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Statistical models for meal-level 
estimation of mass and energy 
intake using features derived from 
video observation and a chewing 
sensor
Xin Yang1, Abul Doulah2, Muhammad Farooq   2, Jason Parton1, Megan A. McCrory3, 
Janine A. Higgins4 & Edward Sazonov2

Accurate and objective assessment of energy intake remains an ongoing problem. We used features 
derived from annotated video observation and a chewing sensor to predict mass and energy intake 
during a meal without participant self-report. 30 participants each consumed 4 different meals 
in a laboratory setting and wore a chewing sensor while being videotaped. Subject-independent 
models were derived from bite, chew, and swallow features obtained from either video observation 
or information extracted from the chewing sensor. With multiple regression analysis, a forward 
selection procedure was used to choose the best model. The best estimates of meal mass and 
energy intake had (mean ± standard deviation) absolute percentage errors of 25.2% ± 18.9% and 
30.1% ± 33.8%, respectively, and mean ± standard deviation estimation errors of −17.7 ± 226.9 g and 
−6.1 ± 273.8 kcal using features derived from both video observations and sensor data. Both video 
annotation and sensor-derived features may be utilized to objectively quantify energy intake.

Accurate and objective assessment of dietary intake in free-living individuals is crucial in nutrition and health 
studies. Traditional methods of dietary assessment estimate include self-report methods such as food frequency 
questionnaires, 24-hour dietary recalls and weighed or estimated food intake records1. However, self-report based 
methods are susceptible to errors due to incorrect estimation of portions consumed, incorrect identification of 
food consumed1–3, either forgetting or intentionally not reporting some foods that were consumed, and, in the 
case of weighed or estimated records, interference with subjects’ normal eating behaviors4,5. Some studies have 
combined self-report with other technologies, such as audio reports6, photographic food records7, personal digi-
tal assistants8, and smart cards9, to improve the accuracy of dietary assessment. However, these methods still rely 
on self-report and therefore may also result in inaccurate estimation of food intake8,10.

In the past decade, several automatic food intake monitoring devices have been developed to address the 
shortcomings associated with self-report methods of assessing of dietary intake11. Some of the automated 
approaches for food intake monitoring include the use of acoustic sensors12, piezoelectric sensors, impedance 
measurements13, motion sensors14, cameras15 and hand gesture sensors16. These sensors enable monitoring of 
different aspects of eating such as bites, chews, swallows, and hand-to-mouth gestures. Swallowing and chewing 
patterns are dependent on the rheological properties and textures of the foods being consumed17. Therefore, 
features derived from sensor-monitored swallowing and chewing patterns can provide useful information about 
the food properties. In addition, some of the sensor-based approaches have been used for estimation of mass 
and energy intake. For example, an acoustic-based sensor system which monitored chewing sounds and the 
features derived from them were used to predict bite weight for three types of foods (potato chips, lettuce, and 

1Institute of Business Analytics, University of Alabama, Tuscaloosa, AL, United States. 2Department of Electrical 
and Computer Engineering, University of Alabama, Tuscaloosa, AL, United States. 3Department of Health Sciences, 
Boston University, Boston, MA, United States. 4Department of Pediatrics, University of Colorado, Anschutz Medical 
Campus, Denver, CO, United States. Correspondence and requests for materials should be addressed to E.S. (email: 
esazonov@eng.ua.edu)

Received: 16 April 2018

Accepted: 4 December 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-5000-0402
mailto:esazonov@eng.ua.edu


www.nature.com/scientificreports/

2SCIEnTIfIC REPOrTS |            (2019) 9:45  | DOI:10.1038/s41598-018-37161-x

apple) using linear regression models with prediction errors from 19.4% to 31%18. In19, a hand-gesture sensor 
was employed to estimate bite count, and energy intake was estimated through linear regression models and 
participant’s self-estimation. Mean estimation errors were −257.4 ± 790.2 kcal for participant self-estimates 
and 71.2 ± 562.1 kcal for the hand-gesture sensor. In20, the authors utilized features derived from audio sensors 
(zero-crossing rate, energy, spectral flux, etc.), motion sensors (zero crossing rates, temporal shape features, etc.) 
and food type to estimate the mass of food intake. The mean absolute percentage error was reduced from 127.3% 
(mean weight of food intake) to 35.4% (features included audio features, motion features, annotation features 
and food type). In our previous work, counts of chews and swallows were used to estimate the mass and energy 
content of individual food tems21 with the mean absolute percentage error of 32.2% ± 24.8%.

