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Abstract
Although gap junctions are widely expressed in the developing central nervous system, the

role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in

adults is largely unknown. We investigated whether gap junctions are expressed in the

mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker

on the walking-like activity induced by NMDA or glutamate in an in vitromudpuppy prepara-

tion. We found that glial and neural cells in the mudpuppy spinal cord expressed different

types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37

(Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three

different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) sub-

stantially and consistently altered the locomotor-like activity in a dose-dependent manner.

In contrast, these blockers did not significantly change the amplitude of the dorsal root

reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselec-

tively in the spinal cord. Taken together, these results suggest that gap junctions play a sig-

nificant modulatory role in the spinal neural networks responsible for the generation of

walking-like activity in the adult mudpuppy.

Introduction
Gap junctions are specific structures that link the cytoplasm of adjoining cells and enable direct
electrical communications between them. Early in development, intercellular electrical cou-
pling through gap junctions is primarily involved in neurogenesis and axonal targeting [1–3].
At later stages, electrical coupling between neurons contributes to the generation of rhythmic
activities in neuronal networks [4–5]. Electrical coupling tends to synchronize spontaneous
activities in different brain regions including the neocortex [6, 7], cortex [5, 8], brainstem [9],
embryonic retina [10], and the spinal cord [11–12]. Although their roles in development have
been extensively studied, much less is known about their function in adult spinal cord [13].
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The in vitro forelimb-spinal cord preparation from the adult mudpuppy provides a unique
opportunity to address this important question. It generates robust and stable walking-like
activity that can last for several days [14–19]. The locomotor-like activity is induced by NMDA
or glutamate and is manifested as alternating flexion and extension of the forelimb around the
elbow joint and alternating electromyographic (EMG) bursts between the elbow flexor and
extensors. The mudpuppy spinal cord may also express gap junctions as suggested by indirect
anatomical and electrophysiological evidences [20, 21]. Immunohistochemistry studies suggest
that gap junctions expressed in the mudpuppy retina are composed of proteins similar to those
found in mammals such as mouse, rat, and human [21, 22]. Pharmacological agents that
inhibit electrical coupling in mammals, also inhibit gap junction communication in the mud-
puppy and other amphibians [21, 23–26].

In this study we addressed two fundamental questions. Are gap junction proteins expressed
in the spinal cord of the adult mudpuppy? If they are expressed, do they contribute to the neu-
ral networks for walking? Using immunohistochemistry, we demonstrated that several connex-
ins were expressed in the adult mudpuppy spinal cord. Using four gap junction blocks from
three different classes, we demonstrated that gap junctions function to regulate the rhythmicity
and amplitude of locomotor-like activity.

Materials and Methods

Animals
A total of 34 mudpuppies were used for the experiments: 6 for gap junction immunohis-
tochemistry and 28 for pharmacological experiments. We only used adult animals with body
lengths of 20–30 cm, which indicate the maturity of the animals [14–19]. The experimental
protocols were approved by the Animal Care and Use Committee (IACUC) of the Cleveland
Clinic.

