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Abstract

Lipid droplets (LDs) are dynamic fat-storage organelles that interact readily with numerous 

cellular structures and organelles. A prominent LD contact site is with degradative vesicles such as 

autophagosomes, lysosomes, autolysosomes, and late endosomes. These contacts support lipid 

catabolism through the selective autophagy of LDs (i.e., lipophagy) or the recruitment of cytosolic 

lipases to the LD surface (i.e., lipolysis). However, LD-autophagosome contacts serve additional 

functions beyond lipid catabolism, including the supply of lipids for autophagosome biogenesis. In 

this review, we discuss the molecular mediators of LD contacts with autophagosomes and other 

degradative organelles as well as the diverse cellular functions of these contact sites in health and 

disease.
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Lipid droplets (LDs) are fat-storage organelles that play diverse roles in health and disease. 

Present in nearly every cell type and across virtually all species, LDs are first formed at the 

endoplasmic reticulum (ER) where diacylglycerol, acetyl coenzyme A, lecithin retinol and 

other acyltransferases (DGATs, ACATs, LRATs), generate triglycerides (TAGs), and 

cholesterol esters (CEs) that accumulate between the two leaflets of the ER lipid bilayer 

(Olzmann and Carvalho, 2019). Nascent LDs extend into the cytoplasm from the ER, 

surrounded by a phospholipid monolayer that is distinct in membrane composition from that 

of the ER (Tauchi-Sato et al., 2002; Jackson, 2019). The LD monolayer recruits a distinct 

proteome that regulates the access of stored lipids by lipases such as adipose triglyceride 
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lipase (ATGL), hormone sensitive lipase (HSL), lysosomal acid lipase, and many others that 

have varying subcellular localizations and affinities for different neutral lipid species. The 

LD is also host to numerous additional adaptors including an extensive network of small 

Rab guanosine triphosphatases (GTPases) that facilitate intracellular trafficking and contact 

with other organelles. In fact, many LD-organelle contacts are now appreciated to contribute 

to numerous functions related to lipid transport, protein degradation, and metabolism 

(Schuldiner and Bohnert, 2017; Bersuker and Olzmann, 2018; Henne and Hariri, 2018; 

Krahmer and Mann, 2019; Thiam and Dugail, 2019).

An excessive accumulation of LDs is a critical factor in many disease pathologies (i.e., fatty 

liver disease, obesity, atherosclerosis, diabetes), which has generated intense research 

interest in defining how these complex organelles are metabolized (Onal et al., 2017). 

Lipolysis appears to be a predominant pathway for LD breakdown through the action of 

soluble lipases like ATGL and HSL. However, a seminal study by Singh et al. (2009) 

showed an additional pathway for LD breakdown involving the autophagic machinery. The 

selective autophagy of LDs, termed lipophagy, is thought to require autophagosomes that 

engulf LDs and, upon fusion with the lysosome, hydrolyze TAG and CE through the action 

of lysosomal acid lipase (Zechner et al., 2017; Olzmann and Carvalho, 2019).

The concept of lipophagy has inspired considerable interest in defining how LDs interact 

with degradative vesicles (i.e., autophagosomes, late endosomes, multivesicular bodies 

[MVBs], and lysosomes). These heterotypic, organelle-organelle contacts are widespread 

but variable in nature. For example, LD-lysosome contacts have been defined as transient 

kiss-and-run events that function in protein transfer and perhaps piecemeal lipid catabolism 

(Kaushik and Cuervo, 2015; Schroeder et al., 2015; Schulze et al., 2017). In contrast, LDs 

can form stable interactions with autophagosomes, or the yeast vacuole as discussed later, 

and result in the complete envelopment of the LD within these vesicles (Garcia et al., 2018). 

These diverse LD contact sites likely comprise unique proteomes and phospholipid 

membrane dynamics that are yet to be fully understood. The discovery of new molecular 

targets that facilitate some of these interactions has uncovered a diverse set of functions in 

addition to lipophagy.

