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Abstract

Although essential metal ions are required in the body, neurotoxicity occurs when exposed to a 

concentration of metal that the body cannot accommodate. In the case of non-essential metals 

which are important in industry, these elements have the property of causing neurotoxicity 

even at small concentrations. When such neurotoxicity progresses chronically, it can contribute 

to various neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. 

Therefore, research on the relationships between neurotoxicity and metal metabolism are being 

actively conducted, and some recent research has suggested that the mechanisms of metal-induced 

neurotoxicity critically involve endoplasmic reticulum (ER) stress and mitochondrial dysfunction. 

Hence, this mini-review is to summarize some examples of such evidence and raise new 

questions in attempting to address metal-induced neurotoxicity with ER stress and mitochondria 

dysfunctions, two important topics for the effects of metals in neurodegenerative diseases. Taken 

together, to study the molecular programs of integrating ER stress with mitochondrial dysfunction 

should be an important area of future research for appreciating the mechanisms of as well as 

developing strategies and targets for metal-induced neurological diseases.
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Introduction

The endoplasmic reticulum (ER) is an important membranous intracellular organelle for 

functions such as processing immature proteins, regulating post-translational modification 

including folding, assembly, glycation, and disulfide binding, and controlling intracellular 
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calcium flux [1]. ER stress occurs when ER is incapable of handling these functional 

demands which are often due to changes in the physiological and pathological environment 

[1]. As more evidenced in the literature, when ER stress becomes persistent in the nervous 

system, it plays an important role for the development of various neurological disorders [2]. 

In fact, many of these diseases can also be related to dysfunctions of mitochondria, which 

are normally responsible for generating ATP as required for cellular respiration, therefore 

playing a critical role in energy metabolism, lipid biosynthesis, and calcium homeostasis. 

In particular, neuron consumes higher energy than other cells, as the brain exhibits a high 

20% of body oxygen uptake although it represents only 2% of the body weight, thus, 

mitochondria dysfunction through processes such as downregulation of electron transport 

chain and reduction of ATP production can further implicate and complicate neurological 

disorders. It has been reported that abnormal metal exposure exacerbates mitochondrial 

dysfunction, ATP depletion, and abnormal ROS production that finally leads to neuronal cell 

death [3].

The importance of metals in biology cannot be overemphasized, but as human culture 

enriches and industries advance, environmental pollution increases, and human beings are 

overexposed to various metals, causing many chronic diseases including cardiovascular, 

lung, and kidney disease, and so on. Essential metals, known as subset of trace elements, 

are present in animal and plant cells and play a major role in homeostasis of cellular 

physiology and environment as well as protein cofactors [4]. Metal homeostasis is important 

because uncontrolled intracellular concentration of the metal implicates toxicity or various 

pathologies. Therefore, the concentration of essential metals in the living organism is strictly 

regulated. Despite the importance of these metals in biological functions, excessive metal 

can be accumulated throughout the body and becomes injurious to the health of the nervous 

system.

In general, the mechanisms of how ER stress contributes to neurological diseases are still 

rather unclear, while the impacts of mitochondrial function have been relatively more 

detailed. For instance, elevated metal exposure can exacerbate mitochondrial dysfunction, 

causing ATP depletion and abnormal ROS production that finally lead to neuronal death [3]. 

As ER stress and mitochondrial dysfunction can co-exist in metal-related chronic diseases, 

and while both intracellular processes are important for the pathogenesis of neurological 

diseases [2], here we summarize some recent literature that has attempted to address 

ER stress and mitochondria dysfunctions in metal-induced neurotoxicity, which could be 

significant in the pathogenesis of neurological disorders such as Alzheimer’s disease (AD) 

and Parkinson’s disease (PD). Using three examples of essential metals copper (Cu), iron 

(Fe) and manganese (Mn), and two examples of non-essential metals lead (Pb) and arsenic 

(As, a semimetal), we aim to provide a consensus basis of metals in causing neurotoxicity 

and neurological disorders through ER stress and mitochondrial dysfunction.
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Metal-Induced ER Stress and Mitochondrial Dysfunction in Neurological 

Disorders

Examples of essential metals

Copper (Cu): Copper is an essential trace element for maintaining cellular physiology. 

It is widely distributed in different brain regions, most prominent in the basal ganglia, 

hippocampus and cerebellum [5]. Cu is required for neurotransmitter synthesis, cellular 

respiration and regulation of various enzymes including cytochrome c oxidase [5]. Excessive 

