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Abstract: All-solid-state potentiometric sensors have attracted great attention over other types of
potentiometric sensors due to their outstanding properties such as enhanced portability, simplicity of
handling, affordability and flexibility. Herein, a novel solid-contact ion-selective electrode (SC-ISE)
based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the ion-to-electron transducer was designed
and characterized for rapid detection of harmine. The harmine-sensing membrane was based on the
use of synthesized imprinted bio-mimics as a selective material for this recognition. The imprinted
receptors were synthesized using acrylamide (AA) and ethylene glycol dimethacrylate (EGDMA)
as functional monomer and cross-linker, respectively. The polymerization process was carried out
at 70 ◦C in the presence of dibenzoyl peroxide (DBO) as an initiator. The sensing membrane in
addition to the solid-contact layer was applied to a glassy-carbon disc as an electronic conductor.
All performance characteristics of the presented electrode in terms of linearity, detection limit, pH
range, response time and selectivity were evaluated. The sensor revealed a wide linearity over
the range 2.0 × 10−7–1.0 × 10−2 M, with a detection limit of 0.02 µg/mL and a sensitivity slope of
59.2 ± 0.8 mV/hamine concentration decade. A 40 mM Britton–Robinson (BR) buffer solution at
pH of 6 was used for all harmine measurements. The electrode showed good selectivity towards
harmine over other common interfering ions, and maintained a stable electrochemical response
over two weeks. After applying the validation requirements, the proposed method revealed good
performance characteristics. Method precision, accuracy, bias, trueness, repeatability, reproducibility,
and uncertainty were also evaluated. These analytical capabilities support the fast and direct
assessment of harmine in different urine specimens. The analytical results were compared with the
standard liquid chromatographic method. The results obtained demonstrated that PEDOT/PSS was
a promising solid-contact ion-to-electron transducer material in the development of harmine-ISE. The
electrodes manifested enhanced stability and low cost, which provides a wide number of potential
applications for pharmaceutical and forensic analysis.

Keywords: solid-contact; poly(3,4-ethylenedioxythiophene) (PEDOT); harmine; hallucinogen; ion-
selective membrane sensors; imprinted polymers

1. Introduction

Harmine (7-methoxy-1-methyl-9H-pyrido [3,4,6]indole), known as banisterine, is a
fluorescent harmala alkaloid. It is a member of the beta-carboline family. It can be found in
many organisms, including plants and butterflies. Tobacco, Peganum harmala (widely in
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Middle Eastern) and lemon balm are listed as natural sources of harmine [1–3]. Harmine
is an inhibitor of monoamine oxidase (MAOIs) and antagonist of 5-hydroxytryptamine
(5-HT) [4–6]. It reversibly binds to MAO-A and inhibits the activity of monoamine oxidase
enzymes, increasing the concentration of neurotransmitters norepinephrine, serotonin and
dopamine from the brain. Therefore, harmine was used as an antidepressant [4–6]. Other
studies revealed that harmine has many other functions including anti-cancer effects [7],
inducing pancreatic islet cell proliferation [8]. It can be added to different hallucinogenic
drinks in different countries such as yage in Columbia, ayahuasca in Ecuador and Bolivia,
and caapi in Brazil [9]. Injecting harmine into a vein can cause hallucinations [10]. In
addition, it has been found that harmine has anti-worm activity by paralyzing the tension
of the muscles of the parasites. So, it is commonly used internally as a treatment for trap
worms [11].

Different techniques were reported in the literature for carboline alkaloids analysis
in biological samples. Some of these techniques are high performance liquid chromatog-
raphy (HPLC) coupled with electrochemical [12], photodiode array (DAD) [13], fluores-
cence [14,15] or mass spectrometry (MS) detectors [16], as well as gas chromatography
(GC–MS) [17]. Most of these methods lack simplicity in use, require very sophisticated in-
struments, need well trained personnel, and require several time-consuming manipulation
steps. Electrochemical techniques offer fast analysis, low-cost instrumentation, capability
for simultaneous determination, high sensitivity and a remarkably low detection limit.
Recently, potentiometric sensors have attracted great attention as important and reliable
devices for the analysis in different fields such as chemical, pharmaceutical, forensic and
biomedical analyses [18–29]. One potentiometric poly(viny1 chloride) matrix membrane
sensor was reported in the literature for harmine assessment [30]. The method was not
applicable in the determination of harmine in biological fluids and presented bad selectivity
over some other alkaloids such as Cinchonine, Quinine and Brucine.

