be the leading cause of proteinuria and
hyperfiltration of renal tissue in diabetic nephropathy
(Demeule et al., 2000; Zeni et al., 2017). Studies found that
plasma monocytes in patients with diabetes secrete a large
amount of CypA in response to hyperglycemia, suggesting that
CypA may be a potential secretory marker for T2DM
(Ramachandran et al., 2012). Therefore, it could be detected in
urine or plasma of patients with diabetes and may increase in
patients with DN.

In 2015, a cross-sectional study found the connection between
the concentration of urinary CypA and the progression of renal
function with good discriminatory power (sensitivity of 90.0%,
specificity of 72.7%, AUCs � 0.85) for diagnosing stage 2 DN;
therefore, the authors proposed that urinary CypA could act as a
new biomarker for early DN (Tsai et al., 2015). A cross-sectional
and longitudinal study showed that baseline plasma CypA was
positively correlated with changes in glomerular filtration rate for
patients with T2DM regardless of the cutoff level or persistent
level and could serve as indicators of renal disease progression in
T2DM patients (Chiu et al., 2018). In addition, another cross-
sectional study of 137 patients with T2DM also verified that CypA
has high accuracy in the early diagnosis of DN: AUCs of CypA
were 0.914 and 0.937, respectively, for the prediction of incipient
and overt DN (Abdel Ghafar et al., 2020).

Periostin
Periostin is an original member of the stromal cell protein family
(Frangogiannis, 2012). When binding to αVβ3-and α Vβ5-
integrins, periostin could activate a scaffold protein complex
with adaptor proteins and α-parvin (Wallace, 2019). In normal
tissue, ILK-PINCH-parvin (IPP) activates EMT and stimulates
the cellular signal pathway involved in tissue repair, thus
protecting the integrity of the extracellular matrix (Cobo et al.,
2016).

EMT is one of the key mechanisms involved in DN
development (Loeffler and Wolf, 2015); during EMT,
increasing mesenchymal biomarkers like periostin is very
characteristic (Conway et al., 2014). Previous studies have
shown that periostin could increase the expression of TGF-β,
one of the most important fibrotic factors that could directly
promote EMT and stimulate ECM synthesis, and therefore
induce extracellular matrix deposition (Gordon et al., 2012).
Interestingly, renal fibrosis and inflammatory mediators,

including TGF-β, angiotensin II, PDGF-B, and IL-4 and IL-13,
could upregulate the expression of periostin (Olsan et al., 2018).
The study also showed that the administration of TGF-β to
adrenal epithelial cells could increase the expression of
periostin and stimulate the transformation of renal epithelial
cells (Mael-Ainin et al., 2014). Therefore, it is reasonable to
believe that the positive feedback regulation between periostin
and TGF-β may play a key role in EMT, and abnormal
overexpression of periostin would lead to glomerulonephritis
and interstitial fibrosis and cause persistent damage to the
kidney in DN.

Recent studies have found that periostin could be an effective
tissue biomarker for predicting renal damage in patients with DN.
Periostin is not expressed in healthy adult kidneys (Satirapoj
et al., 2015); however, renal tubular epithelial cells would secrete a
high level of periostin to the renal tubule interstitial in response to
different severity of renal injury (Sen et al., 2011; Satirapoj et al.,
2012). Both experimental and clinical studies showed that
periostin might act as a key biomarker of DN. Increased
expression of periostin was positively related to the severity of
renal fibrosis in the mouse model of bilateral kidney and
unilateral ureteral obstruction (Um et al., 2017). In addition, a
significant increase in periostin was also found in the kidneys of
streptozotocin-induced diabetic mice after nephrectomy
(Satirapoj et al., 2012). An observational study involving 19
healthy controls and 71 DN patients found a strong positive
correlation between urinary albumin-creatinine ratio (UACR)
and urinary periostin levels, and the AUC of periostin for the
diagnosis of established microalbuminuria was 0.833, indicating
that periostin could be considered as reliable biomarkers in the
diagnosis of DN (El-Dawla et al., 2019). The study also found that
the level of urinary periostin was significantly higher than the
normoalbuminuria group, with the AUCs of periostin being 0.954
and 0.997, respectively, for the prediction of DN (Abdel Ghafar
et al., 2020). In addition, it has been found that the level of urinary
periostin was gradually increased for healthy controls and T2DM
patients with normal albuminuria, microalbuminuria, and
massive albuminuria; therefore, the increased level of urine
periostin could be detected in T2DM patients earlier than
significant albuminuria (Satirapoj et al., 2015). Therefore,
periostin could be regarded as a valuable urinary biomarker
for predicting early DN in patients with T2DM.