Cu levels can significantly cause and enhance ER stress, resulting in abnormal proteopathy, 

a hallmark of neurodegenerative diseases due to that ER stress disrupts protein folding, 

quality control and degradation system. To date, Cu accumulation has been related to 

neurological diseases such as AD, ALS (amyotrophic lateral sclerosis), HD (Huntington’s 

disease), PD and WD (Wilson disease) among many others [5]. At molecular level, Cu 

has been shown to enhance α-synuclein aggregation, a major type of neural molecular 

changes in PD [6,7]. Additionally, excessive Cu can induce ER stress-mediated intracellular 

calcium (Ca2+) elevation, thereby it may promote neuronal excitotoxicity by disruption of 

ionic environment [8,9]. Although evidence is still relatively limited, it has been suggested 

that AD-associated amyloid precursor protein (APP) or amyloid beta (Aβ) aggregation 

may be accelerated by excessive Cu [10,11]. With regard to mitochondria, Cu is required 

for redox homeostasis in the mitochondria. On steady state, Cu is involved in the normal 

functions of Complex IV and Superoxide dismutase 1 (SOD1); but when Cu is overloaded, 

abnormal elevation of ROS induces the production of free radicals, possibly leading to 

disruption of cellular respiration or apoptosis. Indeed, increased ROS from mitochondria 

dysfunction induced by Cu overexposure can contribute to impairments in spatial learning 

and memory [12]. Cu decreased dopaminergic neuron marker-tyrosine hydroxylase (TH), 

the rate-limiting enzyme that catalyze dopamine synthesis from L-DOPA, and mitochondrial 

dysfunction, and decreased superoxide dismutase (SOD), an enzyme involved in an 

antioxidant defense, and alteration of mitochondrial transmembrane potential [13,14].

Iron (Fe): Iron plays many fundamental physiological functions in the CNS, such as 

oxygen transportation, mitochondrial respiration, myelin synthesis and neurotransmitter 

metabolism [15]. However, Fe overexposure can result in Fe accumulation in the brain, 

which may increase the risk of AD, PD, HD, aceruloplasminaemia and multiple sclerosis 

[15]. It has been appreciated that Fe accumulation promotes abnormal aggregation of Aβ 
and α-synuclein [16,17], however, the mechanisms of Fe-induced ER stress have not been 

well understood, though it is mainly reported in hepatic dysfunction [18,19]. The peptide 

hormone hepcidin, derived from hepatocytes, is a central regulator of iron homeostasis 

and is decreased in pathological conditions, resulting in persistent ER stress [20]. Since 

neurological disorders exhibited decrease of hepcidin expression, recent studies focused on 

removing excessive Fe through promoting hepcidin expression [21,22], although it remains 

to be studied whether Fe-induced ER stress is important. In relation with mitochondrial 

dysfunction, Fe overexposure can lead to increase in ATP depletion, decrease in complex I 

activity, and apoptosis in cortical neurons [23] as well as ROS increase in SH-SY5Y cells 

[24]. Fe accumulation in mitochondria is observed in rotenone-induced SH-SY5Y cells, 

leading to oxidative stress and neuronal cell death [25]. Iron chelator treatment mitigated the 
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accumulation and mitochondrial oxidative damage in the PD models, including Rotenone-

treated SH-SY5Y and MPTP-induced mice [25]. Taken together, iron accumulation through 

direct exposure or secondary production may be a potential cause for ER stress and 

mitochondrial dysfunctions in leading to neurological disorders.

Manganese (Mn): Mn is an important mineral for development, nutrition, bone growth 

and immune system as well as brain and nerve function. On the other hand, excess Mn 

has been frequently related to neurological diseases and disorders [26]. The associations 

between Mn, ER stress, and neurological disorders have been addressed albert limitedly in 

recent literature. For example, overexposure of Mn leads to upregulation of ER stress-related 

genes including FK506-binding protein family and exhibited toxicity in C. elegans [27]. Mn 

facilitates APP aggregation and α-synuclein aggregation, similar to Cu and Fe, but excessive 

Mn treatment promotes APP expression and processing in 3xTg AD mouse model [28]. 

Mn promotes ER stress and ER stress-mediated apoptosis through activation of caspase 

family in the rat striatum and dopaminergic neurons, resulting in parkinsonism phenotype 

associated with movement disorders [29,30]. Although the relationships of Mn and ER-

stress in neurological disorders are clear, further studies are needed to delineate molecular 

mechanisms of how Mn-induced ER stress in neurological disorders. In addition to ER 

stress as discussed, Mn-induced toxicity is highly involved in mitochondrial dysfunction 

and oxidative stress. Mn overload may directly exacerbates ROS, mitochondrial membrane 

potential, ATP depletion, and mitochondrial fragmentation, leading to apoptosis [31]. The 

most severe form of Mn exposure, known as Manganism, entails behavioral changes 

including tremor, difficulty with gait, balance, and coordination, all similar to Parkinsonism. 

Indeed, Chronic Mn exposure promotes Mn accumulation in mitochondria of dopaminergic 

neuron in substantia nigra, leading to movement disorders in mice [32]. Since Manganism 

and Parkinson’s disease may share the etiological mechanisms, chelation-based therapy 

might be effective to alleviate Mn-induced mitochondrial dysfunction and ROS, major 

hallmarks of neurological disorders.

