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Simple Summary: Breast cancer diagnosis at an early stage using mammography is important,
as it assists clinical specialists in treatment planning to increase survival rates. The aim of this
study is to construct an effective method to classify breast images into four classes with a low error
rate. Initially, unwanted regions of mammograms are removed, the quality is enhanced, and the
cancerous lesions are highlighted with different artifacts removal, noise reduction, and enhancement
techniques. The number of mammograms is increased using seven augmentation techniques to
deal with over-fitting and under-fitting problems. Afterwards, six fine-tuned convolution neural
networks (CNNs), originally developed for other purposes, are evaluated, and VGG16 yielded the
highest performance. We propose a BreastNet18 model based on the fine-tuned VGG16, changing
different hyper parameters and layer structures after experimentation with our dataset. Performing
an ablation study on the proposed model and selecting suitable parameter values for preprocessing
algorithms increases the accuracy of our model to 98.02%, outperforming some existing state-of-
the-art approaches. To analyze the performance, several performance metrics are generated and
evaluated for every model and for BreastNet18. Results suggest that accuracy improvement can be
obtained through image pre-processing techniques, augmentation, and ablation study. To investigate
possible overfitting issues, a k-fold cross validation is carried out. To assert the robustness of the
network, the model is tested on a dataset containing noisy mammograms. This may help medical
specialists in efficient and accurate diagnosis and early treatment planning.

Abstract: Background: Identification and treatment of breast cancer at an early stage can reduce
mortality. Currently, mammography is the most widely used effective imaging technique in breast
cancer detection. However, an erroneous mammogram based interpretation may result in false diag-
nosis rate, as distinguishing cancerous masses from adjacent tissue is often complex and error-prone.
Methods: Six pre-trained and fine-tuned deep CNN architectures: VGG16, VGG19, MobileNetV2,
ResNet50, DenseNet201, and InceptionV3 are evaluated to determine which model yields the best
performance. We propose a BreastNet18 model using VGG16 as foundational base, since VGG16
performs with the highest accuracy. An ablation study is performed on BreastNet18, to evaluate its
robustness and achieve the highest possible accuracy. Various image processing techniques with
suitable parameter values are employed to remove artefacts and increase the image quality. A total
dataset of 1442 preprocessed mammograms was augmented using seven augmentation techniques,
resulting in a dataset of 11,536 images. To investigate possible overfitting issues, a k-fold cross vali-
dation is carried out. The model was then tested on noisy mammograms to evaluate its robustness.
Results were compared with previous studies. Results: Proposed BreastNet18 model performed best
with a training accuracy of 96.72%, a validating accuracy of 97.91%, and a test accuracy of 98.02%. In

Biology 2021, 10, 1347. https://doi.org/10.3390/biology10121347 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0001-7572-9750
https://orcid.org/0000-0002-6236-2352
https://orcid.org/0000-0002-0132-1717
https://doi.org/10.3390/biology10121347
https://doi.org/10.3390/biology10121347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10121347
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10121347?type=check_update&version=2


Biology 2021, 10, 1347 2 of 44

contrast to this, VGGNet19 yielded test accuracy of 96.24%, MobileNetV2 77.84%, ResNet50 79.98%,
DenseNet201 86.92%, and InceptionV3 76.87%. Conclusions: Our proposed approach based on image
processing, transfer learning, fine-tuning, and ablation study has demonstrated a high correct breast
cancer classification while dealing with a limited number of complex medical images.

Keywords: mammograms; image preprocessing; fine-tuned VGG16; deep learning; breast cancer
classification; data augmentation; ablation study; transfer learning models; feature map linebreak
analysis; CBIS-DDSM