MicroRNAs
MicroRNAs are a group of non-coding RNA composed of 19–24
nucleotides (Zhou et al., 2014). miRNAs could cleave mRNA or
suppress the translation by interacting with the complementary
sequence in the 3′-untranslated region of its mRNA target,
followed by regulating gene expression (He and Hannon,
2004). They contributed to the physiological processes of cell
proliferation, differentiation, and death (Sayed and Abdellatif,
2011). The specific expression of miRNA has been found in the
development of many diseases, such as cancer and chronic
lymphoblastic leukemia (Khan et al., 2019; Javandoost et al.,
2020). Recent studies have found that the abnormal expression of
miRNAs is one of the important mechanisms of the occurrence
and development of DN (Ishii et al., 2020), and it may become a
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potential biomarker for predicting DN due to its specificity and
stability in body fluids.

Mir-192 is one of the earliest miRNAs that could regulate DN-
induced pathological pathways. It was highly expressed in renal
tissue and played a key role in renal development and
differentiation (Abdelsalam et al., 2019). Later experiments
showed that mir-192 could promote the fibrosis of glomeruli
and tubules (Mu et al., 2013). Putta et al. demonstrated that TGF-
β1 increased mir-192 levels in cultured mesangial cells and the
glomeruli of diabetic mice, while decreasing renal mir-192
resulted in decreased renal fibrosis and improved proteinuria
(Putta et al., 2012). It was also observed that in the early stage of
renal injury, mouse mesangial cells treated with TGF-β1 showed
upregulation of mir-192 and collagen α-2(I), and the mechanism
may be related to mir-192 downregulating the expression of
Smad-interacting protein 1 (SIP1) and δEF1 (also called
ZEB1) to control TGF-β1-induced type 1 collagen 2α
(COL1A2) and participate in the development of matrix
accumulation (Kato et al., 2007).

On the contrary, some opposite evidence indicated that low
mir-192 expression could be detected in tubular cells cultured
with high TGF-β1 and glucose, which is similar to the renal
biopsy samples obtained from patients with DN under decreased
eGFR and tubulointerstitial fibrosis (Kato et al., 2007;Wang et al.,
2010). It was also confirmed in cohort clinical trials that mir-192
levels in patients with large amounts of albuminuria were
significantly lower than those in patients with normal
albuminuria (Ma et al., 2016). Interestingly, a study observed
the expression level of mir-192 in EVs of patients with different
albuminuria levels (n � 80). The results showed that mir-192 was
positively correlated with albuminuria. The level of mir-192 in
EVs of the microalbuminuria group was significantly higher than
that of the normal albuminuria group and control group, and
mir-192 could distinguish the patients with normal albuminuria
from those with microalbuminuria (AUC � 0.802, p < 0.001). It is
proved that the significant increase of EVmiRNAs expression has
potential value in diagnosing early DN. The different results may
be caused by the multiple effects of miR-192 in the kidney, and its
anti-fibrotic and pro-fibrotic effects are obviously dependent on
the different regulatory roles of cells and in different stages of the
kidney disease (Jia et al., 2016). However, more evidence in vivo
and in vitro is needed to determine the significance of mir-192 for
DN early prediction.

It has been proved that the translation of superoxide
dismutase and p21-activated kinase could be inhibited by
mir-377 in blood, which could induce fibronectin
accumulation in DN (Wang et al., 2008). A study that
examined the levels of mir-377 in the blood showed that the
expression of mir-377 increased in T2DM patients and the level
of mir-377 was significantly related to the severity of
albuminuria. Furthermore, the AUC of mir-377 was 0.851 for
diabetic patients and healthy subjects, while the AUC of normal
albuminuria and abnormal albuminuria was 0.711 (Al-Kafaji
and Al-Muhtaresh, 2018). Therefore, blood mir-377 might also
be a promising biomarker for DN.