Immunohistochemistry analysis
Immunohistochemistry was performed according to manufacturer’s instructions and the pro-
tocols described [27]. Animals (n = 6) were anesthetized by bath application of tricaine metha-
nesulfonate (MS222) (1.5 g/L) (Sigma, St. Louis, MO) and a dorsal laminectomy was
performed on the first six segments of the spinal cord. Segments 1–5 of the spinal cord were
removed and fixed with 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) for 2 hours
at room temperature. The tissue samples were cryoprotected in 30% sucrose overnight at 4°C.
The sections were rehydrated and then blocked with 0.3% Triton X-100 and 3% normal goat
serum for 45 to 60 min. Then the slides were incubated overnight at 4°C with the primary
antisera directed against mammalian connexins: Cx32 (Alpha Diagnostic, San Antonio TX,
USA; Catalog # CX32A11-A), Cx36 (Invitrogen, Carlsbad, CA, USA; Catalog # 36–4600),
Cx37 (Alpha Diagnostic; Catalog # CX37A11-A) and Cx43 (Alpha Diagnostic; Catalog #
CX43B12-A). Then, the slides were washed with the incubation buffer and the primary anti-
bodies were visualized by incubating for 45 min with Alexa Fluor 488 conjugated goat anti-rab-
bit antisera (1:1000–1500, Invitrogen, Catalog # A11008). For co-localization of connexin with
the astrocyte marker glial fibrillary acidic protein (GFAP), the sections were simultaneously
labeled with primary antisera directed against one of the connexins and chicken anti-GFAP
(Millipore, Billerica, MA, USA, Catalog # AB5541). The anti-GFAP was visualized with Texas
Red conjugated goat anti-chicken (Jackson Immunoresearch, West Grove, PA, USA, Catalog #
103-075-155). The sections were washed with PBS and coverslipped using Vectashield mount-
ing medium (Vector Laboratories, Burlingame, CA, USA) containing DAPI and were viewed
under a Leica DM5500 B upright microscope with fluorescent optics and Leica TCS-SP spectral
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laser scanning confocal microscope. Control sections were handled in a similar manner except
that the primary antisera were not added to the incubation buffer. Images were captured using
a CCD video camera and QCapture Pro imaging software from QImaging (Surrey, BC,
Canada).

In vitro preparation
The spinal cord-forelimb preparation was described elsewhere [14–19, 28–30]. Briefly, animals
(n = 28) were anesthetized by bath application of MS222 (1.5 g/l). A dorsal laminectomy was
performed and the first five segments of the spinal cord with part of the vertebral columns, the
brachial nerves, and the forelimb were isolated from the rest of the body. The preparation was
placed in a Petri dish containing 100% oxygenated Ringer’s solution (NaCl 115 mM, KCl 2
mM, CaCl2 2 mM, MgCl2 1.8 mM, HEPES 5 mM and glucose 1 g/l, pH 7.35). Then, the bra-
chial plexus was exposed and the paraspinal muscles were removed. After dissection, the prepa-
ration was transferred to a dish with separate recording chambers for the forelimb and spinal
cord. The vertebral column was stabilized in the dish by pinning it to the Sylgard (Dow Corn-
ing) base of the chamber. The preparation was continuously perfused with cooled (15°C) oxy-
genated Ringer’s solution throughout the entire experiment at a flow rate of 5 ml/min unless
otherwise stated. After a recovery period of 1 hour all preparations showed a withdrawal reflex
in response to pinching of the limbs with a pair of blunt forceps. Pairs of Teflon-coated silver
wires (75 μm) were inserted into the elbow flexor (Brachialis) and extensor (Extensor ulnae)
muscles for EMG recording. The signals were amplified, high-pass (10 Hz) and low-pass (300
Hz) filtered, monitored, and stored in a computer. Commercially available programs were used
for recording and data analysis of walking-like activity (Axon Instruments/Molecular Devices,
Sunnyvale, CA; Origin, Northampton, MA and SPSS, Chicago, IL).

Neuroactive agent application
Walking-like activity was induced by continuous perfusion (20 ml/min) of D-glutamic acid
(0.5 mM, Sigma, St. Louis, MO) or by NMDA (50 μM, Sigma, St. Louis, MO) with 10 μMD-
serine (Sigma, St. Louis, MO) as described previously [14–15, 17–19]. Individual gap junction
uncoupling agents were added to the D-glutamic acid or NMDA solutions after the walking-
like activity stabilized. Dose response curves were generated for four different uncoupling
agents, carbenoxolone (CBX, 0.01–2 mM), flufenamic acid (FFA, 0.01–2 mM), 1-Heptanol and
1-Octanol (0.01–3 mM) (Sigma, St. Louis, MO). Stock solutions of CBX, 1-Heptanol, and
1-Octanol were prepared in Ringer’s solution. These blockers are less toxic than other com-
pounds and they are water soluble or form emulsions in 25% ethylene glycol reducing the need
for solvents such as DMSO and ethanol that affect the excitability of spinal neurons [19, 31,
32]. FFA was dissolved in 25% polyethylene glycol (Sigma, St. Louis, MO), as it has been
shown that polyethylene glycol is not neurotoxic but neuroprotective [33]. All drugs were
diluted in 100–200 ml of Ringer’s solution immediately before use. Drugs were washed out
after each application with Ringer’s solution for at least 30 min before the next drug
application.