All-solid-state potentiometric sensors have attracted great attention over other types
of potentiometric sensors due to their outstanding properties such as enhanced portability,
simplicity of handling, affordability and flexibility [20–22]. They can be considered now as
the next generation for electrochemical sensors based on potentiometric transduction. A
lipophilic solid-contact material is placed at the interface between the sensing-membrane
and the electronic conductor (EC) substrate to eliminate the unstable boundary potential
response, which is produced because of the unfavorable blocked interface between the ion-
sensing membrane (ISM) and EC. This can be assigned as the essential part for designing
robust and reliable solid-state ion-selective electrodes (ISEs). In addition, this enhances the
long-term potential stability and the reproducibility of these types of sensors.

Man-tailored bio-mimics “molecularly-imprinted polymers (MIPs)” are well known
as good receptors for different templated targets. Recently, MIPs were successfully in-
tegrated in the design of all types of potentiometric sensors [31–34]. They successfully
shifted the view of using non-affordable ionophores. These ionophores were limited by
their high-cost or using ion- exchangers, which revealed poor selectivity behavior. These
man-made receptors are featured by their enhanced thermal stability, ease of preparation
and their low-cost [35]. Recently, potentiometric ISEs based on MIPs were integrated in
designing different ISEs that were used for the quantification of different templated organic
molecules [36–38].

Herein, we present a novel system with PEDOT/PSS-doped used as an ion-to-
electron transducer in ion-selective electrodes (ISEs) for monitoring harmine in urine
specimens. The sensing membrane is based on the use of the ion-association complexes of
the harminium cation with 5-nitrobarbaturate as a recognition material for the recognition.
Reproducibility, conditioning, and potential-stability were investigated. The performance
characteristics of the presented sensors such as linearity response, selectivity, detection limit
and selectivity were also evaluated. The sensors were applied for monitoring harmine hal-
lucinogen in urine specimens, and the results were compared with the standard gas-liquid
chromatography method [39].
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2. Results and Discussions
2.1. Polymers’ Characterizations

The imprinting approach that was used for MIPs preparation of harmine was the non-
covalent molecular imprinting method (Figure 1). The amino, methoxy and N-pyridine
groups of the template harmine can form strong hydrogen bonding with the functional
monomer acrylamide (AA). In addition, there is a charge-transfer complex interaction that
can take place between the electron-deficient aromatic ring in harmine and the electron-rich
amino group of the AA monomer [40,41].
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Figure 1. Non-covalent harmine imprinting.

As shown in Figure 2, the scanning electron microscope of either MIPs or non-
imprinted polymers (NIPs) nano-beads can present a picture for the surface morphologies
of the obtained polymers. The MIPs beads showed a semi-uniformed spherical shape with
a size distribution of 255.8–486.2 nm, whereas the NIPs particles were of irregular and
much smaller (a size distribution of 125.5–218.9 nm). This can indicate that the presence of
harmine as a templated molecule has a great influence on the shape of the polymer formed,
in which the template-monomer complex can change the solubility of the growing polymer.
This has a great influence on altering the polymer morphology [42,43].

2.2. Membrane Optimization

These artificial receptors when dispersed in plasticized polyvinyl chloride (PVC)-
membranes provided highly sensitive and selective sensors for harmine monitoring. Solid-
contact sensors (i.e., without internal filling solution), made of glassy carbon (GC)-disks
coated with the membrane cocktail were prepared, characterized and examined for deter-
mining harmine. Four membrane sensors for sensor type were designed and characterized
during 8 weeks according to IUPAC recommendations [44].