This study relies on video observation and annotation as an accepted gold standard for feeding studies18,22,23. 
Although video annotation based method is not realistic when applied to practical situations and large-scale 
analyses, many studies used it as a reference method13,21,24–27. The number bites and chews during food intake 
can be counted by observing jaw movement. The number of swallows can be counted by observation of the 
laryngopharynx during pharyngeal stage of swallowing. Our previous research showed higher than 0.95–0.98 of 
intra-class correlation coefficients between raters for detection and counting of bites, chews and swallows using 
video annotation28.

Sensors can provide valuable information about chewing rate and strength which is not available from video 
observations18,22,23. Features extracted from sensor signals can also provide information about the individual’s eat-
ing habits e.g. variations in chewing rate can be used to determine whether the individual is a linear or decelerated 
eater29. Similarly, swallow-related features such as swallow duration and swallowing rate can provide information 
about liquid and solid food swallowing30. Further, sensor-based features can provide information about the dura-
tion of eating during a meal31.

Models of mass and energy intake reported in the literature fall either under individually-calibrated or 
group-calibrated types. Individually-calibrated models are models built based on each participant separately. For 
example, in21, the coefficients of models to estimate the mass intake were estimated specifically for each individ-
ual. Group models are not built individually for each participant, but for all participants as a group. Examples of 
group models have been reported previously19,20,32,33. The advantage of group models is that they can be applied 
easily to new participants whereas individual models require building models for each new participant, which 
costs both time and money.

Most of the existing work on food recognition, and mass and energy intake estimation have been analyzed at 
the individual food item level (i.e. estimation for each food item in the meal)21,32,33. However, in real life, many 
foods are consumed simultaneously by mixing portions of several food items, therefore estimation of individual 
food items is less meaningful. Therefore, estimation of mass and energy intake at a meal level has more practical 
applications than estimation at food item level. However, very little work has been done to estimate mass intake 
or energy intake at the meal level.

Our long-term goal is to use sensor-based methods for objective assessment of energy intake and ingestive 
behavior. This study attempts to identify features of bites, chews and swallows that are most correlated to mass 
and energy intake and thus should be monitored by wearable sensors. The information obtained in this study is 
important to understand the performance of sensor based-methods and if features of the ingestion process are 
related to the mass and energy intake. The analysis was performed in the context of group-calibrated models of 
mass and energy intake for a whole meal with mixed food consumption.

Methods
Study population and design.  The study was performed at Clarkson University. Thirty participants, 15 
males and 15 females, were recruited. Participants had a mean age of 29 years (SD = 12, range = 19–58) with a 
mean body mass index (BMI) of 27.9 kg/m2 (SD = 5.5, range: 20.5–41.7). Individuals were excluded if they had 
difficulties of chewing and/or swallowing or had a disease associated with chewing or swallowing problems such 
as temporomandibular joint (TMJ) disease and dysphagia. The Institutional Review Board at Clarkson University 
approved the protocol, and all subjects read and signed informed consent form before participating. Data from 
two participants were excluded from analyses due to equipment failure.

