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Intracerebral hemorrhage (ICH) is a fatal stroke subtype with significant public health

impact. Although neuroinflammation is a leading cause of neurological deficits after ICH,

no imaging tool is currently available to monitor brain inflammation in ICH patients.

Given the role of TSPO in neuroinflammation, herein we investigate whether a second-

generation TSPO ligand, [125 I]IodoDPA-713 can be used to monitor the changes in

TSPO expression in a preclinical model of intracerebral hemorrhage. Male CD1 mice

were subjected to ICH/Sham. The brain sections, collected at different time points

were incubated with [125 I]IodoDPA-713 and the brain uptake of [125 I]IodoDPA-713

was estimated using autoradiography. The specificity of [125 I]IodoDPA-713 binding

was confirmed by a competitive displacement study with an unlabeled TSPO ligand,

PK11195. [125 I]IodoDPA-713 binding was higher in the ipsilateral striatum with an

enhanced binding observed in the peri-hematomal brain region after ICH, whereas the

brain sections from sham as well as contralateral brain areas of ICH exhibited marginal

binding of [125 I]IodoDPA-713. PK11195 completely reversed the [125 I] IodoDPA-

713 binding to brain sections suggesting a specific TSPO-dependent binding of [125

I]IodoDPA-713 after ICH. This was further confirmed with immunohistochemistry analysis

of adjacent sections, which revealed a remarkable expression of TSPO in the areas of

high [125 I]IodoDPA-713 binding after ICH. The specific as well as enhanced binding of

[125 I]IodoDPA-713 to the ipsilateral brain areas after ICH as assessed by autoradiography

analysis provides a strong rationale for testing the applicability of [125 I]IodoDPA-713 for

non-invasive neuroimaging in preclinical models of ICH.
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INTRODUCTION

Intracerebral hemorrhage (ICH) is a detrimental subtype of
stroke caused by bleeding within the brain tissue itself. ICH
accounts for 10–20% of strokes and has a fatality rate of 40 and
54% at 30 days and 1 year, respectively (An et al., 2017). Notably,
there is no substantial change in fatality rate over the last 40
years (An et al., 2017). Moreover, the survivors of ICH often
exhibit neurological deficits partly because of the secondary brain
insults caused by the released blood components in the brain
parenchyma (Elliott and Smith, 2010; Babu et al., 2012).

The pathophysiology of ICH includes both primary as well
as secondary brain damage. The primary damage, occurring
within minutes to hours after the initial brain hemorrhage is
mostly caused by the mass effect of the hematoma. In contrast,
the secondary brain damage develops from hours to days after
the initial brain insult and can lead to severe neurological
disability(Aronowski and Zhao, 2011; Belur et al., 2013). The
secondary brain damage is mainly attributed to the inflammatory
and oxidative responses to released blood components and
associated neurotoxicity (Aronowski and Zhao, 2011; Belur et al.,
2013). Neuroinflammation, often characterized by microglial
activation, plays a critical role in the pathophysiology of ICH, and
the brain inflammatory response correlates with the expansion
of hematoma, neurodegeneration, and poor functional outcomes
(Platt et al., 1998; Hickenbottom et al., 1999; Leira et al., 2004;
Zhao et al., 2007). Though neuroinflammation is a leading cause
of neurological deficits (Yang et al., 1994; Wagner et al., 1996;
Xi et al., 2006; Aronowski and Zhao, 2011; Belur et al., 2013;
Zheng et al., 2016), no imaging tool is currently available to
monitor brain inflammation in ICH patients. Currently, the brain
inflammatory response after ICH can only be ascertained by
histological examination of brain tissue sections obtained from
invasive procedures like biopsy. Therefore, the development and
validation of an in vivo biomarker of microglial activation is
a major advancement to monitor brain pathology and thereby
to assess the effectiveness of therapeutic interventions after
ICH. To this end, we employed autoradiography studies with a
second-generation TSPO ligand, [125 I]IodoDPA-713 as it could
lay a strong platform for non-invasive neuroimaging studies
after ICH.

CAN TSPO BE TARGETED FOR
NEUROIMAGING AFTER ICH?