In this review, we highlight recent insights into the function of LD contacts with degradative 

vesicles during lipophagy. In addition, LD transient interactions with autophagic vesicles 

have also been implicated in the trafficking of cytosolic lipases to the LD surface. LDs may 

also serve as lipid reservoirs at sites of autophagosome biogenesis. These LD contacts are 

relevant to human health, particularly in liver diseases of lipid metabolism and viral 

infection. Later, we describe the diverse functions resulting from LD associations with 

autophagosomes and other degradative organelles in more detail (Figure 1).

Drizyte-Miller et al. Page 2

Contact (Thousand Oaks). Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LD Contacts With Autophagosomes and Other Degradative Organelles 

During Lipophagy

Mechanisms of Selective Autophagy

Selective targeting of organelles and proteins by the autophagy machinery has been an area 

of intense investigation (Gatica et al., 2018). As of today, nearly 20 types of selective 

autophagy pathways have been described to include autophagic degradation of mitochondria 

(mitophagy), peroxisomes (pexophagy), lysosomes (lysophagy), ER (reticulophagy), LDs 

(lipophagy), aggregated and misfolded proteins (aggrephagy), and pathogens (xenophagy) to 

name a few (Kim et al., 2008; Singh et al., 2009; Thurston et al., 2009; Zheng et al., 2009; 

Deosaran et al., 2013; Hung et al. 2013; Khaminets et al., 2015; Lazarou et al., 2015; 

Khaminets et al., 2016). These diverse selective autophagy pathways share a common 

mechanism of utilizing autophagy receptors that recognize specific cargo that is tagged for 

degradation and provide a physical bridge with autophagosomes to ensure selective 

engulfment of that particular cargo (Stolz et al., 2014).

Ubiquitination is a common post-translational modification that signals for selective 

autophagy and can target damaged organelles, aggregated proteins or pathogens to mark 

them for selective autophagy, although ubiquitin-independent signals also exist (Kirkin et 

al., 2009; Khaminets et al., 2016). Ubiquitinated proteins are recognized by autophagy 

receptors such as sequestosome-1 (SQSTM1, also known as p62), optineurin (OPTN), 

neighbor of BRCA1 gene 1 (NBR1), and nuclear dot protein 52 kDa (NDP52) that 

physically associate with ubiquitin-modified cargoes through consensus ubiquitin-binding 

domains (UBDs; Stolz et al., 2014). In addition to binding ubiquitin, autophagy receptors 

also contain an LC3-interacting region (LIR) with the consensus sequence of Trp/Phe/Tyr-

X-X-Leu/Ile/Val. Through this sequence, autophagy receptors bind directly to the LC3/

GABARAP family of proteins that decorate autophagic membranes (Rogov et al., 2014). 

LC3 interactions with autophagy receptors function to recruit nascent phagophores to 

ubiquitinated cargo. Interestingly, this interaction also stimulates autophagosome formation 

around the cargo that is destined for degradation (Kamber et al., 2015b). Thus, autophagy 

receptors behave not only as a physical link between ubiquitinated cargo and 

autophagosomes, but can also engage in targeted autophagosome biogenesis around the 

cargo itself (Turco et al., 2019; Vargas et al., 2019). Despite the considerable advancement in 

our understanding of selective autophagy, how these mechanisms apply to LD autophagy is 

not fully understood.

A Role for Ubiquitin and Autophagy Receptors During Lipophagy

A key role for autophagy as a means to degrade cellular lipid was demonstrated roughly a 

decade ago using autophagy-deficient hepatocytes and mouse embryonic fibroblasts (MEFs) 

which accumulate excess LDs compared to control cells (Singh et al., 2009). In this ground-

breaking study, Singh et al. further demonstrated that LC3-labeled autophagosomes and 

Lamp1-labeled lysosomes intimately associate with LDs to drive autophagic LD catabolism 

which previously had been thought to occur mainly through utilization of cytosolic lipases. 

It was proposed that autophagosomes consume LDs whole or through piecemeal sampling 

prior to fusion with the lysosomes. Today, lipophagy is considered to be a central LD 
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breakdown pathway in many different cell types, although our understanding of the 

molecular mechanisms that mediate LD recognition by autophagy machinery is only 

beginning to emerge.