Participants were randomly assigned to consume either breakfast, lunch, or dinner, with about one third of 
participants assigned to each. Participants were asked to undergo testing over four visits to the laboratory34. Each 
participant made two different meal selections from a wide variety of foods available at one of the cafeterias at the 
Clarkson University; one of the meals was consumed over each of three visits in order to measure intra-subject 
variability, and the other was consumed at the remaining visit. The order in which the meals were consumed was 
randomized. Overall, participants selected 110 distinct food items (both solid and liquids)25. The most frequently 
served foods included cookies, banana, apple, sandwich, salad, pasta, pizza, etc.21. Examples of typical foods pro-
vided are shown in Fig. S1. The food items were distributed from cafeteria and provided by Aramark Corporation, 
which is one of the largest food service providers in US. The ingredients of all food provided were known and 
available in the Aramark’s food composition database. Meals were consumed in the laboratory so that consump-
tion could be videotaped34 and annotated. During the experiment, foods were kept on a scale, except for the 
times the participants took the food off the scale for consumption. Research staff kept a record of mass of intake 
for each bite by recording the food weight before and after each bite, by a commercially available scale with 1 g 
precision. The energy content of the consumed foods was established by a nutritionist who entered the food type 
and weight data into the nutritional analysis software, Nutrient Data System for Research (NDS-R, University of 
Minnesota, Minneapolis, MN) as described in21. While eating the meal, participants wore a piezoelectric strain 
sensor (LDT0–028K, Measurement Specialties Inc. VA, USA), which was attached below the outer ear and cap-
tured jaw movements during food intake24,25. The video was manually annotated by experienced research assis-
tants (different individuals from the assistants who conducted experiments) by marking each bite, chewing bout, 
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and swallow associated with food consumption using custom-designed software21,34. The use of video annotation 
as the gold standard for studies of eating behavior demonstrated repeatability and reproducibility of the resu
lts13,21,25–27,35. The research assistants also recorded information about the food physical properties (i.e. liquid or 
solid). All methods were performed in accordance with the relevant guidelines and regulations.

Features extracted from video observation and sensor signal.  Several features, such as numbers 
and time stamps of bites, chews and swallows as well as mass intake of each bite, were available directly from 
the video annotations (Fig. S2). Two dependent features (mass and energy intake) and fifty-seven independent 
features (predictors) were derived from features produced from video annotation and sensor signal. Among the 
independent features, fifteen features were derived from video annotation for chews, six features were derived 
from video annotation for bites, nine features were derived from video annotation for swallows, four features were 
derived from video annotation for pauses between ingestion bouts, and twenty-three features were derived from 
sensor signals. An illustration of the microstructure of eating including bites, chewing sequences and swallows is 
shown in supplemental Fig. S2.

Dependent features.  Total mass of intake for beverages and solid foods were recorded separately. Mass of 
intake was directly measured using a weighed food record which is the gold standard methodology. The mass of 
each individual food consumed was summed to calculate the total mass intake of the meal, including both bev-
erages and solid foods. Energy intake of the meal was estimated by calculating the product of mass and energy 
density for the summed mass of each food. The energy density of each food item was extracted from the nutri-
tional analysis by NDS-R21.

Independent features derived from video observations.  Bite features.  Bite features derived from 
video observations included total bite counts per meal (total_bite), bite rates, and instantaneous bite frequency 
(IBF). Two different bite rate features were calculated: total bite counts divided by eating time (avg_biteRate_
Teating) and total bite counts divided by meal time (avg_biteRate_Tmeal). For IBF features, we first calculated 
the durations between successive bite events within a meal. Then IBF was calculated by the reciprocal of each 
duration. Then the mean, SD, and variance of IBFs were obtained for each meal (avg_IBF, sd_IBF, and var_IBF).

Chewing features.  The meal-level features included the number of chewing sequences (chews_seq), the total 
chew count in a meal (total_chews) and three meal-level chewing rates that were calculated as the total chew 
number within a meal divided by chewing duration, eating duration and meal duration respectively (chewRate_
Tchewing, avg_chewRate_Teating, avg_chewRate_Tmeal). The features derived from individual chewing sequences 
included mean, SD, and variance for the following variables: number of chew counts per chewing sequence (avg_
chews_perSeq, sd_chews_perSeq, var_chews_perSeq); duration of each chewing sequence (avg_chews_du_perSeq, 
sd_chews_du_perSeq and var_chews_du_perSeq); chewing rate for each chewing sequence (avg_chewRate_perSeq, 
sd_chewRate_perSeq, var_chewRate_perSeq).