In addition, the decrease of mir-16 and mir-451-5p in the
kidney may downregulate the expression of IL-6 andMMP-9 and

therefore contribute to the pathogenesis of DN (Li et al., 2014; Xu
et al., 2014). Another experimental study showed that the level of
mir-451-5p in the urinary exosomal (UE) increased gradually in
diabetes induced by streptozotocin, while the rise of the miR-16
level was delayed comparatively (Xu et al., 2014). Therefore, the
UE mir-451-5p might be a more sensitive biomarker of DN.
Moreover, miR-200 families, including mir-200a, mir-200b and
mir200c, and mir-429 and miR-141, are considered to play an
important role in maintaining epithelial differentiation and have
an anti-fibrosis effect (Bracken et al., 2015). However, more
evidence is still needed to verify their value as early predictive
biomarkers of DN.

Mineral and Bone Metabolic Disorders
Based on CKD
It has been acknowledged that most CKD patients have a high
risk of bone and mineral metabolic disorders and other
extraosseous complications. Kidney Disease Improving Global
Prognosis (KDIGO) working group defined that CKD-induced
generalized disorders of mineral and bone metabolism as chronic
kidney disease-mineral and bone metabolic disorders (CKD-
MBD), and the term renal osteodystrophy used specifically to
describe CKD-MBD (Moe et al., 2006).

The most classic mechanism of CKD-MBD is secondary
hyperparathyroidism caused by decreased renal function
leading to phosphate retention, hyperphosphatemia, and
hypocalcemia triad (Gutiérrez, 2010). Researchers also
observed that with the change of eGFR, the fibroblast growth
factor 23 (FGF 23) levels increased significantly before the
changes in phosphate and parathyroid hormone (PTH) levels
(Isakova et al., 2011). FGF 23 could bind to FGF receptor (FGFR)
in the kidney and parathyroid gland through Klotho, followed by
playing an essential role in vitamin D and phosphate metabolism
(Kuro-o, 2010). In the early stages of CKD, high levels of FGF 23
attenuate hyperphosphatemia by increasing phosphate excretion
in proximal renal tubules and inhibit the production of 1,25(OH)
2D leading to a decrease in intestinal calcium absorption, which
aggravates secondary hyperparathyroidism (Miyamoto et al.,
2005; Isakova, 2012). Hyperparathyroidism caused by CKD
forms the accumulation of PTH in the body, triggering the
mobilization of calcium in bone and fibrous osteitis. Although
bone histomorphometry is considered the gold standard for
diagnosing CKD-MBD, its invasiveness, cost, limited
availability of sample techniques, and evaluation result in
limitations in the clinical application (Ott, 2008). Therefore,
discovering novel biomarkers related to bone
histomorphometry in blood or urine is essential for evaluating
CKD progression and could provide effective guidance for clinical
intervention.

Parathyroid Hormone
PTH, a single-chain hormone, is mainly produced in the
parathyroid gland and is considered to be the most classical
biomarker for estimating bone turnover by KDIGO. As a direct
regulator of bone formation, it could play an essential role in
vitamin D and phosphate metabolism (Ardawi et al., 2012). PTH
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could be metabolized into PTH fragments, which could be
measured by different PTH assays (Smit et al., 2019).

A lot of research has confirmed the effectiveness of PTH as a
biomarker of CKD-MBD. Monier et al. found that PTH-(1–84)/
C-PTH fragment ratio could be a predictor for bone turnover
(Monier-Faugere et al., 2001). A recent multicenter cross-
sectional retrospective diagnostic trial involving 492 dialysis
patients demonstrated the value of serum biomarker intact
PTH (iPTH) could distinguish between high bone formation
rate/bone surface (BFR/BS) and non-high BFR/BS (Sprague et al.,
2015). In addition to iPTH, the different biological effects of PTH
fragments provide a new target for accurate clinical diagnosis and
treatment of CKD-MBD patients, but its diagnostic value in
CKD-MBD needs more in-depth research (Chen et al., 2018).
However, the oxidation in the CKD process, the low reactivity of
parathyroid hormone, and the accumulation of inhibitory
C-terminal fragments at the target tissue level affect the
accuracy of PTH in evaluating CKD-MBD to a certain extent
(Katherine et al., 2010; Evenepoel et al., 2016). Nevertheless,
accurate determination of PTH is an important part of clinical
management for patients with CKD-MBD.