Emerging evidences indicate a critical role of an evolutionarily
well-conserved mitochondrial outer membrane protein, TSPO
(18 kDa translocator protein) in neuroinflammation (Soustiel
et al., 2008, 2011; Barron et al., 2013; Daugherty et al.,
2013). Notably, TSPO has gained immense interest as a

Abbreviations: TSPO, 18 kDa translocator protein; ICH, Intracerebral

Hemorrhage; PBS, Phosphate-buffered Saline; Iba1, Ionized calcium binding

adaptor molecule 1; CD 16/32, Cluster of Differentiation 16/32; Dapi,

4′,6-diamidino-2-phenylindole; SE, Standard Error; CNS, Central Nervous

System; DPA-713, N,N-diethyl-2-[2-(4[methoxy-phenyl)-5,7-dimethyl-

pyrazolo[1,5-a]pyrimidin-3-yl]-acetamide.

therapeutic target for neurologic disorders and small-molecule
TSPO ligands improved functional recovery in a variety of the
neurologic disorders (Soustiel et al., 2008, 2011; Barron et al.,
2013; Daugherty et al., 2013). One of the key mechanisms
underlying the neuroprotective effects has been highlighted
as the stimulation of mitochondrial steroid synthesis with a
concomitant reduction in inflammatory response (Serra et al.,
1999; Verleye et al., 2005; Mitro et al., 2012; Barron et al., 2013;
Zhang et al., 2014; do Rego et al., 2015). However, recent studies
with transgenic mouse models demonstrate that TSPO is not
essential for steroidogenesis (Banati et al., 2014; Morohaku et al.,
2014; Tu et al., 2014), suggesting an elusive role of TSPO in
normal physiology and neuropathology despite its augmented
expression in brain inflammatory cells.

We recently demonstrated for the first time the profound
induction of TSPO after ICH in comparison to sham
(Bonsack et al., 2016). Further, TSPO induction after ICH
was mostly confined to the peri-hematomal brain region and
was mainly observed in Iba1 positive microglia/macrophage,
the inflammatory cells of the central nervous system (CNS)
(Bonsack et al., 2016). Notably, a profound up regulation of
TSPO was observed on day 3 and day 5-post injury and the
induction of TSPO after ICH mirrored the microglial activation
profile after ICH (Bonsack et al., 2016). Further, the induction
of TSPO paralleled and co-localized with the expression of
proinflammatory and anti-inflammatory microglial markers,
CD16/32 and CD206, respectively further emphasizing a possible
functional role of TSPO in brain inflammatory responses after
ICH (Bonsack et al., 2016). Though the precise role of TSPO
in microglial/macrophage functions after brain pathology
remains largely unknown, the radio labeled ligands of TSPO are
widely being tested for its ability to assess brain inflammation
(Callaghan et al., 2015; Damont et al., 2015; Liu et al., 2015;
Loth et al., 2016; Alam et al., 2017; Crawshaw and Robertson,
2017; Fujita et al., 2017; Ishikawa et al., 2018). However, until
very recently no such effort has been made after ICH. To this
end, a study comprising of five ICH patients documented for
the first time the feasibility of employing [11C] labeled first
generation TSPO ligand, [11C]-(R)-PK11195 in monitoring
microglial activation after ICH (Abid et al., 2017). However,
given the small sample size of the aforementioned study (Abid
et al., 2017), future work is highly warranted establishing the
applicability of TSPO ligands for neuroimaging applications
after ICH.

DOES [125 I]IODODPA-713 CONFER A
PROMISING TOOL FOR TRACKING
NEUROINFLAMMATORY RESPONSES
AFTER ICH?