Swallowing features.  The meal-level swallowing features included the total swallow count per meal (total_swal-
low) and two swallowing rates that were defined as the total swallow count divided by eating duration and meal 
duration, respectively (avg_swlRate_Teating and avg_swlRate_Tmeal). The average, standard deviation and var-
iance of instantaneous swallowing frequency (ISF) within a meal (avg_ISF, sd_ISF, var_ISF) and swallow count 
between successive bites (avg_swl_bite, sd_swl_bite, var_swl_bite) were also calculated.

Pause features.  Pause duration within a meal was defined as the time between the consecutive ingestion events 
(Supplemental Fig. S2). Total pause duration (total_pause_du) was calculated by summing all pause durations 
within a meal. The average, standard deviation and variance of pause durations were also obtained (avg_pause_
du, sd_pause_du and var_pause_du).

Sensor features.  The Information about signal strength and chewing frequency was obtained from chewing 
sensor data. These features were derived from each chewing bout (based on the video annotations) of the sensor 
signal. Total and average values of features were computed over the meal level. These sensor features included the 
number of mean crossings, duration between mean crossings, entropy, waveform length, mean amplitude, peri-
ods from autocorrelation function, power of the signal and maximum frequency present in the signal spectrum. 
A detailed description of these features is given in supplemental Table S1.

Statistical analysis.  Using multiple linear regression analysis, two sets of models were developed, one for 
mass intake per meal and another for energy intake per meal derived from the weighed records as the dependent 
variables. Based on the type of features used in the models, five models were built: full model, bite model, chew 
model, swallow model and sensor model. All available features were included in the “full model”, while bite, chew, 
swallow, and sensor models were built by using bite, chew, swallow, and sensor features. For each model, we 
first used the forward selection procedure to select the most important features from the initial set of fifty-seven 
features using mean absolute percentage error as the criteria. The selected independent features (from one to six 
features per model) were then used to build multiple linear regression models with their intercepts set to 0 to 
predict mass intake and energy intake with a leave-one-subject-out cross-validation36. In this cross-validation 
procedure, data from the meals consumed by each participant were used as validation data whereas data from the 
remaining meals of 27 participants were used as the training data. The reporting errors for mass and energy were 
computed as follows:
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Actual value
absolute percentage error 100% ,ij
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where i is ith participant and j is jth meal of the ith participant, estimated values is the value (mass or energy 
intake) computed by the model, and actual value is the value (mass or energy intake) obtained from weighed food 
records.

The mean and SD of absolute percentage errors for each model were calculated. We also calculated the bias, 
limit of agreements and their corresponding 95% confidence intervals for Bland-Altman plots37. Bias (also called 
mean estimation error) was defined as mean difference between estimated mass or energy intake from models 
and actual mass or energy intake. Limit of agreement (LOA) were defined as bias ±1.96 SD and confidence inter-
val for LOA was calculated as ± −LOA tn

SD
n1

3 2
. The 95% confidence interval for bias was calculated as 

± −Bias tn
SD

n1
2 38. Statistical analysis was conducted using SAS 9.4 (SAS institute, Cary, NC). A p-value of 0.05 

was accepted as statistically significant.

Results
Models performance for estimating mass intake.  Table 1 shows the mean and standard deviation of 
absolute percentage errors and biases for the full, chew, bite, swallow, and sensor models estimating mass intake 
of a meal. The full model had the lowest mean absolute percentage error (mean = 0.252, SD = 0.189). The mean 
and standard deviation of bias were −17.67 and 226.9 g. The Bland-Altman plots showed a LOA of −462.1 g and 
427.1 g (Table 1), and the bias was not significant since the confidence interval covered 0 (Fig. 1a). Five inde-
pendent features were selected to minimize mean absolute percentage error: total bite count per meal, average 
pause duration, variance of chew duration per chewing sequence, variance chew number per chewing sequence, 
and average total entropy. The total number of bites per meal has the most statistically significant coefficient (t 
value = 10.73, p < 0.0001) with about 11 g of mass intake increase for one extra bite (Table 2).