Dorsal root reflex testing
The effects of the gap junction inhibitors on the excitability of spinal neurons were additionally
monitored using the dorsal root reflex. The C3 dorsal root was stimulated with a 0.5 ms con-
stant cathode current pulse using a stimulator (S88; Grass-Telefactor, Astro-Med Inc, West
Warwick, RI, USA) and stimulus isolation unit (PSIU6; Grass-Telefactor, Astro-Med Inc, West
Warwick, RI, USA). The stimulus intensity was gradually increased up to 1.5 times the motor

Gap Junctions Contribute to Walking Regulation in the Mudpuppy

PLOS ONE | DOI:10.1371/journal.pone.0152650 March 29, 2016 3 / 16



threshold and the amplitude of the fast monosynaptic component of response was evaluated
from EMG recordings obtained from the bipolar electrodes (A-M System, Carlsborg, WA).

Data analysis
Measurements of the cycle frequency of EMG bursts were means of 20 cycles. EMG records
were rectified and integrated for quantification as we and others have previously described
[14–17, 29–30]. Integrated areas of the EMG from the flexor muscle (Brachialis) were averages
of 10 bursts and normalized to the muscle discharge before drug application for each prepara-
tion. All data were reported as mean ± SE. Statistical significance of different groups was evalu-
ated using one-way ANOVA with repeated measures and for non-parametric data we used
Kruskal Wallis analysis. The criterion for statistical significance was set as P< 0.05 for all
experiments. We used Sigmastat for statistical analysis and Sigmaplot for graph generation
(Systat Software Inc).

Results

Immunohistochemistry of gap junctions in the adult mudpuppy spinal
cord
Sections of the spinal cord were incubated with antisera directed against four different gap
junctions’ proteins, connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and con-
nexin 43 (Cx43). All four anti-connexin antisera generated punctuate labeling in the mud-
puppy spinal cord and the prevalence and pattern of staining were different for each antisera.
The Cx43-like staining was more abundant than the staining for the other connexins. The
Cx43 antisera produced a punctuate staining on the plasma membranes of the ependymal cells
surrounding the central canal (Fig 1A), punctuate staining near nuclei in the ventral horn (Fig
1C), and strings of puncta radiating outward to the sub-pial plexus (Fig 1B). Since Cx43 is pre-
dominantly expressed by astrocytes in mammals, we investigated whether Cx43 is expressed by
astrocytes in the mudpuppy spinal cord by co-labeling with anti-Cx43 and antisera directed
against an astrocyte marker glial fibrillary acidic protein (anti-GFAP). Images from co-labeled
spinal cords demonstrated that the punctuate anti-Cx43 (green) fluorescence paralleled the
anti-GFAP (red) fluorescence, a staining pattern consistent with astrocytic expression of Cx43
(Fig 1D and 1E). The Cx32 and Cx36 antibodies produced a dense punctuate staining near the
nuclei of a few cells in the ventral horn and a sparse punctuate pattern in the white matter (S1
Fig). The Cx37-like immunoreactivity was rare with only a few puncta in the white matter of
each section (not presented). It was not practical to determine whether the patterns of Cx32,
Cx36, or Cx37 immunoreactivity co-localized with GFAP immunoreactivity because of the
scarcity of Cx32, Cx36, or Cx37 staining.