Activin A
Activin A is a multifunctional cytokine, which is the most
abundant transforming TGF-β family protein found in the
bone matrix. SakaiR et al. found that the expression of activin
A was related to bone resorption firstly (Sakai et al., 2000).

Previous studies have shown that activin A could stimulate
skeletal growth and inhibit activin signals (Peng et al., 2018).
Furthermore, it has been shown to enhance the activity of
osteoclasts, and the inhibitory effect of ligand trap RAP011 on
activin type IIA could inhibit osteoclast formation and bone
remodeling in CKD diabetic mice in vitro (Sugatani et al., 2017).
Another study demonstrated that using natural antagonists of
activin A inhibin in mice could lead to an increase in bone
mineral density (BMD) (Perrien et al., 2007). A recent cross-
sectional study involving 104 patients with CKD found that
activin A could reflect histomorphological parameters (BFR/
BS, Acf, ObS/BS, and OcS/BS) of bone turnover similar to
those of PTH and FGF-23. Interestingly, blood activin A levels
in patients with CKD increased earlier than those in PTH and
FGF-23, suggesting the role of activin A in evaluating early CKD-
MBD development (Lima et al., 2019).

Tartrate-Resistant Acid Phosphate 5b
TRAP5b is an enzyme mainly derived from osteoclasts
(Guañabens et al., 2019). It has been found that osteoclast-like
cells produce TRAP5b in cell lines differentiated by exposure to
an osteoblast-derived ligand receptor activator for NF-κB ligand
(RANKL) (Lv et al., 2015). TRAP5b could affect the function of
phosphate by separating it from the protein. Furthermore, it is the
only available useful biomarker reflecting bone resorption in
CKD patients regardless of CKD progression, hemodialysis, or
peritoneal dialysis (Shidara et al., 2008; Vervloet and
Brandenburg, 2017). However, the bone histomorphometric
evidence for its reliability as a biomarker of CKD-MBD is still
insufficient.

In addition to the biomarkers mentioned above, N-terminal
propeptide of procollagen-1, bone-specific alkaline phosphatase,
and C-terminal crosslaps of collagen-1 might also be of certain
value in CKD-MBD (Vervloet and Brandenburg, 2017).

PROGNOSTIC BIOMARKERS OF CKD

As a multifactorial disease, risk factors of CKD could play
different roles in different individuals and stages of the
disease. This indicated that the discovery of prognostic
biomarkers of CKD is crucial. Prognostic biomarkers could be
used to predict the likelihood of the clinical outcomes regardless
of the treatment. The development of prognostic biomarkers of
CKD is an important task for nephrologists, and it helps improve
the ability to identify patients with poor prognoses and improve
risk stratification and CKD diagnosis.

FGF23
FGF23 is a bone-derived phosphaturic hormone with the
physiological function of reducing the reabsorption of
phosphorus in the kidneys, reducing the secretion of renal
active vitamin D, and participating in the metabolism of
minerals. In the early stage of CKD, the elevated serum FGF
23 is an independent risk factor related to CKD progression,
ERSD, cardiovascular complications, and even death in CKD
patients in different stages. A low level of FGF 23, about 30 ng/L,
could be detected in the blood circulation under normal
physiological conditions. But in the ESRD stage, the level of
FGF23 increased more than 100 times higher than normal.
FGF23 cleavage process is affected in CKD progression.
Excessive accumulation of FGF 23 C-terminal could be
observed, and the ratio of FGF23 C-terminal to intact FGF 23
is increased. Excessively elevated FGF 23 disturbed calcium-
phosphate metabolism significantly, which increases the risk of
adverse events. The increase of FGF23 is one of the earliest signals
suggesting that FGF23 has the characteristics of CKD progression
biomarkers.

CVD is the main cause of death in CKD patients. Gutierrez
et al. (2009) have shown that FGF23 is significantly related to the
upgrade in the left ventricular mass index and left ventricular
hypertrophy, which is significantly associated with cardiovascular
risk. In addition, studies have found that elevated FGF 23 C
fragments are independently associated with the risk of
myocardial infarction (Seiler et al., 2010). For patients with
coronary artery disease, elevated serum FGF 23 is related to
higher mortality and cardiovascular events; even after traditional
cardiovascular risk factors, the concentration of serum C-reactive
protein and impaired renal function return to normal and this
association still exists.