For membrane optimization, the potentiometric response of the sensor is greatly
influenced by the polarity of the membrane medium. Harmine-based sensor incorpo-
rating MIP nano-beads with tetrabutyl phosphate (TBP), dioctyl phosphate (DOP) and
o-nitrophenyloctyl ether (o-NPOE) plasticizers were designed and checked. The calibration
slope and detection limit were found to be 58.0 ± 0.7, 50.1 ± 0.3 and 45.2 ± 0.6 mV/decade
and 0.03, 0.23 and 0.68 µg/mL upon using o-NPOE (ε = 24) instead of DOP (ε = 7) and
TBP (ε = 4), respectively. As shown in Figure 3, the membranes incorporating o-NPOE
revealed a more favorable calibration slope and lower limit of detection than those contain-
ing either DOP or TBP plasticizer. As a control, harmine-ISEs based on NIP nano-beads
were also characterized. The electrodes based on NIP revealed a sub-Nernstian slope
of 19.6 ± 0.9 mV/decade (R2 = 0.998) with a linearity range 5.0 × 10−5–1.0 × 10−2 M of
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harmine solution and a detection limit of 8.0 × 10−5 M. All potentiometric features for the
presented sensors were shown in Table 1.

The selectivity coefficients of membrane sensors with different plasticizers were shown
in Table 2. Selectivity for harmine in presence of other common organic cations such as
harmaline, strychnine, cinchonine, quinine, brucine, adrenaline and caffeine were enhanced
with o-NPOE membrane-based sensors. All subsequent measurements were carried out
using membranes-based o-NPOE plasticizer.
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based sensor.

Table 1. Performance potentiometric characteristics of harmine ISEs.

Parameter
C/Harmine-ISE C/PEDOT:PSS/

Harmine-ISE
(o-NPOE)o-NPOE DOP TBP

Slope (mV/decade) 58.0 ± 0.7 50.1 ± 0.3 45.2 ± 0.6 59.2 ± 0.8
Correlation coefficient

(r2) 0.9997 0.9994 0.9995 0.9996

Detection limit
(µg/mL) 0.03 0.23 0.68 0.02

Linear range (M) 6.0 × 10−7–1.0 × 10−2 4.0 × 10−6–1.0 × 10−2 7.0 × 10−6–1.0 × 10−2 2.0 × 10−7–1.0 × 10−2

Working pH range
(pH) 3–7.5 3–7.5 3–7.5 3–7.5

Response time (s) <10 <10 <10 <10
Repeatability (% mV) 0.9 1.2 1.1 0.6

Reproducibility (% mV) 1.3 1.1 0.9 0.8
Accuracy (%) 99.1 98.8 98.4 99.6

Table 2. Effect of solvent polarity on the selectivity behavior of harmine based sensor.

Interfering Ion Log Kpot
Harmine,J + SD *

o-NPOE DOP TBP

K+ −5.4 ± 0.2 −5.4 ± 0.3 −5.4 ± 0.1
Na+ −5.7 ± 0.3 −5.7 ± 0.2 −5.7 ± 0.1

Harmaline −1.3 ± 0.2 −1.1 ± 0.1 −0.9 ± 0.2
Strychnine −3.3 ± 0.1 −3.2 ± 0.1 −3.0 ± 0.2

Caffeine −3.7 ± 0.2 −3.5 ± 0.3 −3.2 ± 0.3
Atropine −3.4 ± 0.4 −3.1 ± 0.4 −2.9 ± 0.6
Quinine −3.8 ± 0.3 −3.7 ± 0.2 −3.6 ± 0.1

Ephedrine −3.6 ± 0.2 −3.5 ± 0.1 −3.5 ± 0.2
Adrenaline −3.2 ± 0.3 −3.1 ± 0.4 −3.0 ± 0.3

Glycine −3.9 ± 0.2 −3.8 ± 0.3 −3.7 ± 0.6
* ±Standard deviation is calculated from three measurements.

In the presence of PEDOT/PSS as an ion to electron transducer and o-NPOE plasticizer,
the sensor revealed a Nernstian slope of 59.2 ± 0.8 mV/decade (n = 5, r2 = 0.9996) and
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detection limit of 0.02 µg/mL. This confirmed that PEDOT/PSS layer has no influence on
the potentiometric response of the sensor.