DPA-713 (N,N-diethyl-2-[2-(4-[methoxyphenyl)-5,7-dimethyl
-pyrazolo-[1,5-α]pyrimidin-3-yl]-acetamide), a pyrazolo-
pyrimidine, is a second generation TSPO ligand and less
lipophilic in comparison to its previous generation counterpart,
PK11195 (Endres et al., 2009). Furthermore, DPA-713 has twice
the affinity for TSPO (Wang et al., 2009) in comparison to
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PK11195. Thereby, the use of radio labeled-DPA-713 may confer
reduced non-specific binding. Consistently, PET (Positron
emission tomography) imaging performed with [11C]DPA-713
in humans resulted in higher signal-to-noise ratio in comparison
to [11C]-PK11195 (Doorduin et al., 2009; Endres et al., 2009).
[125 I]IodoDPA-713, a radio ligand of TSPO, has been previously
used to detect the expression of TSPO in an in vivo mouse
model of tuberculosis and [125 I]IodoDPA-713 SPECT activity
correlated with lung inflammation after tuberculosis (Wang
et al., 2009). [125 I] labeled radio ligands have relatively longer
half-lives (half-life of [125 I] is≈ 2 months) permitting prolonged
dynamic functional studies. In contrast, [11C] labeled radio
ligands are often difficult to handle due to the short half-life
of the radio nucleotide (20min) and limited to centers having
particle accelerators like, cyclotron for its synthesis. Though, a
very recent study demonstrated the use of [125 I]IodoDPA-713
in a neuropathological condition, Sandhoff disease(Loth et al.,
2016), it is largely unknown whether [125 I] IodoDPA-713 can be
used to detect the brain expression of TSPO after ICH.

Herein, we investigate whether [125 I]IodoDPA-713 can
be used to monitor the changes in TSPO expression in a
preclinical model of intracerebral hemorrhage. To evaluate the
uptake of brain sections with [125 I]IodoDPA-713, sham or
ICH was induced in CD1 male mice as described previously
(Bonsack et al., 2016) and on day 3 and day 5-post
surgery, the animals were euthanized and the fresh frozen
sections were used for autoradiography studies as detailed
in Supplementary Methods. [125 I]IodoDPA-713 binding was
found to be higher in the striatum after ICH in comparison
to sham and the binding of [125 I]IodoDPA-713 was mostly
confined to the peri-hematomal brain areas (Figures 1A,B).
Notably, consistent with very low expression of TSPO in
uninjured or intact brain (Bonsack et al., 2016), sham as well
as contralateral brain areas of ICH exhibited marginal binding
of [125 I]IodoDPA-713 (Figure 1A). Quantitative analysis further
confirmed significant induction in [125 I]IodoDPA-713 uptake
in the peri-hematomal brain areas after ICH in comparison to
sham (Figure 1C). More importantly, TSPO ligand, PK11195
completely inhibited [125 I]IodoDPA-713 binding to brain
sections suggesting a specific TSPO-dependent binding of
[125 I]IodoDPA-713 after ICH (Figure 1A). This was further
confirmed with immunohistochemistry analysis of adjacent
sections, which revealed a remarkable expression of TSPO
in the areas of high [125 I]IodoDPA-713 binding after ICH
(Figures 1D,E). Notably, brain sections from post injury days,
3 and 5 exhibited maximal microglial/macrophage activation
and/or TSPO expression after ICH (Bonsack et al., 2016).
Further, in contrast to other brain pathologies, TSPO induction
after ICH is found predominantly in Iba1 positive activated
microglia/macrophages (Bonsack et al., 2016) making it an ideal
molecular candidate to track microglial/macrophage associated
changes after ICH.

Microglia, the resident neuroimmune cells are broadly
distributed throughout the brain (Lawson et al., 1990). Microglia
comprise ≈5–20% of the total glial population of the CNS
and are the first non-neuronal cells to respond to a brain
injury via activation (Wang and Dore, 2007; Xiong and Yang,