In recent years, many studies have been done on the
mechanism of how FGF 23 is associated with the poor
prognosis of CKD. Experiments on rat cardiomyocytes (Faul
et al., 2011) proved that FGF23 could bind to FGFR
independently of Klotho and act on the calcineurin/activated
T cell nuclear factor signaling pathway, which leads to
pathological hypertrophy of cardiomyocytes. FGF23 could
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enhance and activate the renin-angiotensin-aldosterone system
(RAAS) by inhibiting the expression of angiotensin-converting
enzyme in the kidney and this effect is independent of other bone
mineral metabolism. Some studies (Gutiérrez et al., 2009; Faul
et al., 2011) investigated that the activation of RAAS caused by
FGF23 may be one of the mechanisms of left ventricular
hypertrophy. The stimulation of this pathway by FGF23 could
uniquely act on the FGFR 4 receptor in cardiomyocytes, then
prevent part of the function of FGFR, inhibit myocardial
hypertrophy-related genes, and slow down the process of
myocardial hypertrophy and myocardial fibrosis (Grabner
et al., 2015). In addition, some studies (Grabner and Faul,
2016) confirmed that the increased FGF23 and decreased
Klotho could jointly affect cardiac remodeling and promote
the progression of uremic cardiomyopathy. On the other
hand, FGF23 could lead to myocardial fibrosis through
β-catenin and TGF β (Hao et al., 2016). Large cohort studies
showed that high levels of serum FGF 23 are an independent risk
factor for new-onset atrial fibrillation (Mathew et al., 2014; Mehta
et al., 2016).

Furthermore, elevated FGF23 could reduce the level of
circulating active vitamin D, which is one of the mechanisms
of low vitamin D in patients with CKD. Low vitamin D levels have
also been shown to cause adverse events through various
mechanisms, including hypertension, vascular calcification,
increased propensity for infection, and the activation of the
RAAS system. It was found that the injection of FGF 23
would cause a rapid decrease in erythropoietin, suggesting that
FGF23 is also associated with renal anemia, one of the CKD
complications (Mathew et al., 2014). As FGF23 is strongly
associated with adverse outcomes in CKD, it would be a
promising biomarker for risk prediction or, even more
importantly, targeting FGF23 may be a strategy to improve
CKD outcomes.

Klotho
Klotho is a novel antiaging gene, which was identified by Kuro-o
in 1997. It could encode the secreted form (sKlotho) and
membrane-bound form (mKlotho) proteins (Liu et al., 2019).
Among them, sKlotho is believed to be a main active form that
could be detected in blood circulation. It is mainly involved in
regulating calcium and phosphorus metabolism and exerts anti-
fibrosis, anti-inflammatory, anti-oxidant, and other renal
protective effects (Hu et al., 2016). Cross-sectional studies have
shown that serum Klotho levels in CKD patients are related to the
degree of renal damage (Liu et al., 2019); the worse the renal
function, the lower the level.

The reduction of serum Klotho not only is related to kidney
damage but also increases the risk of progression to ESRD and the
risk of death in CKD patients. Studies have confirmed that Klotho
protein could inhibit the apoptosis of renal tubular epithelial cells
(Liu et al., 2015) and transdifferentiation (Liu et al., 2017) and act
on the kidneys in an autocrine or paracrine manner to exert anti-
inflammatory and anti-oxidant effects. Klotho could inhibit renal
interstitial fibrosis caused by epithelial-to-mesenchymal
transition and the apoptosis of distal tubule epithelial cells
mediated by tissue endoplasmic reticulum stress. Moreover,

the reduction of Klotho could cause factors such as oxidative
stress, inflammatory response, and apoptosis to damage kidney
function and promote the progress of CKD, then inducing the
poor prognosis of CKD. In other words, upregulated Klotho
could activate FOXO-mediated manganese superoxide dismutase
that leads to facilitating the removal of reactive oxygen (Sun et al.,
2019) and inhibiting the inflammation through suppressing the
processes of nuclear factor-κB-mediated inflammatory (Zhao
et al., 2011; Buendía et al., 2015). Furthermore, the level of
renal angiotensinogen and angiotensin II could be reduced
after Klotho supplementation, which contributes to the
amelioration of fibrosis in diabetic and adriamycin
nephropathy (Takenaka et al., 2017; Takenaka et al., 2019) by
targeting TGFβ-1/Smads and WNT/β-catenin signaling
pathways (Doi et al., 2011; Zhou et al., 2013; Takenaka et al.,
2019). In addition, Klotho supplementation could inhibit renal
fibrosis by suppressing the endoplasmic reticulum stress and
epithelial-mesenchymal transition (Liu et al., 2015; Liu et al.,
2017). With the advantage of the pleiotropic beneficial activities,
Klotho could be a novel biomarker and treatment target for renal
fibrosis (Zou et al., 2018).