2.3. Time Response and pH Effect

The time response of C/PEDOT:PSS/harmine-ISE was shown in Figure 4. The steady
time attaining equilibrium is recorded in 1.0 × 10−8–1.0 × 10−2 M harmine solutions. The
time was found to be <10 s after a 10-fold rapid increase in concentration. The results
confirmed that the presented electrode has high stability and it can be used as a rapid and
automated analytical tool. Repeatability was evaluated by using 40 mM Britton–Robinson
(BP) buffer, pH 6 over 2.5 h. No remarkable change in the response was observed during
this interval. After re-calibration for 10 times/day, it was noticed that no significant change
in the recorded slope 59.2 ± 0.8 mV/decade (n = 6) and limit of detection 0.02 µg/mL
(n = 10) which reflects the high reproducibility of the presented sensor.
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The effect of pH on the potentiometric response of C/PEDOT:PSS/harmine-ISE was
checked over the pH range 2–10. The sensor revealed a constant potential response over
the pH range 3–7.5, which can be taken as the working pH range for harmine assessment.
At pH values > 8, the potential response of the sensor declined due to the formation of the
un-protonated harmine base, which cannot be detected by the sensor. An increase in the po-
tential response at pH values < 3 due to positive interference by H+ ions. Therefore, 40 mM
Britton-Robinson (BR) buffer solution, pH 6 was chosen for all subsequent measurements.

2.4. Selectivity Behavior

The selectivity behavior of harmine sensors was tested towards different alkaloids,
amines and inorganic cations. The selectivity coefficient values expressed as (Log Kpot

Harmine, J)
were calculated and are presented in Table 3. The results revealed that harmine sensors
exhibited a good selectivity in the presence of many basic organic compounds. Addition of
PEDOT/PSS layer has no effect on the potentiometric selectivity pattern. This is clear from
the selectivity coefficient values obtained by C/PEDOT:PSS/harmine-ISE and C/harmine-
ISE. The presented electrodes showed significant enhanced selectivity other than the
selectivity presented by Hassan et al. [30]. This reflects the successful use of MIPs as
ionophores for harmine.
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Table 3. The selectivity coefficients (Log KPot
Harmine,J) of C/PEDOT:PSS/harmine-ISE.

Interfering Ion

Log KPot
Harmine,J ± SD *

a C/PEDOT:
PSS/harmine-ISE

(o-NPOE Plasticizer)

b Harmine/Tetratphenyl
Borate-ISE

(TBP Plasticizer) [30]

b Harmine/Reineckate-
ISE

(DOP Plasticizer) [30]

K+ −5.5 ± 0.1 −3.6 −3.1
Na+ −5.6 ± 0.2 −2.8 −3.2

Harmaline −1.4 ± 0.1 −0.1 −0.1
Strychnine −3.4 ± 0.2 −2.0 −1.2

Caffeine −3.8 ± 0.1 −1.8 −2.0
Atropine −3.6 ± 0.3 −1.6 −1.8
Quinine −3.9 ± 0.2 −1.3 −1.1

Ephedrine −3.5 ± 0.3 −1.9 −1.9
Adrenaline −3.1 ± 0.5 −1.6 −1.3

Glycine −4.0 ± 0.1 −3.5 −2.9
a MSSM: Modified separate solution method. b SSM: Separate solution method.* ±Standard deviation of three
measurements.

2.5. Impedance Spectroscopy and Chronpotentiometry Measurements

The chronopotentiograms (E versus t plots) were shown in Figure 5. The chronopo-
tentiograms showed the potential-jump (∆E) after changing the current-direction and
a potential drift (∆E/∆t) at longer times. In addition, this potential jump was used to
calculate the total resistance (Rb) of the presented sensor (∆E = I · Rb), which is controlled
by the bulk resistance of the ISM. The results of Rb were found to be (0.23 ± 0.02 MΩ) and
(0.21 ± 0.05 MΩ) for both C/PEDOT:PSS/harmine-ISE and C/harmine-ISE, respectively.
The potential drift (∆E/∆t) of C/PEDOT:PSS/harmine-ISE (1.37 ± 0.5 µV/s) was found to
be lower than C/harmine-ISE (63.3 ± 1.3 µV/s). The redox capacitance (C = I/(∆E/∆t))
was calculated and found to be 729.9 ± 4.5 and 15.8 ± 1.3 µF for C/PEDOT:PSS/harmine-
ISE and C/harmine-ISE, respectively. The results indicated an enhanced potential stability
and high capacitance for the presented sensor upon the addition of PEDOT/PSS as a solid
contact material.
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Impedance measurements were carried out for both C/PEDOT:PSS/harmine-ISE and
C/harmine-ISE. The impedance spectra were recorded at the open-circuit potential in
10 mM HMR solution and are shown in Figure 6. From the high-frequency semicircle
part, the total resistance (R) was found to be 0.25 ± 0.03 and 0.18 ± 0.04 MΩ for both
C/PEDOT:PSS/harmine-ISE and C/harmine-ISE, respectively. The capacitance (C) for ei-
ther C/PEDOT:PSS/harmine-ISE or C/harmine-ISE was estimated from the low-frequency
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semicircle part. The capacitance (C) was found to be 722.6 ± 3.5 and 13.8 ± 0.7 µF for
either C/PEDOT:PSS/harmine-ISE or C/harmine-ISE, respectively. The obtained results
confirmed that the lipophilic character of PEDOT/PSS layer can generate a large redox
capacitance, which is responsible for the enhanced potential stability of the presented ISEs.
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2.6. Water-Layer Test