The LD is host to several ubiquitin adaptors as well as ubiquitinated proteins (Bersuker and 

Olzmann, 2019). While ubiquitination of LD-resident proteins likely serves as a signal for 

proteasome degradation, ubiquitin modifications may also signal autophagosome 

recruitment to the LD similar to other forms of selective autophagy. Consistent with this, 

many LD-resident proteins involved in ubiquitin conjugation, binding, and autophagy are 

now known to influence LD breakdown. For example, spartin, a protein involved in 

hereditary spastic paraplegia, localizes to LDs and recruits the E3 ubiquitin ligase AIP4 to 

the LD surface (Eastman et al., 2009; Edwards et al., 2009; Hooper et al., 2010). Here, 

spartin increases the activity of AIP4 ligase on the LD, which then ubiquitinates the LD-

resident protein PLIN2. Depletion of endogenous spartin increased LD content after oleic 

acid loading, suggesting that spartin/AIP4-mediated ubiquitination of PLIN2 may influence 

LD breakdown. However, overexpression of spartin similarly increased LD content, 

suggesting a complex interplay between LD ubiquitination and lipid metabolism (Eastman et 

al., 2009). Whether spartin/AIP4 ubiquitination of LD proteins provides a stimulus for 

lipophagy as opposed to proteasome degradation will require future exploration. Other 

ubiquitin-modifying proteins such as mysterin and ancient ubiquitous protein 1 (AUP1)-E2 

ubiquitin conjugase Ubc7 complex have been found to reside on the LD surface as well, 

although their role during lipophagy remains unclear (Klemm et al., 2011; Spandl et al., 

2011; Jo et al., 2013).

The notion that ubiquitination can serve as a signal for lipophagy is supported by studies 

implicating autophagy receptors and other ubiquitin binding proteins in LD-autophagosome 

interactions. In a recent study of Drosophila hepatocyte-like oenocytes and human HepG2 

hepatoma cells, nutrient starvation induced aggregates of the autophagy receptor p62 as well 

as the autophagy regulator histone deacetylase 6 (HDAC6), which selectively recruits LDs 

for autophagic degradation (Yan et al., 2019). HDAC6 depletion prevented LD breakdown, 

as did the overexpression of HDAC6 mutants that are not able to bind polyubiquitin and 

overexpression of p62 mutants that are not able to bind LC3 and ubiquitin. This suggests 

that HDAC6 and p62 bind cooperatively to ubiquitinated cargo on the LD surface and to 

LC3-labeled autophagosomes during lipophagy. In support of these findings, an additional 

study demonstrated that both p62 and LC3-labeled autophagosomes colocalize with LDs in 

AML12 mouse hepatocytes acutely exposed to alcohol, a known stimulus for autophagy 

(Wang et al., 2017). This further suggests that p62 may function as a selective lipophagy 

receptor that recruits autophagosomes to LDs in response to autophagy activation (Figure 2).

What proteins on the LD surface are recognized by the selective autophagy machinery? One 

possibility is PLIN1, a LD-resident protein that is highly expressed in adipose tissue, which 

was shown to be subjected to ubiquitin modification and recognition by p62 in response to 

inflammatory cytokines secreted during obesity (Ju et al., 2019). As described earlier, 

PLIN2 is also ubiquitinated by spartin/AIP4, but its role in p62-autophagosome association 

remains to be explored. Finally, Huntingtin (Htt) has been proposed to function as a selective 

autophagy scaffold protein on the LD that promotes p62 binding to both ubiquitinated 
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cargos and LC3-positive autophagosomes (Rui et al., 2015). Loss of Htt expression reduced 

LC3-LD colocalization and increased LD content, suggesting that Htt might also aid in LD 

targeting by autophagosomes similar to p62 and HDAC6. Clearly, a number of different 

proteins with innate functions in ubiquitin modification/binding or autophagy have a 

potential to regulate LD associations with autophagosomes and provide interesting future 

avenues to explore (Figure 2 and Table 1).

Small Rab GTPases as Mediators of LD Contacts With Degradative Organelles

Several members of the vesicular trafficking machinery, particularly small Rab GTPases, 

have been found to reside on the LD surface and mediate various steps of LD metabolism. 