Modulation of walking-like movements and alternating flexor-extensor
EMG activity by gap junction inhibitors
Regular rhythmic walking-like limb movement around the elbow joint and alternating flexor-
extensor EMG activity were induced within the first few minutes after the application of
NMDA with D-serine or D-glutamate. Fig 2 shows a representative recording of EMGs from
the elbow flexor (Brachialis) and extensor (Extensor ulnae) muscles induced by NMDA (seg-
ment 1, interval before “FFA perfusion On”). The initial activity pattern consisted of alternat-
ing bursts of rhythmic activity from the flexor and extensor muscles. The average cycle
frequency was 0.75 ± 0.11 Hz for D-glutamate-induced activity and 0.62 ± 0.08 Hz (n = 28;
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p< 0.05) for NMDA-induced activity. The average amplitude of the EMGs was 11 ± 3.2 mV
for the Brahialis and 8.4 ± 2.1 mV for the Extensor ulnae.

The effects of the gap junction inhibitors were dose-dependent and also related to the dura-
tion of the perfusion. Fig 2 shows the effects of 0.5 mM FFA on the rhythmic activity induced
by NMDA, which was continuously infused throughout the whole recording period. FFA pro-
duced an increase in cycle frequency during the first 1–2 minutes of perfusion (segment 2,
“FFA perfusion On”) and decreased the frequency at later intervals (segment 3, “Tested inter-
val”). In all cases, the walking-like activity was completely restored upon washing out of FFA
with Ringer’s solution (segment 5, interval after “FFA perfusion Off”). Taking into account the
time-dependent effects of the gap junction inhibitors, we analyzed the EMG activity only after
the initial changes were stabilized (segment 3, “Tested interval”).

Perfusion with low concentrations of gap junction inhibitors had a stimulatory effect on the
walking-like activity, increasing the cycle frequency and/or EMG amplitude. CBX at a concen-
tration of 50 μM increased the cycle frequency (~ 4%) and amplitude (~ 8%) of the walking-
like activity induced by D-glutamate (Fig 3A and 3B). The walking-like activity induced by
NMDA was less sensitive to CBX and it was not affected by CBX at concentrations< 500 μM
(Fig 3). At much higher concentrations, CBX produced differential effects on the cycle fre-
quency and EMG amplitude. The cycle frequency was reduced by CBX at
concentrations> 500 μM (p< 0.05; n = 7) (Fig 3A) while the EMG amplitude was increased
by CBX at concentrations>1,300 μM (p< 0.05; n = 7).

Fig 1. Examples of Cx43-like immunoreactivity in coronal sections of the mudpuppy spinal cord. Anti-
Cx43 produced punctuate staining (green) near nuclei in the ventral horn and strings of punta radiating
outward to the sub-pial plexus (A-C). Confocal images showing the colocalization of Cx43-like (green) and
GFAP-like (red) immunofluorescence patterns in coronal sections of the mudpuppy spinal cord (D-E). The
wide-spread distribution of the Cx43-like immunoreactivity parallels the GFAP-like staining in the gray and
white matters. The confocal images are from a single optical plane. The photos on the right are higher
magnification images of the regions enclosed by the white boxes. Nuclei in all images were counter stained
with DAPI (blue). The scale bar in A = 200 μM; in B and C = 50 μM; in D = 100 μM; and in E = 250 μM.

doi:10.1371/journal.pone.0152650.g001
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Application of CBX alone at a concentration that facilitated the EMGs amplitude
(1,500 μM) did not induce any rhythmic activity. Instead, it prevented the initiation of walking
activities by NMDA (20–100 μM), which only produced tonic activity in the presence of CBX
(data not shown). The initiation of walking-like activity by D-glutamate was also completely
blocked by CBX at concentrations> 300 μM (Fig 3A and 3B). In contrast, the amplitude of the
dorsal root reflex was not significantly affected (p> 0.05; n = 7) (Figs 3B and 4B), indicating
that the excitability of motoneurons were not inhibited nonspecifically [34–39]. This is consis-
tent with the observation that CBX increased the EMG amplitude. These data suggest that elec-
trical coupling through gap junctions is required to generate walking-like activity by glutamate
or NMDA.