A severe potential drift can arise in the ISE because of the existence of the water-layer
between the ISM and the electronic substrate. This potential drift can be eliminated af-
ter the insertion of a hydrophobic solid-contact layer at the interface between the ISM
and the electronic conductor. The water-layer test is performed to distinguish the ex-
istence of this layer. The electrodes were inserted at first in 10−2 M NaCl for 7 h and
then inserted in 10−5 M HMR solution for another 6 h, then changed back to 10−2 M
NaCl solution. The potential was recorded over all these intervals. As shown in Figure 7,
C/PEDOT:PSS/harmine-ISE revealed higher potential-stability than C/harmine-ISE, es-
pecially when going back to the harmine solution. This confirms the non-existence of
the water-layer in the C/PEDOT:PSS/harmine-ISE after the insertion of the lipophilic PE-
DOT:PSS layer. The long-term stability of both C/PEDOT:PSS/harmine-ISE and C/harmine-
ISE was calculated from the potential-response at the final part of the water-layer test
(Figure 7). The potential drift obtained was calculated and found to be 0.1 and 4.2 mV/h
for both C/PEDOT:PSS/harmine-ISE and C/harmine-ISE, respectively. This confirmed
that the insertion of the PEDOT:PSS layer enhanced the potential-stability and reflected the
high lipophilicity of this solid-contact material.

2.7. Analytical Assessment of Harmine

The presented C/PEDOT:PSS/harmine-ISE was introduced to determine harmine in
urine specimens spiked with different amounts of harmine. Each sample was analyzed in
triplicates and the results were in comparison with the standard liquid chromatographic
method (HPLC) as a comparative technique. All results were shown in Table 4. The average
recoveries varied between 94–102% and 98–105% for the presented potentiometric method
and HPLC method, respectively. The t-student and F-tests data emphasized that there is
no observed difference between the set of results obtained by the presented potentiometric
method and the standard HPLC method. The presented potentiometric method revealed
an enhanced applicability as a new methodology for harmine assessment.
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Table 4. Harmine assessment in spiked urine specimens using C/PEDOT:PSS/harmine-ISE.

Sample No. Spiked Amount,
µg/mL

Found, µg/mL
t-Student

Test F-Test
Potentiometry Recovery a

(%) ± SD HPLC Recovery b

(%) ± SD

1 2 1.9 ± 0.3 95 ± 0.5 2.1 ± 0.2 105 ± 1.1 2.7 6.1
2 5 5.1 ± 0.2 102 ± 0.4 4.9 ± 0.3 98 ± 0.3 2.1 4.6
3 10 9.4 ± 0.3 94 ± 0.3 10.1 ± 0.2 101 ± 1.2 3.4 4.5
4 20 20.3 ± 0.2 101.5 ± 0.2 19.6 ± 0.3 98 ± 0.4 1.2 3.2

a Mean of three replicate measurements ± standard deviation (SD). b t-Student and F-test at 95% confidence level values are 4.30,
19.00 respectively.