Uromodulin
UMOD is a glycoprotein, also known as the Tamm–Horsfall
protein, and could be synthesized in epithelial cells. Recently, a
genome-wide association study had indicated the association in
single-nucleotide polymorphisms in the UMOD gene, which
codes eGFR and UMOD (Olden et al., 2014). The mutations
in the UMOD gene could result in the loss of the correct folding
ability of the synthesized uromodulin polypeptide chain, which
deposit in the endoplasmic reticulum and fail to synthesize
uromodulin with regulatory functions. At the same time, the
abnormal deposition of uromodulin could accelerate the renal
tubules’ apoptosis that leads to the loss of nephrons and causing
renal failure.

With the advantage of exclusive production by tubular
segment in the kidney, UMOD could be considered as a
biomarker with sizeable levels that could be detected in
normal urine (Youhanna et al., 2014; Hammond et al., 2016).
Observational studies in the general population had shown that
the level of urinary UMOD is positively associated with the eGFR,
markers of tubular transport, and kidney volume (Pruijm et al.,
2016). A fraction of UMOD, produced in the thick ascending
limb, could be released into the circulation (Scherberich et al.,
2018) and the concentration of serum UMOD is approximately
1,000 times lower than urinary levels. It is positively associated
with UMOD excretion and creatinine clearance in patients with
CKD (Steubl et al., 2016). The level of UMOD could be
considered a biomarker for tubule function, with the higher
levels reflecting the higher tubule function.

High UMOD excretion leads to lower serum levels, which
could activate the body’s immune function or enter the tissue
interstitium, especially the damaged renal tubules, and can be
combined with neutrophils to promote the synthesis of IL-8,
which could induce mononuclear cells to secrete IL-1β and TNF-
α, then increase the expression of IL-2 receptors and HLA class II
molecules on the surface of lymphocytes, finally lead to
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TABLE 1 | Summary of the progression and prognosis biomarkers of CKD.

Biomarkers Categories Expression Biological effects Application References

MMP-9 Endopeptidases Increase The inhibition of MMP-9 could reduce the
infiltration of neutrophils and other inflammatory
cells

Biomarker of renal
fibrosis

Wang H et al. (2019b)

MMP-2 Endopeptidases Increase The increase of MMP-2 per unit of urine led to a
decrease in eGFR (0.1 ml/min/m2) during the 38-
month follow-up

Biomarker of renal
fibrosis

Nadkarni et al. (2016)

MMP-7 Endopeptidases Increase Activate the Wnt/β-catenin signaling pathway after
renal injury

Biomarker of renal
fibrosis

Li et al. (2021)

MCP-1 Chemokine Increase The upregulation of MCP-1 was accompanied by
the activation of IκB/NF-κB signaling in CKD
patients with macroalbuminuria

Biomarker of renal
fibrosis

Feng et al. (2019)

DKK-3 Glycoprotein Increase Regulated the signal transduction of the Wnt/
β-catenin signal pathway and induce renal
tubulointerstitial fibrosis

Biomarker of renal
fibrosis

Lipphardt et al. (2019)

5-MTP Tryptophan metabolite Decrease Attenuated the expression of the pro-inflammatory
factor NF-κB p65 and its target gene products
MCP-1 and COX-2

Biomarker of renal
fibrosis

Chen D. Q et al. (2019a)

1-AP Polycyclic aromatic
hydrocarbon metabolites

Increase Activated of the aryl hydrocarbon receptor
signaling pathway

Biomarker of renal
fibrosis

Miao et al. (2020)

1-HP Polycyclic aromatic
hydrocarbon metabolites

Increase Activated of the aryl hydrocarbon receptor
signaling pathway

Biomarker of renal
fibrosis

Miao et al. (2021b)

IS Indole derivatives Increase Activated RAS system, induced cell senescence
and apoptosis, promoted EMT, thus accelerated
the progression of fibrosis, renal dysfunction,
and CKD