Low concentrations of other gap junction inhibitors also caused a transient increase in the
cycle frequency of the walking-like activity induced by D-glutamate, or to a less extent, by
NMDA. After 3 min of perfusion with 100 μM FFA, the mean cycle frequency of the NMDA-
induced activity increased by 16 ± 6% (p< 0.05; n = 7) (Fig 4A). The amplitude of the EMG
bursts was not facilitated by at this concentration (Fig 4B). At concentrations> 300 μM, FFA
produced a dose-dependent inhibition of both cycle frequency and EMG burst amplitude. It
completely blocked the activity induced by D-glutamate at 400–500 μM and the activity
induced by NMDA at 1200–1300 μM (Fig 4A and 4B). The effects of FFA at 400 μM on activi-
ties induced by NMDA and glutamate are shown in Fig 4C.

Similarly, Heptanol at 100 μM increased the cycle frequency by 15 ± 6% in NMDA-induced
activity and 36 ± 4% in D-glutamate-induced activity (p< 0.05; n = 7) (Fig 5A). Both the cycle

Fig 2. Depiction of the design for electrophysiology experiments. The figure presents the EMG activity simultaneously recorded from the flexor and
extensor muscles during a typical experiment. Walking-like activity was induced with 50 μMNMDA and 10 μMD-serine. The initiation and termination of FFA
application (300 μM) is indicated with arrows. Segments used for analysis of the initial changes and tested intervals are shown.

doi:10.1371/journal.pone.0152650.g002
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frequency and burst amplitude of the activity induced by glutamate were inhibited by Heptanol
at concentrations> 600 μM, whereas those induced by NMDA were inhibited at
concentrations> 800 μM (p< 0.05; n = 7) (Fig 5). Octanol at 300 μM increased the burst
amplitude by 13 ± 7% (p< 0.05; n = 7) but did not affect the cycle frequency of the walking-
like activity induced by NMDA (Fig 6A). At concentrations>400 μM, Octanol inhibited the

Fig 3. CBXmodulates the NMDA- and D-glutamate-induced walking-like activity. A: Dose-response curves showing the effects of CBX on the cycle
frequency. The mean frequency of D-glutamate- (●) and NMDA-induced (�) motor activity patterns were reduced by CBX in a dose-dependent manner. D-
glutamate-induced activity was inhibited at lower concentrations than the NMDA-induced activity. B: Dose-response curves showing the effects of CBX on
the peak EMG amplitude for D-glutamate-induced activity (●), NMDA-induced activity (�), and the dorsal root reflex (DRR,▼). The amplitude of D-glutamate-
induced activity was inhibited by CBX (concentrations > 100 μM) in a dose-dependent manner, whereas, the amplitude of NMDA-induced patterns were
facilitated by CBX (concentrations > 1000 μM). In contrast, the amplitudes of the dorsal root reflexes (DRR) were not significantly affected by CBX. C: Paired
recordings from the flexor and extensor muscles showing the effects of CBX on D-glutamate- (right) and NMDA-induced (left) motor activity patterns. Notice
that the cycle frequency and EMG amplitude were reduced in the presence of 200 μMCBX (lower pair of records) compared to the control saline (upper pair
of records). Values of the means and SEMs as well as their statistical significance are mentioned in the text. Data presented in all graphs are means ± SEMs.

doi:10.1371/journal.pone.0152650.g003
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locomotor-like activities induced by either glutamate or NMDA (p< 0.05; n = 7) (Fig 6).
These long chain alcohols reduced the dorsal root reflex by ~20%, as exemplified in Fig 5B, but
inhibited the locomotor-like activity to a much greater extent.