Examples of nonessential metals

Lead (Pb): Pb exists in the environment as a non-essential metal and is well known 

as a representative heavy metal among environmental pollutants as pollution is getting 

more severe as industry develops. Pb overexposure leads to CNS dysfunctions including 

memory impairment, intelligence, and movement disorders [33]. It has been reported that 

Pb exposure in Macaca fascicularis promotes APP and BACE1 mRNA increase, resulting 

in AD pathogenesis [34]. Recent studies showed that Pb induces ER stress and increases 

GRP78 and CHOP in HEK293 cells, suggesting that Pb lead to exacerbation of UPR 

and apoptosis [35]. Pb promotes α-synuclein aggregation and fibrilization, representing a 

potentially important step in the pathogenesis in PD [36], while ER stress is likely involved 

but its role needs to be explored. Overall, future study should give insight into specific 

mechanisms of Pb-induced ER stress in neurological disorders. In terms of mitochondria, 

they also play an important role in Pb-induced nervous system dysfunction. Through in 
vivo experiments, it is confirmed that Pb exposure can lead to inhibition on the activities of 

mitochondrial enzymes such as superoxide dismutase and glutathione reductase [37]. When 

rat offspring were exposed to Pb, mitochondrial morphology in brain neurons was altered 

Cai et al. Page 4

J Neurobiol Physiol. Author manuscript; available in PMC 2022 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[38]. These changes in mitochondrial structure can cause the release of cytochrome c, induce 

mitochondria-mediated apoptosis, and evoke changes such as cognitive decline and motor 

deficit [39]. In neuroblastoma SH-SY5Y cells, Pb promotes mitochondria degeneration 

which leads to ATP depletion and apoptosis [40]. Inhibition of ROS or autophagy activity 

as a mechanistic target of Pb-induced neurotoxicity [41], but further study of Pb-induced 

neurotoxicity is needed to correlate mitochondria dysfunction and Pb-induced neurological 

diseases.

Arsenic (As): As is useful industrially, but additionally used as an alloy such as lead or 

copper despite its biological toxicity. Arsenic is a toxic metalloid that can easily cross the 

blood-brain barrier and accumulate in different parts of the brain, including the striatum 

and hippocampus, which may potentiate the risk of AD and PD [42]. It has been reported 

that ER stress is a potential regulatory mechanism in As-induced neurotoxicity [43,44]. In 

fact, Arsenic species deteriorate protein function and activate UPR and ER stress proteins 

such as IRE1, GRP78, ATF4, and CHOP. The accumulation of neurodegenerative protein 

including Aβ and α-synuclein might mechanistically involves a role from As-induced ER 

stress [43,45]. In rat brain, chronic As exposure promotes APP expression and elevates 

β-secretase (BACE1) activity, leading to memory impairment [46,47]. In As-treated SH-

SY5Y neuroblastoma cells, abnormal α-synuclein accumulation and oligomerization have 

been observed, which leads to proteotoxicity [48]. However, the role of As-induced ER 

stress in neurodegenerative diseases still remains largely unknown and thus requires future 

study to uncover the involved regulating mechanisms. Studies have also revealed that As 

exposure is related to mitochondrial dysfunction and oxidative stress [49]. As is known 

to alter mitochondrial membrane integrity, reduce membrane potential, disrupt electron 

transport chain, generate ROS, and inhibit ATP production and DNA repair [42,50]. In 

As-treated rats, ROS was induced by decreasing the activity of MnSOD in hippocampus and 

cortex [51]. It can change a fraction of cellular respiration [52] and increases mitochondrial 

intracellular Ca2+ [53], which may lead to neuronal cell death. Counteracting mitochondrial 

dysfunction and oxidative stress may represent a strategy for therapeutic intervention against 

arsenic-induced neurological disorders.

Conclusions

Metals are indispensable in our lives, but when exposed to excessive amounts, they can 

cause neuropathological and physiological problems, resulting in neurological damages 

and disorders. Here we described the emerging evidence that implicate the roles of 

ER stress and mitochondrial dysfunctions in contributing to metal-induced neurotoxicity 

and subsequent neurological disorders. Since it is difficult to regenerate neurons after 

neurodegeneration gets initiated, chronic metal exposure will create synergistic effects 

with aging and other diseases, further accelerating neurological disorders. As lifespan 

increases, chronic diseases, including metal-induced neurotoxicity will become more 

frequent. Therefore, further research on the mechanisms of metal-induced neurotoxicity, as 

well as therapeutic intervention of metal accumulation should be developed. As reviewed in 

this mini writing, ER stress and mitochondrial dysfunctions are two important intracellular 

events in linking metal overexposure to neurological consequences. Evolving steps of 
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ER stress and mitochondrial dysfunctions upon metal excess could be dynamically and 

reciprocally interacting, but the details of these processes remain to be studied. It is much 

less clear how functional changes in ER stress and mitochondria are integrated in the 

context of metal excess. In conclusion, to study the molecular interactions of ER stress 

and mitochondrial dysfunction and therefore targeting the co-mechanism of these processes 

represent a significant area of future research for understanding and intervening with metal-

induced neurological diseases.
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