Biomarker of
gut–kidney axis
disorder

Kim et al. (2012); Sun et al. (2012);
Han et al. (2018)

PCS Transformation of cresol Increase Induced renal injury and fibrosis by inhibiting
Klotho gene expression, activating RAS/TGF-β
pathway, inducing EMT, and causing NADPH
oxidase-driven ROS

Biomarker of
gut–kidney axis
disorder

Sun et al. (2012)
Watanabe et al. (2013)

TMAO Byproducts of bacterial
metabolism

Increase Induced oxidative stress by inhibiting the
expression of the oxidative stress inhibitor SIRT1,
increasing H2O2, and reducing SOD activity

Biomarker of
gut–kidney axis
disorder

Ke et al. (2018)

Gal-3 Beta-galactoside binding
protein

Increase Modulated kidneys pro-inflammatory effects,
regulated growth, differentiation, and proliferation
of the cells, and mediated aldosterone-induced
fibrosis of the heart and blood vessels

Biomarker of CVD
based on CKD

Calvier et al. (2013);
Madrigal-Matute et al. (2014);
Vergaro et al. (2016)

sST-2 IL-1 receptor Increase Highly associated with adverse outcomes in
patients with CVD, acute and chronic heart failure,
or even death

Biomarker of CVD
based on CKD

Dieplinger et al. (2014);
Savic-Radojevic et al. (2017)

GDF-15 TGF-β cytokine Increase GDF-15 might take part in tissue inflammation,
oxidative stress, and injured cardiomyocyte repair
and show anti-apoptosis and anti-hypertrophy
effects

Biomarker of CVD
based on CKD

Kempf et al. (2006)

CypA Cytoplasmic protein Increase Acted as inflammatory mediators under the
stimulation of oxidative stress, inflammation, and
hypoxia and participated in the process of
inflammation and apoptosis by affecting multiple
processes of transcriptional signal transduction

Biomarker of DN
based on CKD

Sherry et al. (1992); Kim et al.
(2004); Suzuki et al. (2006)

Periostin Stromal cell protein Increase Increased the expression of TGF-β that could
directly promote EMT and stimulate ECM
synthesis and therefore induce extracellular matrix
deposition

Biomarker of DN
based on CKD

Gordon et al. (2012)

MicroRNAs Composed of 19–24
nucleotides

Increase/
Decrease

Cleaved mRNA or suppressed the translation by
interacting with the complementary sequence in
the 3′-untranslated region of its mRNA target,
followed by regulating gene expression

Biomarker of DN
based on CKD

He and Hannon, (2004)

PTH Single-chain hormone Increase Played an essential role in vitamin D and
phosphate metabolism

Biomarker of
CKD-MBD

Ardawi et al. (2012)

Activin A Transforming TGF-β
family protein

Increase Stimulated skeletal growth and inhibited activin
signal

Biomarker of
CKD-MBD

Peng et al. (2018)

TRAP5b Enzyme Increase Affected the function of phosphate by separating it
from the protein

Biomarker of
CKD-MBD

Lv et al. (2015)

FGF 23 Phosphaturic hormone Increase Acted on the calcineurin/activated T cell nuclear
factor signaling pathway that led to pathological
hypertrophy of cardiomyocytes

Prognostic
biomarkers of CKD

Faul et al. (2011)

(Continued on following page)
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inflammation, cause the deterioration of chronic kidney disease,
and affect the prognosis of CKD patients (Kottgen et al., 2010;
Satanovskij et al., 2017).

Recently, studies have indicated that the low level of serum
UMOD could be an indicator for the prevalence of kidney disease
and a predictor for the future decline of renal function. The risk for
CKD progression is inversely associated with the levels of serum
UMOD. Furthermore, it has been demonstrated that serumUMOD
could predict mortality independently from eGFR at baseline
(Delgado et al., 2017). The prediction of renal decline facilitated
by evaluating serum UMOD is valuable that the decrease of kidney
function is a marker for cardiovascular risk and mortality.