The walking-like activity induced by D-glutamate was more sensitive to gap junction inhibi-
tors than that induced by NMDA (Table 1). The half maximal inhibitory concentration (IC50)
of CBX on the cycle frequency of glutamate-induced activity was 150 μM and it was ~ 10 fold

Fig 4. FFAmodulates the NMDA- and D-glutamate-induced walking-like activity. A: Dose-response curves showing the effects of FFA on the cycle
frequency. The mean frequency of D-glutamate- and NMDA-induced motor activity patterns were reduced by FFA concentrations > 100 μM in a dose-
dependent manner. D-glutamate-induced activity was inhibited at lower concentrations than the NMDA-induced activity. B: Dose-response curves showing
the effects of FFA on the peak EMG amplitude for D-glutamate-induced activity, NMDA-induced activity, and the dorsal root reflex. The amplitude of D-
glutamate- and NMDA-induced activity was inhibited by FFA concentrations >100 μM in a dose-dependent manner. In contrast, the amplitudes of the dorsal
root reflexes were not significantly affected by FFA at concentrations < 700 μM. C: Paired recordings from the flexor and extensor muscles showing the
effects of FFA on D-glutamate- (right) and NMDA-induced (left) motor activity patterns. Notice that the cycle frequency and EMG amplitude were reduced in
the presence of 500 μM FFA (lower pair of records) compared to the control saline (upper pair of records). Abbreviations, same as in Fig 3.

doi:10.1371/journal.pone.0152650.g004
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higher for the NMDA-induced walking activity (Fig 3A). The IC50 of FFA was 300 μM for glu-
tamate-induced activity and 900 μM for NMDA-induced activity (Fig 4A). The IC50 of Hepta-
nol was 900 and 1100 μM (Fig 5A) and the IC50 of Octanol was 600 and 800 μM respectively
for the glutamate- and NMDA-induced walking activities (Fig 6A).

Fig 5. Heptanol modulates the NMDA- and D-glutamate-induced walking-like activity. A: Dose-response curves showing the effects of Heptanol on the
cycle frequency. The mean frequency of D-glutamate- and NMDA-induced (�) motor activity patterns was facilitated by Heptanol at low concentrations (100–
300 μM) and reduced at concentrations >400 μM in a dose-dependent manner. D-glutamate-induced activity was inhibited at lower concentrations than the
NMDA-induced activity. B: Dose-response curves showing the effects of Heptanol on the peak EMG amplitude for D-glutamate-induced activity, NMDA-
induced activity, and the dorsal root reflex. The amplitude of D-glutamate- and NMDA-induced activity was facilitated by Heptanol at low concentrations
(100–300 μM) and depressed at concentrations >400 100–300 μM. The amplitudes of the dorsal root reflexes were reduced (~20%) by Heptanol at 300 μM.
C: Paired recordings from the flexor and extensor muscles showing the effects of Heptanol on D-glutamate- (right) and NMDA-induced (left) motor activity
patterns. Notice that the cycle frequency and EMG amplitude were reduced in the presence of 700 μMHeptanol (lower pair of records) compared to the
control saline (upper pair of records). Abbreviations, same as in Fig 3.

doi:10.1371/journal.pone.0152650.g005
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Discussion
Gap junctions consist of six protein subunits (connexins, Cxs) [40] and in vertebrates, they are
found in almost all tissues. They are regulated in vivo by a number of factors including pH,
voltage, calcium levels, and phosphorylation [41–43]. Their expression in the mammalian spi-
nal cord was originally described as transient with ubiquitous presence in immature animals
and less common or even absent in adults [44–47]. Anatomical and physiological studies indi-
cate that gap junctions may serve important physiological functions in the brain and spinal

Fig 6. Octanol modulates the NMDA- and D-glutamate-induced walking-like activity. A: Dose-response curves showing the effects of Octanol on the
cycle frequency. The mean frequency of D-glutamate- and NMDA-induced motor activity patterns were reduced by Octanol concentrations >400 μM in a
dose-dependent manner. B: Dose-response curves showing the effects of Octanol on the peak EMG amplitude for D-glutamate- and NMDA-induced activity.
The amplitude of D-glutamate- and NMDA-induced activity was inhibited by Octanol concentrations >400 μM in a dose-dependent manner.C: Paired
recordings from the flexor and extensor muscles showing the effects of Octanol on D-glutamate- (right) and NMDA-induced (left) motor activity patterns.
Notice that the cycle frequency and EMG amplitude were reduced in the presence of 700 μMOctanol (lower pair of records) compared to the control saline
(upper pair of records). Abbreviations, same as in Fig 3.