Models performance for estimating energy intake.  Table 3 shows the mean and standard devia-
tion of absolute percentage errors and biases for the full, chew, bite, swallow, and sensor models estimating the 
energy intake of a meal. Again, the full model had lowest mean absolute percentage error (mean = 0.301 kcal, 
SD = 0.338 kcal) and smallest bias (Mean = −6.095 kcal, SD = 273.75 kcal). The Bland-Altman plots also showed 
the narrowest limit of agreement (lower = −542.6 kcal, upper = 530.5 kcal), and the bias for full model was not 
significant since the confident interval covered 0 (Fig. 2a). Six independent features were selected to minimize 
mean absolute percentage error: Standard deviation of chewing duration per chewing sequence, Standard devi-
ation of instantaneous swallow frequency, Standard deviation of number of chews in a chewing sequence, total 
pause duration, variance of amplitudes of sensor signals across all chewing bouts, and average pause duration per 
meal. The standard deviation of chewing duration had the most statistically significant coefficient (t value = 6.07, 
p < 0.0001) with about 198.7 kcal of energy intake increase for one unite increase in this feature (Table 4).

Discussion
We employed forward feature selection using absolute percentage error as the criterion to screen for useful fea-
tures during our multi-factorial modeling process. We found that for both mass and energy intake, models which 
combine video observation features and sensor features presented the lowest absolute percentage errors with a 
mean underestimation of 7.7 g and 6.1 kcals for mass and energy intake per meal, respectively. The root MSEs of 
these models suggested that, for individuals, meals could be predicted within ±212 g and ±251 kcals, approx-
imately 58% and 69% of actual intake. Because our models are derived from group eating characteristics (vs 
individual characteristics), and because a wide variety of foods was included, our models are expected to be more 
generalizable than those from previous studies. Our work, though carried out under controlled laboratory condi-
tions, holds potential for predicting mass intake and energy intake in free living situations.

In our full models, which contained information from both the video observation and the wearable sensor, 
we found that bites, chews, and within-meal pauses were important for estimation of both mass and energy 
intake. The total number of bites was selected in the mass model and this was expected as initiating a bite is the 

Relative 
reporting error

Mean estimation 
error Lower 

LOA
Upper 
LOA PredictorsMean SD Mean SD

Full 0.252 0.189 −17.665 226.901 −462.391 427.061 total_bite avg_pause_du avg_Total_Entropy VAR_
chews_du_perSeq VAR_chews_perSeq

Chew 0.291 0.282 −1.186 230.42 −452.808 450.437 chewRate_Tchewing total_chews_du avg_chewRate_
Tmeal total_chews VAR_chewRate_perSeq

Bite 0.292 0.221 −39.669 266.946 −562.884 483.546 total_bite

Swallow 0.266 0.212 −0.698 210.725 −413.72 412.323 SD_ISF var_ISF total_swallow avg_swlRate_Tmeal

Sensor 0.342 0.42 −8.627 252.591 −503.706 486.452 avg_pwr_dB avg_Waveform_Length avg_pwr

Table 1.  Mean absolute percentage errors and mean estimation errors for mass intake models. All values are in 
g. Note: SD, standard deviation; LOA, limit of agreement; features, features selected from forward selection.
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first physical step of food intake. In this work, the bite was defined as an event when food as actually placed in 
the mouth, which is an important differentiator from hand gesture/wrist motion used in some studies19. The 
hand-to-mouth gestures (e.g. a gesture to use a napkin) may be confused with bites, therefore use of actual bites 
is potentially more accurate.