CONCLUSION AND OUTLOOK

Due to the complex etiology of CKD and the varying speed of
development during the hidden period of the disease, the lack
of tools for early identification of CKD progress and the lack of
effective intervention measures have resulted in CKD
becoming one of the fastest-growing causes of death in the
world. This article summarized the current CKD-related
biomarkers (Table 1), which have great potential in the
prediction, progress monitoring, and prognosis
improvement of CKD and its complications. However,
proteinuria and serum creatinine obviously could not be
replaced at present, which indicates that the novel
biomarkers still have some limitations. First, due to the
complex factors affecting the progression of CKD, a single
biomarker lacks sufficient diagnostic sensitivity and specificity
to reflect all the complexity of the underlying pathophysiology
and has limited clinical application value. Second, the
individual differences of biomarkers are obvious, which are
susceptible to the influence of many factors such as diet,
environment, and sampling time, leading to misjudgment of
the disease. Third, the high cost of biomarker detection and the
inconsistent detection methods also limit the clinical
application of the biomarkers. Therefore, CKD research
guided by the discovery of new biomarkers has attracted
more and more attention from scientists all over the world.
With the continuous discovery of new signal networks and
pathological mechanisms of CKD, the development of a set of
biomarkers with high sensitivity and specificity for different
stages of CKD and the joint evaluation of multiple biomarkers
have become a research hotspot.

With the advancement of bioinformatics and multi-omics
technology, in-depth research and development of ideal
biomarker clusters at different stages of CKD could make it
possible to construct a precise treatment system for CKD. At
present, CKD and its complications metabolomics research
reveals that the occurrence and development of CKD are
related to dysfunctions such as amino acid metabolism, TCA
cycle, and lipid metabolism (Chen et al., 2016; Wang Y. N et al.,
2019; Eddy et al., 2020). Amino acids and lipid metabolites could
be used as potential biomarkers for development. Proteomics
research has found that 273 peptides were differentially expressed
in the urine of CKD patients. The developed CKD273 classifier
(Good et al., 2010; Verbeke et al., 2021) has great potential in the
early diagnosis and prognosis of CKD. Large-scale clinical trials
are currently underway to evaluate its diagnostic efficacy. In
recent years, the development of single-cell transcriptomics
technology is expected to improve our understanding of
human biology more widely. The application of single-cell
transcriptomes to clinical biopsy samples and cells in urine to
the development of relevant cell biomarkers would improve the
accuracy of diagnosis and help make personalized predictions for
patients with kidney diseases (Stewart et al., 2020).

At present, how to screen out valuable biomarkers from a
large amount of metabolic data quickly and accurately is still
a difficult point. An effective biomarker for CKD would have
the following attributes (Tummalapalli et al., 2016): 1) it
could be detected in the early stage of the disease process; 2)
it could prognosticate CKD progression and mortality; 3) it is
cost-effective; 4) it is stable in sample solution; 5) it could be
tested in clinical labs timely; 6) it could represent different
pathophysiological pathways compared with traditional
markers.

More attention should be paid to the development process of
biomarkers. Through the integration of transcriptomics,
proteomics, and metabolomics data, combined with
histopathology-related data, through the construction of
machine learning-based big data analysis methods, high-
dimensional, descriptive, and quantitative CKD data could be
generated for accurate screening prediction and prognostic
biomarkers of different stages of CKD. On this basis, through
the development of corresponding detection technology, the “real
world” evaluation of biomarkers through long-term clinical
follow-up and the clinical value of biomarkers are clarified
through clinical data. The implementation of biomarkers in
CKD is highly anticipated in the future because they could

TABLE 1 | (Continued) Summary of the progression and prognosis biomarkers of CKD.

Biomarkers Categories Expression Biological effects Application References

Klotho Antiaging gene Decrease Inhibited the apoptosis of renal tubular epithelial
cells and transdifferentiation and acted on the
kidneys in an autocrine or paracrine manner to
exert anti-inflammatory and antioxidant effect

Prognostic
biomarkers of CKD

Liu et al. (2015); Liu et al. (2017)

UMOD Glycoprotein Increase Combined with neutrophils to promote the
synthesis of IL-8, induce mononuclear cells,
secrete IL-1β and TNF-α, then affect the prognosis
of CKD

Prognostic
biomarkers of CKD

Kottgen et al. (2010); Satanovskij
et al. (2017)
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provide information about the mechanism of kidney disease and
improve clinical practice. The ultimate goal would be to define
accurate functions and molecular classification of CKD
progression in the clinic and to target the disease process
using the right drugs so as to correctly improve the diagnosis,
prognosis and precise treatment of CKD patients.
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