doi:10.1371/journal.pone.0152650.g006
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cord in the mammalian [3, 48–49] and vertebrate animals such as the frog [47, 50], the lamprey
[51], and the goldfish [52]. However, they may play different roles in the developing and the
mature stages of the central nervous system. For example, in the mammalian respiratory sys-
tem, gap junction blockers cause a dose-dependent inhibition of rhythmic activity in neonatal
animals, but an increase of rhythmic activity in adults [53, 54].

Our data indicate that Cx43 is the most abundant gap junction protein in the adult mud-
puppy spinal cord, both in the white and gray matters (Fig 1). This is consistent with findings
in the rat [55]. Cx43 has been shown to form channels between astrocytes and astrocytes and
oligodendrocytes with immunoreactivity primarily observed in astrocytes and rarely in micro-
glia. The ubiquity of Cx43 allows astrocytes to form a functional syncytium that links various
regions of the CNS parenchyma in terms of flow of current, ions, and small metabolites [56].
This system also acts as a K+ sink following intense neuronal activity [57] and allows propaga-
tion of Ca2+ waves [58–60]. Our data raised the possibility that Cx43 and astrocytes may be
involved in the regulation of locomotion.

We found that Cx36 was expressed sparsely in the cell body and the processes of neurons in
the spinal cord. A previous study has shown that Cx36 was strongly expressed in immature
neurons in rats [61]. It is possible that the expression has been reduced during development
and the remaining Cx36 in adulthood may play a role in the modulation of locomotor activity
by synchronizing neuronal activities. We observed positive staining for Cx32 in areas sur-
rounding neurons. This is consistent with the finding that Cx32 was expressed predominantly
in oligodendrocytes throughout adulthood [61]. In contrast, the staining for Cx37 was sparse
in the mudpuppy spinal cord, consistent with the finding that Cx37 is only abundant in embry-
onic tissues and is expressed in the endothelium of large blood vessels, but not in capillaries, in
the brain and other tissues [62]. In summary, the immunohistochemistry data provide evi-
dence that specific gap junction proteins are expressed in the adult mudpuppy spinal cord and
may be involved in the generation or modulation of locomotor activities.

Using a battery of gap junction inhibitors, we demonstrated a critical role the gap junction
proteins may play in the neural networks for locomotion. It is clear that at high concentrations,
all gap junction inhibitors completely blocked the ongoing walking-like activity induced by
NMDA or glutamate. In addition, the gap junction inhibitors also prevented NMDA or gluta-
mate from inducing walking-like activities. These effects are not caused by nonspecific inacti-
vation of motoneurons by the gap junction inhibitors, because in the presence of high
concentrations of gap junction inhibitors, tonic motor output was consistently induced by
NMDA or glutamate, the dorsal root reflex was reliably evoked, and the walking-like activity
was completely reversed after washing out the inhibitors.

The main nonspecific cytotoxic effect of CBX was described for concentrations>100μM
[36, 63]. CBX, FFA, and the alcohols may also alter the function of ion channels, reduce neuro-
nal excitability [34–39], and inhibit excitatory synaptic transmission [64–66]. Given these

Table 1. The half maximal inhibitory concentration (IC50) of gap junction blockers on the locomotor-
like activities.

IC50 (mM)

D-glutamate-induced activity NMDA-induced activity

CBX 0.15 ~1.5

FFA 0.3 0.9

Heptanol 0.9 1.1

Octanol 0.6 0.8

doi:10.1371/journal.pone.0152650.t001
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considerations, we started with concentrations that were previously shown to block gap junc-
tions with minimal side-effects [67–72] and limited the duration of exposure. The resumption
of the locomotor-like activity upon washing out the inhibitors in all cases and the readily
evoked dorsal root reflex suggest that the excitability of the spinal neurons was not significantly
affected. Octanol and Heptanol induced fast inhibition of the walking-like pattern, compared
to other inhibitors. This may be related to its effect on T-type calcium channels that contribute
to generation of locomotor activity in lamprey [73, 74]. Collectively, these results suggest that
gap junctions play a vital role in the neural networks that are responsible for the generation of
locomotion.