Rab GTPases are molecular switches that cycle between active (GTP-bound) or inactive 
(GDP-bound) states and regulate nearly all membrane trafficking processes in the cell (Zhen 

and Stenmark, 2015). A subset of these Rab GTPases is also involved in key membrane 

trafficking steps during autophagy such as autophagosome formation, movement, and fusion 

with lysosomes (Ao et al., 2014; Nakamura and Yoshimori, 2017). A significant number of 

human Rabs have been found to reside on the LD surface via proteomic studies, although 

only a few of them have been implicated in regulating LD associations with autophagosomes 

and other degradative organelles such as late endosomes, MVBs, and lysosomes (Kiss and 

Nilsson, 2014; Schroeder et al., 2015; Li et al., 2016).

For example, two well-studied Rab proteins, Rab7, and Rab10, that have been already 

implicated in the selective degradation of damaged mitochondria during mitophagy (Yamano 

et al., 2014; Jimenez-Orgaz et al., 2018; Yamano et al., 2018; Wauters et al., 2019), also 

perform key functions during lipophagy. Rab7 predominantly resides on late endosomes, 

MVBs, and lysosomes and coordinates the trafficking and degradation of both endocytic and 

autophagic cargo within the lysosome (Guerra and Bucci, 2016). When in an active, GTP-

bound state, Rab7 associates with effectors such as motor adaptors and tethering proteins 

and in turn regulates maturation, transport and fusion between late endosomes, 

autophagosomes, MVBs, and lysosomes (Jordens et al., 2001; Gutierrez et al., 2004; Jager et 

al., 2004; Pankiv et al., 2010; Hyttinen et al., 2013). Rab7 also resides on the LD surface and 

plays an important role in LD associations with autophagosomes or other degradative 

organelles during lipophagy (Figure 2). In support of this idea, Schroeder et al. (2015) found 

that Rab7 is activated on the LD surface under nutrient-deprived conditions and mediates LD 

recognition by MVBs and lysosomes to induce lipophagic LD breakdown in human 

hepatoma cells. Loss of Rab7 expression reduced MVB/lysosome association with LDs and 

therefore inhibited LD breakdown during starvation-induced lipophagy. More recently, it 

was reported that in hepatocytes, chronic ethanol exposure inhibits lipophagy by interfering 

not only with lysosome morphology and motility but also with Rab7 activation, suggesting 

that LD recognition by the autophagic machinery could be altered (Schulze et al., 2017). Of 

note, Rab7 has also been implicated in 3T3-L1 adipocyte lipolysis after β-adrenergic 

receptor stimulation, suggesting a complex interplay between lipophagy and lipolysis in the 

function of Rab7 (Lizaso et al., 2013).

Rab10 has also emerged as a key player of autophagic LD engulfment during lipophagy 

(Figure 2). Like Rab7, Rab10 also becomes activated under nutrient starvation coincident 
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with increased localization on LDs (Li et al., 2016). Here, Rab10 recruits degradative 

membranes positive for autophagic markers LC3, ATG16L, and lysosomal marker Lamp1. 

In its active state, Rab10 also recruits its downstream effector EH domain binding protein 1 

(EHBP1) and a membrane remodeling ATPase named EH domain-containing protein 2 

(EHD2) to the LD-autophagosome synapse where this protein complex drives LD 

engulfment by autophagic membranes. Loss of the Rab10-EHBP1-EHD2 complex reduces 

autophagic membrane targeting and engulfment of LDs, resulting in excess LD 

accumulation. This suggests that Rab10 plays a key role in degradative membrane targeting 

to the LD surface as well as LD engulfment within these structures during lipophagy.

LD Engulfment by the Vacuole During Microlipophagy

In addition to autophagosome-based lipophagy, an alternative pathway for LD breakdown, 

microlipophagy, has been described in Saccharomyces cerevisiae. Microlipophagy is the 

direct internalization of LDs into the yeast vacuole (similar to mammalian lysosomes) for 

degradation. This appears to correspond with a previously described phenomenon whereby 

the vacuolar membrane is dramatically reorganized during stationary phase starvation or 

other conditions of cellular stress (Toulmay and Prinz, 2013). During membrane 

reorganization, sterol-enriched liquid-ordered (Lo) microdomains akin to lipid rafts become 

distinctly segregated from liquid-disordered (Ld) membrane domains. These domains 

accommodate sites of LD docking and engulfment at Lo domains, while Ld microdomains 

further constrain LD movement (Wang et al., 2014). In addition, it appears that stationary 

phase microlipophagy itself is required to maintain the integrity of vacuolar microdomains 

most likely through LD-stored sterol ester catabolism.