Chewing-related features selected by the full model were variation of chewing duration and number of chews 
per chewing sequence. Chewing is a reliable indicator of solid food intake and because sucking requires a jaw 
motion similar to that of chewing, could also potentially be used for liquid intake events that use sucking as 
the way of consumption (e.g. consuming liquids through a straw)39. Chewing duration and chew counts are 
influenced by the amount of food in the mouth and texture (rheological properties) of the food consumed and 

Figure 1.  Bland-Altman plot of estimated and actual mass intake based on models. (a) full model; (b) chew 
model; (c) bite model; (d) swallow model; (e) sensor model.
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therefore chewing data provides valuable information about the mass, and, potentially, energy density of the food 
being consumed.

Within meal average pause duration was also found to be significant for predicting mass intake per meal. The 
pause duration is an indication of the eating rate and the environment/conditions in which food is being con-
sumed (i.e. group setting or eating alone) and both have been found to have a relationship with the amount con-
sumed. The study of40 investigated the effect of within meal pauses among 16 subjects and found that the subjects 
consumed more when there were within meal pauses compared to no pauses. Our results support the hypothesis 
that duration of within meal pauses has predictive power for estimation of mass and energy intake.

For chew only models, chewing rate, chew counts and chewing duration related features were selected by 
the forward feature selection procedure (Tables 1 and 3). The chewing rate varies between individuals and food 
properties such as composition, structure, volume, size and shape. Typically, hard foods (e.g. carrot, peanuts) 
would require more chews with higher chewing force compared with soft foods (e.g. cake). Chewing rate also 
contributes to eating rate and therefore is significantly correlated with the total amount of food consumed. A 
recent study41 showed that a faster rate of eating increased the mass and energy intake within a single meal. 
Similarly total chew counts per meal has been shown to have a relationship with total mass consumed in a single 
meal experiments42. We note that the method has proportional errors shown in Bland-Altman plots especially in 
the mass intake models using chew and sensor features. It may relate to the way that how foods were eaten. For 
example, people may eat larger piece of food with fewer chews than expected, which may cause underestimation 
of mass intake for those models based on chews and chewing-related sensor features. However, this is only a 
hypothesis since eating activity is complex and varies among individuals. Further studies are needed to test the 
hypothesis and investigate how food characteristics affect chews, bites and swallows features in order to improve 
our current models.

The bite model selected the total number of bites as the best predictor of mass intake. In the case of the swallow 
only model, total number of swallows, swallow rate, and instantaneous swallow frequency related features were 
selected. Since swallowing is necessary to consume food, we expected swallowing to be one of the most significant 

Features Coefficient SE t value P value Adj R2 Root MSE

Full

total_bite 10.951 1.022 10.731 <0.0001

0.924 211.6

avg_pause_du 23.186 4.535 5.118 <0.0001

VAR_chews_du_perSeq 8.011 2.466 3.251 0.0020

VAR_chews_perSeq −2.744 1.268 −2.166 0.0376

avg_Total_Entropy −0.694 0.757 −0.921 0.3749

Chew

chewRate_Tchewing 617.990 63.245 9.782 <0.0001

0.922 214.2

total_chews_du 2.338 0.326 7.175 <0.0001

avg_chewRate_Tmeal −621.501 123.337 −5.046 <0.0001

total_chews −1.081 0.200 −5.421 <0.0001

VAR_chewRate_perSeq −1181.820 605.355 −1.954 0.0588

Bite total_bite 15.056 0.520 28.971 <0.0001 0.885 259.1

Swallow

SD_ISF 5859.918 752.220 7.796 <0.0001

0.932 199.2
var_ISF −11453.700 1864.199 −6.151 <0.0001

total_swallow 2.805 0.559 5.031 <0.0001

avg_swlRate_Tmeal −1581.440 681.174 −2.325 0.0285

Sensor

avg_Waveform_Length 19.765 5.939 3.344 0.sss0020

0.898 244.4avg_pwr 1916.531 693.078 2.871 0.0154

avg_pwr_dB −943.763 1141.817 −0.864 0.3954

Table 2.  Model coefficients for mass intake models. Note: SE, standard error; Adj R2, adjusted R square; Root 
MSE, square root of mean square error.