2015). While some microglial functions are beneficial, activated
microglia also play a detrimental role after ICH (Wang and
Dore, 2007; Xiong and Yang, 2015). Notably, the activated
microglia are regarded as the key cellular regulators of brain
inflammation after ICH based on their local release of cytokines,
chemokines, prostaglandins, and reactive oxygen species (Melton
et al., 2003; Nakanishi, 2003; Aronowski and Hall, 2005; Wang
and Dore, 2007; Zhang et al., 2009) and the neuroinflammatory
response correlates with blood brain barrier damage, cerebral
edema, hematoma expansion, neurological deterioration, and
poor functional outcomes (Platt et al., 1998; Hickenbottom
et al., 1999; Leira et al., 2004; Zhao et al., 2007). Furthermore,
neuroimmune response after ICH also regulates the brain
recruitment of blood-derived monocytes/macrophages (Tessier
et al., 1997; Shiratori et al., 2010; Starossom et al., 2012) and
a massive infiltration of macrophages in the peri-hematomal
region occurs after ICH (Min et al., 2016; Chang et al., 2017).
Though the precise functional role of microglia and infiltrating
macrophages after a brain injury is largely controversial, it is
postulated that a key role of activatedmicroglia andmacrophages
after ICH is to phagocytose the cellular debris and blood
components left in the brain after hemorrhage, a process called
hematoma resolution, which is vital for the functional recovery.
Consistently, it is reported that brain-infiltrating macrophages
after ICH are polarized to the anti-inflammatory M2 phenotype
and contribute to neurological recovery after ICH (Min et al.,
2016; Chang et al., 2017). Further, a human ICH study employing
microarray analysis demonstrated significant up-regulation of
both pro- and anti-inflammatory genes in the peri-hematomal
brain region (Carmichael et al., 2008). Of note, TSPO expression
is observed in both activated microglia and brain infiltrating
macrophages after ICH (Li et al., 2017), and the induction of
TSPO temporarily correlated with microglia activation, which
persists for a long time after ICH (Wang, 2010; Yabluchanskiy
et al., 2010; Bonsack et al., 2016; Li et al., 2017). In addition,
our in vitro studies revealed a negative regulatory role of
TSPO in the release of proinflammatory cytokines from murine
macrophages(Bonsack et al., 2016), together making it an ideal
candidate to possibly track the functional changes associated
with microglia/macrophage and thereby neuroinflammatory
responses after ICH. Along these lines, the autoradiography study
results as outlined above provide a strong rationale for testing
the applicability of [125 I] labeled DPA-713 for non-invasive
neuroimaging studies after ICH.

CONCLUSIONS

ICH is a fatal stroke subtype with significant public health
impact. Though neuroinflammation plays a critical role in ICH
pathophysiology, no imaging tool is currently available to track
activation-associated microglial/macrophage changes after ICH.
Along these lines, TSPO expression is observed in both activated
microglia and brain infiltrating macrophages after ICH (Li
et al., 2017), and the induction of TSPO temporarily correlated
with microglia activation, which persists for a long time after
ICH (Wang, 2010; Yabluchanskiy et al., 2010; Bonsack et al.,
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FIGURE 1 | (A) Representative autoradiography images demonstrating the binding of [125 I]IodoDPA-713 to the brain sections from sham or ICH (top panel).

PK11195 inhibited the binding of [125 I]IodoDPA-713 to the brain sections (bottom panel) (n = 3 mice/group). (B) Brain sections adjacent to the ones as depicted in

(A) were subjected to cresyl violet staining and it demonstrates that the [125 I]IodoDPA-713 uptake was observed mostly in the ipsilateral striatum after ICH (n = 3

mice/group). (C) The quantification of [125 I]IodoDPA-713 binding to brain sections as assessed by estimating the optical density using image J (NIH, USA). *p < 0.05,

**p < 0.01, ***p < 0.001 vs. control (n = 3 mice/group). Brain sections (n = 3 mice/group) were subjected to immunostaining further illustrates that the [125 I]

IodoDPA-713 binding was observed in brain regions with enhanced TSPO expression after 3 days post-ICH (D) and 5 days post-ICH (E) and the dotted line

demarcates the hematomal and peri- hematomal brain regions.

2016; Li et al., 2017). Given the clinical applicability of [125 I]
labeled DPA-713 coupled with its increased binding to the peri-
hematomal region in a TSPO-dependent manner, in comparison
to other brain regions after ICH as demonstrated herein, future
studies need to be conducted testing its potential to detect the
microglial/macrophage activation after ICH. Further, given the
complex pathophysiology of ICH, the applicability of [125 I]
IodoDPA-713 for non- invasive neuroimaging (SPECT) both in
the acute as well as sub acute phases of ICH needs detailed
evaluation employing preclinical animal models of ICH as it
would lay a strong foundation for future clinical applications.
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