Yeast microlipophagy has been described to occur in response to various starvation 

conditions. For example, nitrogen starvation was shown to induce LD uptake into the 

vacuole, and this also required several core macroautophagy proteins including Atg1, Atg3–

10, Atg12, Atg14, Atg16, and Vps34 (Table 1). Acute glucose starvation also induces 

microlipophagy via AMP-activated protein kinase (AMPK) and this also required core 

autophagy genes (Seo et al., 2017). Currently, the requirement of stable LD-autophagosome 

contact sites in microlipophagy remains unclear. Two additional studies reported that gradual 

glucose starvation can stimulate microlipophagy and requires the endosomal sorting 

complexes required for transport (ESCRT) proteins Vps4 and Vps27. These studies diverged 

somewhat on the role of macroautophagy genes in microlipophagy, as Atg proteins seem to 

be required at the stationary phase, but not during the diauxic shift (Oku et al., 2017).

As mentioned earlier, the importance of autophagosome formation during microlipophagy 

may vary depending on the stimulus. For example, while the earlier studies utilized nitrogen 

or glucose starvation, Vevea et al. reported that during lipid stress (resulting from a block of 

phosphatidylcholine biosynthesis), yeast upregulates both LD biogenesis and LD 

degradation via microlipophagy, but this was independent of the core autophagy protein 

Atg7 and LD associations with autophagosomes. Instead, lipid stress-induced lipophagy 

required the ESCRT protein Vps4 (Vevea et al., 2015). These studies suggest that the 

ESCRT machinery may play a critical role in microlipophagy, perhaps in cooperation with 

canonical macroautophagy. Currently, microlipophagy has not been described in mammalian 
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cells, although it seems likely that similar mechanisms exist given that microautophagy is 

conserved from yeast to mammals (Sahu et al., 2011). It would be of interest to better 

understand the different stimuli that could lead to microlipophagy activation as well as the 

requirement for autophagosomes, autophagy receptors, and ubiquitination in this pathway.

The Role of Lipophagy in Liver Pathology

Lipophagy is a critical pathway for lipid homeostasis particularly in the liver. Not 

surprisingly, numerous liver diseases have now been shown to impact lipophagy and drive 

disease pathogenesis (Schulze et al., 2017). This is particularly true of nonalcoholic fatty 

liver disease (NAFLD), which is characterized by excess hepatic LD accumulation and is a 

common manifestation of metabolic syndrome affecting nearly a third of the western world 

population (Kim et al., 2018). Genetic mutations can often increase patient risk for NAFLD, 

which may negatively impact LD breakdown by lipophagy. In 2008, Romeo et al. identified 

a missense sequence variant within patatin-like phospholipase domain-containing protein 3 

(PNPLA3) (I48M) that is associated with increased hepatic fat content and is considered a 

major genetic risk factor for NAFLD. Further studies demonstrated that PNPLA3 I48M 

knock in mice develop fatty liver if fed high-sucrose diet and show increased accumulation 

of mutant PNPLA3 on LDs compared to the wild-type (WT) protein suggesting that it may 

play a role in LD breakdown pathways (Smagris et al., 2015). More recently, the relationship 

between PNPLA3 I48M variant and lipophagy was explored. In this study, HepG2 cells 

expressing I48M mutant showed resistance to starvation-induced LD loss accompanied with 

reduced autophagic flux and lipophagy compared to cells expressing WT PNPLA3 (Negoita 

et al., 2019). These data suggest that the accumulation of I48M PNPLA3 variant on LDs 

renders them resistant for lipophagic recognition leading to increased LD content, although 

further studies are necessary to confirm this observation.