Relative 
reporting error Mean estimation error

Lower LOA
Higher 
LOA PredictorsMean SD Mean SD

0.301 0.338 −6.095 273.75 −542.644 530.455 SD_chews_du_perSeq SD_ISF SD_chews_perSeq total_
pause_du avg_var_Amplitude avg_pause_du

Chew 0.413 0.533 −25.932 293.763 −601.707 549.844 SD_chews_du_perSeq VAR_chews_perSeq

Bite 0.48 0.587 −53.795 372.226 −783.358 675.768 total_bite

Swallow 0.471 0.456 −84.113 393.468 −855.31 687.084 SD_ISF

Sensor 0.51 0.825 −49.798 449.729 −931.266 831.671 avg_zero_crossings avg_Spectral_energy

Table 3.  Mean absolute percentage errors and mean errors for energy intake models. Note: SD, standard 
deviation; LOA, limit of agreement; features, features selected from forward selection.
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predictors of total intake. The frequency of swallowing significantly increases during food intake compared with 
spontaneous swallowing, and therefore, is a reliable indicator of ingestion.

Mass intake and energy intake models were predicted by comparable features in our chew, bite and swallow 
models. In energy intake full models, more swallow related features were selected and the bite features were not 
selected, whereas other selected features were similar. One potential reason could be related to the food items 
present in the meals comprising of both solid foods and caloric beverages. Swallows play an important role in all 
food intake related events irrespective of their liquid, semi-solid, or solid state whereas bites are not necessary 
for liquid ingestion. There is a positive relationship between number of swallows and the energy content of the 
ingested food. This relationship is poorly understood and requires further investigation.

Figure 2.  Bland-Altman plot of estimated and actual energy intake based on models. (a) full model; (b) chew 
model; (c) bite model; (d) swallow model; (e) sensor model.



www.nature.com/scientificreports/

8SCIEnTIfIC REPOrTS |            (2019) 9:45  | DOI:10.1038/s41598-018-37161-x

Compared with our previously reported individual Counts of Chews and Swallows (CCS) models derived 
from the same dataset but using individual prediction methods, our current group models (participant inde-
pendent) achieved similar accuracy (mean absolute percentage error 30.1% for current full model and 30.42% for 
CCS model by Fontana et al.21). Compared with the individual CCS model by Fontana et al., our energy intake 
mode has slightly wider limits of agreement (Lower LOA = −542.644; Upper LOA = 530.455; SD = 273.75 kcal) 
(Fig. 2). The models presented in this paper were built on all participants rather than calibrated to each individual 
participant which increases the generalizability and account for inter-person variability in eating habits.

One of our motivations is to use wearable sensors that carry lesser burden compared to other methods, includ-
ing multimedia (image) diaries. Significant information may be obtained from sensors for features that describe 
eating behavior (such as eating rate) that are not available from images24,25,43. There are several other studies which 
have proposed use of sensor data for estimation of mass and energy intake. For example, the combination of audio 
and motion sensors with video annotation and ground truth food type achieved a mean absolute percentage error 
of 35.4% for solid food and 47.2% for liquid food20. Another relevant work used acoustic signals for bite weight 
estimation for only 3 food items where the prediction error varied from 19.4% to 31%18. However, in18, both the 
number of food items and the number of participants (8 participants, single visit) were small.