3. Materials and Methods
3.1. Apparatus

“All potential values were measured by a PXSJ-216 pH/mV meter (INESA Scientific
Instrument Co., Ltd., Shanghai, China). The designed electrodes were screen-printed
electrodes (SPEs) purchased from DropSens Metrohm (Oviedo (Asturias, Spain) (Ceramic
substrate: L33 × W10 × H0.5 mm). The working electrodes were made from carbon with
4 mm circular area. Metrohm potentiostat/galvanostat (Autolab, model 204, Herisau,
Switzerland) was used for impedance and chronopotentiometric measurements. For
chromatographic determination of harmine, HPLC as a reference method was carried
out using HPLC (Agilent 1200, Agilent, MA, USA) coupled with a photodiode array
detector. The separation was carried out on a chromatographic column (GraceSmart RP-18
(6.0 mm × 150 mm × 5 µm), MZ-Analsentechnik GMBH, Wohlerstrabe, Mainz, Germany)
with an injection volume of 50 µL. The mobile carrier consists of methanol/acetonitrile
(30:70, v/v) and 10 mM phosphate buffer solution, pH 8. The mobile phase was pumped at
a flow rate 1.0 mL/min, and harmine was detected at λmax = 330 nm”.

3.2. Chemicals and Reagents

“All reagents were prepared using de-ionized water (specific resistance = 18.2 M΄Ω
cm) obtained with a Pall-Cascada laboratory water system. Harmine hydrochloride
(purity > 98%), high molecular weight PVC, tetradodecylammonium tetrakis (4-chlorophenyl)
borate (ETH500), poly (3,4 ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT/PSS),
and o-nitrophenyl octyl ether (o-NPOE) were obtained from Sigma-Aldrich (St. Lois, MO,
USA). Tetrahydrofuran (THF), dioctylphthalate (DOP), tributylphosphate (TBP), acry-
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lamide (AA), ethylene glycol dimethacrylate (EGDMA) and benzoylperoxide (BPO) were
purchased from Fluka Chemika-Biochemika (Ronkonkoma, NY, USA). All other chemicals
were of analytical grade and used as received without any prior treatment. All solutions
were prepared using 40 mM Britton–Robinson (BR) buffer solution. The pH of the buffer
solution was adjusted to pH 6 using 0.2 M NaOH. Harmine standard solution (10 mM) was
prepared in de-ionized water and stored at 4–6 ◦C in the refrigerator. All harmine working
solutions were freshly prepared from the stock solution daily by appropriate dilution with
BP buffer at pH 6. The liquid junction potentials and the activity coefficients were corrected
according to the Henderson and Debye–Huckel equations, respectively”.

3.3. Biomimics Synthesis

“The main-tailored beads were prepared via a thermal polymerization process. A
1.0 mmol of HME (templated molecule) and 3.0 mmol of AA as a functional monomer were
pre-complexed together for 30 min and then, they were mixed together with 3.0 mmol
of EGDMA as a cross-linking reagent and 80 mg of BPO as an initiator. The mixture
was placed in a capped-glass bottle and 25-mL acetonitrile as a porgenic solvent was
added. All dissolved oxygen was removed by passing a flow stream of N2 gas for 15 min.
Sonication of the solution for 15 min is enough for complete solution homogenization.
The polymer was obtained after heating the reaction mixture for 18 h at 80 ◦C in an oil.
Using Soxhlet extraction, harmine molecules were completely removed using a solution
mixture of CH3COOH/CH3OH (1:9, v/v). The obtained nano-beads were washed several
times with CH3OH and then, they were left to dry. Non-imprinted polymers (NIPs) were
also prepared via the same steps but in absence of an HME molecule and under the
same conditions”.