In contrast to lipophagy being potentially defective during metabolic fatty liver disease, this 

selective autophagy pathway can be hijacked by viruses providing them a beneficial 

environment for replication within the host cell. For example, dengue virus (DENV) 

infection was shown to induce deubiquitination of LD-resident protein AUP1 and its binding 

partner Ubc7/Ube2g2 in HepG2 and HeLa cells (Zhang et al., 2018). This displaces 

deubiquitinated AUP1 from LDs to autophagosomes leading to increased lipophagy 

pathway, LD loss, and increased viral replication.

Regulation of Lipolysis by LD-Autophagosome/Lysosome Contacts

During lipolysis, cytoplasmic lipases ATGL, HSL, and MGL target LDs to hydrolyze fatty 

acids from triacylglycerol, diacylglycerol, and monoacylglycerol, respectively. Nutrient 

deprivation as well as G-protein-coupled receptor activation regulates lipase trafficking to 

the LD surface through signaling pathways involving AMPK, cyclic adenosine 

monophosphate (cAMP)/protein kinase A (PKA), and others (Zechner et al., 2017). In 

addition, LD-resident cofactors can also block lipase access to the LD or directly modulate 

lipase activity. While these mechanisms are complex and variable among different tissue 

types, several studies now implicate autophagosomes and lysosomal vesicles in the 

regulation of cytosolic lipases.

Drizyte-Miller et al. Page 7

Contact (Thousand Oaks). Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In brown adipose tissue, Martinez-Lopez et al. (2016) show that cold exposure increases 

autophagosome interaction with LDs, coincident with ATGL and HSL recruitment to the LD 

surface. Sequence analysis of ATGL and HSL revealed multiple LIR motifs, and mutation of 

one such LIR on ATGL (F146A, V149A) prevented starvation-induced LD loss and reduced 

LD recruitment of ATGL (Martinez-Lopez et al., 2016). In addition, HSL 

immunoprecipitation from purified LDs showed lipase association with LC3. This study 

implicates autophagosomes in the delivery of cytosolic lipases to the LD surface, an idea 

that is consistent with previous vesicle-based mechanisms of ATGL transport to the LD 

(Soni et al., 2009). Interestingly, the LIR motif of ATGL also appears critical for lipophagy 

in NIH3T3 cells, raising the possibility that this interaction may also facilitate 

autophagosome tethering to LDs (Martinez-Lopez et al., 2016) (Figure 1).

Lysosome-LD interactions also appear to stimulate lipolysis by removing perilipin proteins 

that block cytosolic lipases access to the LD. Kaushik and Cuervo (2015) propose that LD-

resident PLIN2 and PLIN3 are degraded by chaperone-mediated autophagy, a process that 

utilizes Lamp2A, situated in the lysosome membrane, to transport specific proteins directly 

into the lysosome lumen for degradation. In Lamp2A-deficient cells, β-oxidation due to 

lipolysis was severely downregulated along with reduced ATGL trafficking to the LD. In 

addition, lipolysis and ATGL targeting to the LD was blocked in cells expressing a mouse 

PLIN2 mutant that lacks a putative pentapeptide consensus sequence for CMA degradation 

(414SLKVQ). This work suggests that LD-lysosome kiss and run events can aid in degrading 

proteins at the LD surface, clearing the way for cytosolic lipases access. Interestingly, LD-

autophagosome contacts were also reduced in CMA-deficient cells, suggesting an intimate 

interplay between CMA, lipolysis, and lipophagy.

Regulation of Lipophagy by Cytosolic Lipases

While it is clear that autophagy regulates lipolysis, several studies now show that lipolysis 

can influence autophagy and LD-autophagosome interactions. Mashek and coworkers were 

first to show that ATGL activates the transcription of autophagy genes as well as that of fatty 

acid oxidation and lysosome biogenesis. In hepatocytes, ATGL activates PPARα through a 

mechanism involving the deacetylase SIRT1 (Khan et al., 2015; Sathyanarayan et al., 2017), 

suggesting that lipolysis is an important upstream mediator of autophagosome formation and 

lipophagy. This is supported by a recent study suggesting that ATGL targets larger sized LDs 

upstream of lipophagy, and that lipophagy preferentially targets smaller sized LDs <1 μm in 

diameter (Schott et al., 2019). Moreover, lipolysis is important for producing these small 

LDs, both by reducing large LD diameters and by generating nonesterified fatty acids that 

are repackaged into nascent LDs by DGAT1/2 enzymes (Paar et al., 2012; Schott et al., 

2019).