We further showed that the effects of the gap junction inhibitors are complex. They are
excitatory at low concentrations and inhibitory at high concentrations. At low concentrations
the inhibitors increased the cycle frequency and/or EMG amplitude. At high concentrations or
after prolonged exposure, the gap junction inhibitors reduced the cycle frequency and/or EMG
amplitude or blocked the walking-like activity altogether. Studies of the respiratory rhythm in
adult rodent preparations have shown that the inhibition of gap junctions significantly
increases the cycle frequency and reduces the amplitude of the phrenic nerve discharges [46].
In contrast, studies on neonatal or postnatal mice have reported a decrease in the cycle fre-
quency without any change in the amplitude of the nerve discharge [36]. The different effects
of the gap junction inhibitors in these studies may reflect functional changes of gap junctions
in developmental stages from the neonate to the mature nervous systems and/or methodologi-
cal differences [46].

Although there were differences in the extent, to which various gap junction inhibitors
modulate the walking-like activity, the main effects were consistent across inhibitors and
reproducible on the walking-like activity induced either by NMDA or by glutamate. The IC50

of each inhibitor is a measure of its efficacy/potency in blocking the ongoing function of the
gap junction proteins. We found that the IC50 of each gap junction inhibitor on NMDA-
induced activity differed from that on the glutamate-induced activity. This difference likely
reflects the susceptibility of the intercellular connections in the neural networks for walking
that are activated by NMDA and glutamate respectively. The glutamate-induced locomotor-
like activity was more sensitive to gap junction inhibitors, suggesting that electrical coupling
plays a more significant physiological role in generating walking-like activity by neural net-
works that are activated by the naturally existing neurotransmitter glutamate. It is worth noting
that the mechanisms of NMDA and glutamate induced locomotor-like activities may differ. In
contrast to NMDA, which is a synthetic compound that induces locomotor-like activity
through activating NMDA receptors, glutamate is a naturally existing neurotransmitter that
may induce rhythmic activity through NMDA, non-NMDA, and metabotropic glutamate
receptors [18, 75, 76].

A significant limitation of this study is that we were unable to differentiate the roles played
by each individual connexins. None of the available gap junction inhibitors are specific enough
to allow us achieve this objective. Some blockers, such as the hemichannel inhibitors lantha-
num chloride and mefloquine, were described to be more selective to specific gap junctions.
However, recent studies indicate that most of these inhibitors are not specific, as extracellular
glutathione accumulation can be equally blocked by lanthanum chloride as well as by carbe-
noxolone and flufenamic acid [77]. The effects of these blockers become less specific and they
may affect most of the other gap junctions in higher concentrations. For example, at low con-
centrations, mefloquine (1 μM) blocks Cx36 and Cx50 channels expressed in neuroblastoma
cells, but it inhibits Cx26, Cx32, and Cx43 channels at higher concentrations (30 μM) [78]. In
both vertebrates and invertebrates, gap junctions typically couple similar types of interneurons
and motoneurons with restricted distributions in the central nervous system [7, 25, 26, 36].
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More than 20 different connexin genes have been identified with similar, but not identical,
pharmacological properties [79–81]. A better understanding of the connexin proteins will help
elucidate their specific roles in the generation and regulation of locomotor function.

Taken together, our immunohistochemistry data provided evidence for the expression of
specific gap junction proteins in the adult mudpuppy spinal cord. Our pharmacological inter-
vention experiments further demonstrated a vital role of gap junctions in the modulation of
the walking-like activity. Multiple gap junction inhibitors were able to modulate the cycle fre-
quency and EMG amplitude in a fairly consistent manner. These data support the notion that
intercellular coupling through gap junctions plays a critical role in the control of locomotion in
adult animals.
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