3.4. Sensors’ Fabrication

“Glassy carbon (GC) disk electrodes (GC, 4-mm I.D.) were pre-treated and polished
by 0.3-µm Al2O3 to obtain a mirror-like surface. The discs were rinsed with de-ionized
water, sonicated with ethanol and de-ionized water alternatively and then dried under N2
stream. A piece of Polyvinyl chloride (PVC) tube (1 cm length, 5 mm I.D. and 8 mm O.D.)
was inserted at the distal end of the GC electrodes. A 20 µL of PEDOT/PSS dispersant
solutions was drop-casted above the GC disk. After the solvent evaporation, PEDOT/PSS
coated solid-contact ion-selective electrodes (SC-ISEs) were washed with de-ionized water
and then dried under a stream of N2 gas. A 100 µL volume of the membrane cocktail
was drop-casted on the PEDOT/PSS covered the electrodes, and the solvent was left to
be evaporated overnight. The cocktail of the ion-sensing membrane (ISM) (total mass of
110 mg) was prepared by dissolving (10.0 mg) of either MIPs or NIPs beads, (1 mg) ETH
500, (2 mg) potassium tetrakis (4-chlorophenyl) borate, (63.0 mg) o-NPOE, and (34.0 mg)
PVC; all in 2-mL THF. Afterward, the membrane was left to dry until a uniform shape
was obtained with good adhesion to the GC substrate. All coated-wire electrodes (CWEs)
were also fabricated according the above-mentioned steps but without insertion of the
PEDOT/PSS transducing-layer. The prepared SC-ISEs were conditioned in 1 mM harmine
solution for 4 hrs and then conditioned in 10−8 M harmine for 24 h. When not in use, the
sensors were kept in the same solution”.

3.5. Electrochemical Measurements

“All the pre-conditioned sensors were calibrated by spiking 1.0 mL of 10−1–10−5 M
HME solution in 9-mL BR buffer. The sensors in conjunction with an Ag/AgCl double
junction reference electrode were inserted in the test solution and the potential arisen from
each harmine concentration was measured. The potential readings were recorded after
stabilization to ±0.2 mV and plotted versus log (harmine) concentration. The constructed
calibration plots were used for all subsequent measurements”.
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Potentiometric selectivity coefficients (KPot
harmine,B) were evaluated using the modified

separate solution method (MSSM) [45] and calculated from the equation:

−Log KPot
harmine,B = (Eo

1 − Eo
2)/S (1)

where Eo
1 and Eo

2 represent the potential readings measured by harmonium ion and the
interfering ion at the extrapolated calibration curve (a = 1 M), respectively, and S is the
slope observed for the primary cation.

Time recovery was evaluated after continuous reading of the potential during the
concentration range from 10−7 to 10−2 M harmine hydrochloride solutions. Effect of pH
on the potentiometric response was also investigated after measuring the potential of the
proposed sensor in 10−3 M harmine solution and changing the pH of this solution from 2
to 10.

Impedance measurements were performed in 10 mM harmine hydrochloride solution
within the frequency range 0.01–105 Hz using 0.01 V amplitude at open circuit potential
0.2 V. The working electrodes were the studied electrodes, the reference electrode was
Ag/AgCl (saturated KCl), and Pt wire was used as the auxiliary electrode. Chronopoten-
tiomtric measurements were also performed through the three-electrode cell and a reversed
current of the value ±1 nA was applied to the working electrode for 60 s as previously
described by Bobacka’ s protocol [46].

3.6. Assessment of Harmine in Urinary Specimens

Different urine samples were collected from two different volunteers. After collection,
samples were stored untreated at −20 ◦C until further analysis. The samples were spiked
with stock solution of harmine. Each 0.1 mL of fresh urine sample was taken and diluted
to 10-mL of Britton–Robinson buffer at pH 6 and then directly analyzed.

4. Conclusions

In this work, we designed reliable, robust, cost-effective solid-contact potentiometric
electrodes for harmine detection. The trace-level assessment of harmine was achieved by
integrating a man-tailored artificial receptor for harmine as an ionophores and PEDOT/PSS
as a lipophilic solid-contact material. The observed recommended features of PEDOT/PSS
as an ion-to electron transducer were reinforced by these studies for designing solid-contact
ISEs. The electrodes exhibited a fast-response towards harmine with a Nernstian slope of
59.2 ± 0.8 mV/decade (n = 5, r2 = 0.9996) over the linear range of 1.0 × 10−7–1.0 × 10−2 M
and a detection limit of 0.02 µg/mL. Reasonable selectivity over different common organic
and inorganic ions, good accuracy, and possible interfacing with automated systems were
presented. These results demonstrated that PEDOT was a promising solid-contact ion-to-
electron transducer material in the development of harmine-ISE. The electrodes manifested
enhanced stability and low cost that provides a wide number of potential applications for
pharmaceutical and forensic analysis. The sensor was successfully applied in monitoring
harmine in different urine specimens. The analytical results were compared and agree
fairly well with those obtained by gas–liquid chromatography.
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