The mechanisms that preferentially target lipophagic vesicles to smaller-sized LDs is 

unclear. One possibility is that the size of degradative vesicles themselves limits LD cargo. 

Autophagosomes, lysosomes, and late endosomes can exceed diameters >1 μm under certain 

conditions, although the majority of these vesicles are much smaller (Huotari and Helenius, 

2011; Xu and Ren, 2015; Su et al., 2016). Interestingly, LC3 was reported to be lipidated 

preferentially on membranes with high curvature due to Atg3 sensing (Nath et al., 2014), 
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raising the possibility that similar curvature-sensing mechanisms could exist for lipophagic 

targeting of small LDs. Along these lines, the autophagosome biogenesis protein Atg14L 

(first identified as Barkor; Sun et al., 2008) functions as a membrane curvature sensor (Fan 

et al., 2011) and can localize to LDs in a variety of cell lines. It is possible that small-LD 

targeting by lipophagic vesicles involves curvature-sensing machinery, but this remains to be 

investigated.

LDs as Lipid Reservoirs for Autophagosome Biogenesis

In addition to LD catabolism, LD-autophagosome contact sites may also mark sites of 

autophagosome biogenesis. Inhibition of mechanistic target of rapamycin complex 1 

(mTORC1) initiates the process of autophagosome formation by activating Unc-51 Like 

Autophagy Activating Kinase 1 (ULK1) and Beclin 1-PI3K complexes to produce PtdIns3P 

(PIP3) necessary for outgrowth of early autophagosomal membranes (i.e., omegasomes, 

phagophores; Grasso et al., 2018; Mercer et al., 2018). Nascent autophagosomes utilize 

lipids from various organelles (i.e., Golgi, ER, mitochondria, plasma membrane) to supply 

the membrane needed for outgrowth (Shibutani and Yoshimori, 2014). Among these sources, 

LDs offer an abundant pool of neutral lipids that can be processed into autophagosome 

membrane. Consistent with this, Dupont et al. (2014) showed that oleic acid (OA)-loaded 

cells have a greater capacity for autophagosome formation and autophagic flux. Several 

members of the PNPLA family of lipases, most notably PNPLA5, support autophagosome 

formation by converting LD triacylglycerol into diacylglycerol that is used to make 

phospholipids for the budding autophagosome (Dupont et al., 2014).

One putative link between LDs and nascent autophagosomes is the autophagy protein 

Atg2a/b, which binds to both organelles through distinct regions at its N- and C-termini. 

Velikkakath et al. (2012) was first to report that Atg2a/b is involved in autophagosome 

biogenesis, and that this function requires amino acids 1723–1829 which are also necessary 

for LD localization. Interestingly, Atg2a/b also controls LD content in a reciprocal fashion, 

as knockdown of Atg2a/b, but not Atg5, caused an increase in total LD area per cell and 

appeared to cluster LDs in a majority of cells (Velikkakath et al., 2012). This study raised 

the possibility that LD contacts with autophagosomes may denote sites of autophagosome 

biogenesis in addition to lipophagic degradation. However, it remains unclear whether Atg2a 

functions as a definitive tether between LDs and nascent autophagosomes, as Atg2a controls 

autophagosome biogenesis from the ER and functions as a lipid transfer protein (Maeda et 

al., 2019; Valverde et al., 2019). Interestingly, Atg2a shares some sequence similarity with 

the protein Vps13 particularly at its N-terminal chorein domain, which is responsible for 

lipid transport at organelle contact sites (Kumar et al., 2018). Structural studies of this 

domain suggested that it adopts a scoop-like fold with a hydrophobic cavity which could 

accommodate multiple lipid molecules. In support of this, cryo-EM reconstruction of Atg2a 

also identified a cavity (or multiple cavities) within the protein which could similarly 

facilitate lipid transfer between the organelles (Valverde et al., 2019). Maeda et al. (2019) 

also demonstrated a lipid transport function by Atg2a and suggested that phagophore 

tethering by WIPI4 and WIPI1 (both PI3P effector proteins) aids in this process (Maeda et 

al., 2019). Based on these data, Atg2a/b likely functions as a lipid transporter between lipid-

rich LDs and nascent autophagosomes; however, the requirement of Atg2a in LD-
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autophagosome tethering remains to be determined and likely involves an intimate 

connection with the ER (Figure 1).