Strengths and Limitations.  The innovation of this study was exploration of features describing bites, 
chews and swallows during the meal in the context of their predictive ability to estimate mass and energy intake. 
Such analysis is potentially useful in considerations of sensor choices. In the present study, we tested the models 
on a wide range of foods with a variety of physical characteristics while in other studies the food variety is lim-
ited12,18. Another difference between this work and our previous work34 is that mass and energy intake estimation 
is on the meal level compared to the food item level. A meal usually consists of multiple foods and people often 
mix them during eating44. Although meal level estimation is more difficult than item level estimation because of 
the greater variability of the food present (in mass and energy content), our models results are comparable to pre-
viously reported results21. We further presented energy intake estimation models directly trained on the features 
extracted from the video and sensor signals without the need of first estimating mass. This approach is different 
from our previous study where mass and energy density of food (known food type) were used to compute energy 
intake21. The average percentage error in estimation of energy intake is close to the error for mass intake (30.1% 
compared to 25.2%). The estimates of ingested mass are potentially useful in combination with computer vision 
methods, which most frequently attempt to estimate volume (portion size) from a single pose image, which is an 
ill-posed problem unless special actions are taken by the user, such as placing a fiducial marker into the view of 
the camera. The wearable sensor may provide independent estimates of food portion size or refine image-based 
estimates. Similarly, the sensor-based estimates of energy intake may be used as points of comparison in field 
experiments where the ground truth for ingested energy is not available.

However, because our study was laboratory-based, the results cannot be directly extended to 
community-dwelling conditions. Therefore, future experiments will involve the testing of the models on data col-
lected during multi-meal experiments collected in free living situations. Although video observation and annota-
tion as used in this manuscript is highly accurate in counting chews, bites and swallows, we do not suggest it as a 
method to measure energy intake in practical situations, rather our approach is to use wearable sensors to detect 
and characterize bites, chews and swallows, potentially in combination with an egocentric wearable camera that 
could capture the foods being eaten. Also, the nature of the sensor (piezoelectric strain sensor) we used for mon-
itoring chewing presented a limitation. The sensor was required to be attached to the skin via medical adhesive, 
which limited the long term use of the sensor. Since the sensor used can detect only chewing, sensor information 
was not available for liquids consumed by themselves (i.e., swallowing only events that do not require chewing). 
However, as the sensor technology develops, we are improving the sensors. For example, since the study was con-
ducted, we have reported on user-friendly sensors not needing an adhesive attachment that can provide the same 
chewing information as the piezoelectric strain sensor used in this study45.

Features Coefficient SE t value P value Adj R2 Root MSE

Full

SD_chews_du_perSeq 198.705 32.796 6.070 <0.0001

0.899 250.8

SD_ISF 1254.155 249.931 5.022 <0.0001

SD_chews_perSeq −83.250 24.772 −3.372 0.0021

avg_var_Amplitude 29587.910 10688.730 2.785 0.0079

total_pause_du 0.460 0.167 2.768 0.0082

avg_pause_du −10.364 9.147 −1.138 0.2717

Chew
SD_chews_du_perSeq 232.011 17.166 13.528 <0.0001

0.872 283.1
VAR_chews_perSeq −6.561 1.319 −4.986 <0.0001

Bite total_bite 14.691 0.727 20.226 <0.0001 0.790 362.1

Swallow SD_ISF 3390.149 184.261 18.410 <0.0001 0.757 389.6

Sensor
avg_zero_crossings 13.773 0.940 14.670 <0.0001

0.794 359.0
avg_Spectral_energy 105577.600 23307.070 4.494 <0.0001

Table 4.  Model coefficients for energy intake models. Note: SE, standard error; Adj R2, adjusted R square; Root 
MSE, square root of mean square error.
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Future Directions.  Future studies will involve the evaluation of the proposed models in multi-day and 
multi-meal free-living experiments, where models will be trained to estimate mass and energy intake over several 
meal types (including breakfast, lunch, dinner and snacks within and among participants). This approach will 
ensure the practical usability of the developed models for application to real life eating events.

Methods need to be developed to determine food type and improve estimation accuracy. The accuracy of 
food type recognition can be substantially improved by employing imaging techniques such as wearable cameras. 
Potential directions include combining emerging computer vision methods to provide recognition of food type 
and energy density with sensor methods that provide independent estimates of mass and energy intake. The food 
intake recognition from analysis of the sensor signals may also be used to trigger a wearable camera during food 
consumption and thus provide a completely passive method for energy intake measurement. Our future work will 
add image recognition and sensor-based models.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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