Autophagosome biogenesis from LDs may also involve Atg14L/Barkor. As a subunit of the 

PI3K complex, Atg14L aids in delivering PIP3 to nascent phagophores and has been shown 

to localize to LDs along with Atg2a in cancer cells (Pfisterer et al., 2014). Like Atg2a, 

Atg14L gene silencing also induces LD accumulation in addition to reduced autophagy. One 

possibility is that these genes function to extend nascent autophagosomes around LDs for 

lipophagy, as has been described for cargo-induced autophagosome biogenesis in selective 

autophagy (Kamber et al., 2015a; Turco et al., 2019). Future work is required to define the 

fate of these nascent autophagosomes in lipophagy versus other forms of autophagy.

Conclusions

LD contacts with degradative vesicles serve important purposes in both LD catabolism and 

autophagosome biogenesis (Figure 1). Given the widespread importance of these processes 

to metabolism, future research into LD-autophagosome contacts will uncover important new 

insights into cell function and disease pathogenesis. It is particularly exciting to consider 

how future proteomic studies will help define new molecular tethers, lipophagy receptors, 

and posttranslational modifications present at the interface between LDs and degradative 

vesicles.

In future work, it will be critical to define LD-auto-phagosome contacts as a balance 

between lipophagy, lipolysis, and autophagosome biogenesis. Do these processes work 

simultaneously during nutrient starvation? How are different LDs selected for lipophagy 

versus autophagosome biogenesis? Along these lines, it will be of interest to investigate how 

LD heterogeneity and varying nutrient availability may dictate the different forms of 

lipophagy (i.e., macro, micro, kiss-and-run) in different cells and tissues. This may also 

require a closer investigation into posttranslational modifications at LD-autophagosome 

contact sites. In particular, ubiquitination of LD proteins appears to facilitate LD catabolism, 

but the relative contribution of ubiquitin to lipophagy as opposed to proteasome clearance of 

LD proteins is unclear. Future work will need to differentiate these pathways, including role 

of unique ubiquitin architectures as new technological advances emerge (Swatek et al., 

2019).
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Figure 1. 
Diverse Functions of LD-Autophagosome Interactions. Traditionally, LD associations with 

autophagic membranes have been thought to result in LD breakdown via lipophagy. During 

this process, Rab7 and Rab10 assist in LD recognition and engulfment within 

autophagosomes, which fuse with lysosomes, LEs or MVBs containing lysosomal acid 

lipase. In addition to lipophagy, autophagosomes can also facilitate lipolysis by delivering 

ATGL and HSL to the LD surface via lipase interactions with LC3. Finally, neutral lipids 

stored within LDs can serve as a lipid source for autophagosome biogenesis, perhaps 

through the tethering and lipid transfer activity of Atg2a at the ER. LEs = late endosomes; 

MVBs = multivesicular bodies; ER = endoplasmic reticulum; LD = lipid droplet; ATGL = 

adipose triglyceride LD lipase. HSL = hormone sensitive lipase.
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Figure 2. 
Proposed Model of LD Contacts With Degradative Organelles. Panel A: A cartoon showing 

proposed proteins involved in regulating LD associations with APs, lysosomes, MVBs and 

other degradative vesicles. Panel B: Comparison of images of a GFP-Rab10-positive LD 

from nutrient-starved Huh7 cells observed using wide-field epifluorescence (left) or super-

resolution microscopy (middle and right). Panel C: Images from nutrient-starved Hep3B 

cells showing colocalization between LD-localized mCherry-Rab10 and endogenous LC3 

(LD is shown in blue). Panel D: Low-magnification electron microscopy image of LD-AP or 

other degradative lysosomal membrane interactions in Huh7 cells that are expressing GFP-

tagged active Rab10 (Q68L) form and have been starved in nutrient-depleted medium. Scale 

bars, 1 μm. Microscopy images (B-D) have been adapted from Li et al. (2016).

LD = lipid droplet; AP = autophagosome.
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