1. Introduction

Breast cancer is one of the leading causes of death for women worldwide [1] and
is occurring more frequently in both developed and developing countries. In 2012 the
number of new cases of breast cancer was about 1.6 million [2]. In the year of 2020 the
number of new cases for breast cancer had risen to 2.2 million, 11.7% [3] of all new cancer
cases that year. Among all cancer patients 684,996 [3] died from breast cancer in 2020.
According to the World Health Organization (WHO), the number of expected cancer cases
in 2025 will be approximately 19.3 million [4]. However, accurate tumor identification
and distinguishing malignant from benign tumors at an early stage crucially impacts on
chances of survival [5]. Early detection greatly improves the chances of survival [6]. A
recent study found that 5 year survival rates increases to 91% with early diagnosis [7].
This is compounded by the fact that there is a lack of radiologists and doctors across the
world who can interpret the screening results, especially in regional areas and developing
countries [8]. As time is a major factor in saving lives in the case of breast cancer, human
resources and technology to deliver prompt patient services in terms of screening, diag-
nosis, and treatment are essential [9]. However, tumor diagnosis is time-consuming and
often challenging for radiologists, by examining medical images due to the presence of
noise, artefacts, and complex structure. This is compounded by the fact that there is a
lack of radiologists and doctors across the world who can interpret the screening results,
especially in regional areas and developing countries [8]. Additionally, a growing number
of patients adds radiologist’s burden that often results in misdiagnosis of tumors. At
present, mammography, magnetic resonance imaging (MRI), and ultrasound are the most
common medical imaging modalities, available and used for early detection of cancerous
breast tumors. In this regard, mammogram based diagnosis [10] outperforms symptoms
based diagnosis among other modalities. Digital mammography provides high-quality
images at a relatively low radiation dose, with a wide dynamic range and low noise [11]. To
detect the cancerous lesion, radiologists examine the region, size, shape, density of masses,
and calcifications as well as distortions presented on a mammogram [12]. Distinguishing a
mass from adjacent dense tissue is often extremely challenging, even for experts. Moreover,
in mammographic studies, detecting the chest wall is often challenging due to deficiency of
regularity, low perceptibility of the chest wall, and large heterogeneity of breast tissue [13].
The pectoral muscle and the chest wall has nearly the equivalent density as the dense
tissues of the breast which can cause poor performance in tumor detection [14]. In MRI of
dense breasts, it is observed that the visual appearance of fibroglandular tissue and the
chest wall look relatively similar. As a consequence, the delineation and exclusion of the
muscle while preserving the necessary dense tissue is challenging [15].

The accessible mammogram datasets are extremely imbalanced, comprising of an
inadequate number of images. Image processing techniques along with machine learning
could be a valuable tool for detection and diagnosis but also often results in false positive
and false negative cases [6]. Deep Learning technology can detect breast cancer in an
early stage by decreasing mammogram interpretation time [16]. Currently, a host of Deep
Learning algorithms are available but not all have been explored for their usefulness in
detecting breast cancer. These algorithms are used for fully automated mass segmentation,
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detection, and classification by extracting important distinct features from images without
manual human interference. When the number of images is insufficient to train a Deep
CNN (DCNN) network, transfer learning (TL) plays a vital role in boosting diagnosis
performance in the medical domain, especially when dealing with the complex characteris-
tics of breast mammograms. Recently, fine-tuned TL networks with pre-trained weights
are gaining interest of scholars by solving complex classification tasks with significant
interpretation performance.

The aim of this study is to detect and classify breast cancer into benign calcifications
(BC), benign masses (BM), malignant calcifications (MC), and malignant masses (MM) at
initial stage in order to reduce the risk of death by assisting the experts in better and proper
treatment planning. All the experiments of this study are conducted using the Curated
Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM)
dataset. Mammograms of the CBIS-DDSM dataset contain noise and artefacts, lines on the
border of the image and lines attached to breast portion of the image. Removal of artefacts
is crucial in order to achieve good performance from a CNN model. Moreover, resemblance
between dense breast tissue and tumor regions might lead to poor interpretation capability
of the model. To address this issue, the tumorous lesion can be enhanced by properly
balancing brightness and contrast levels of the raw mammograms. A fully automated and
reliable deep learning model namely BreastNet18 based on transfer learning and ablation
study is proposed in this research, to classify cancerous lesions on breast mammograms.
The entire process of mammography classification proposed in this research is illustrated
in Figure 1. To develop the model, the performance of six existing pre-trained and fine-
tuned TL architectures namely VGG16, VGG19, MobileNetV2, ResNet50, DenseNet201,
and InceptionV3 are compared to determine which model records the highest accuracy.
Each of the models is fine-tuned by freezing the pre-trained weights of the primary layers
and retraining the last layer using our breast mammogram dataset. An ablation study is
performed to the model which yields the highest accuracy (VGG16) using four study cases
to further increase the overall model’s accuracy and robustness. Performance matrices are
investigated to evaluate the robustness of our model. Additionally, a number of image pre-
processing and augmentation methods are investigated to achieve better performance. The
preprocessing algorithms and their parameter values are chosen through a vast experiment
on our dataset. Statistical analysis including Peak signal-to-noise ratio (PSNR), Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE), structural similarity index
measure (SSIM), and histogram analysis on the preprocessed images is done to evaluate
these image processing algorithms. For the proposed model, feature maps are generated
for every CNN block to show how the detailed information is extracted. Once the proposed
model yields optimal performance, a k-fold cross validation is carried out to ensure there
is no occurrence of overfitting. Moreover, to check whether the model can sustain its
performance for a real world dataset, it is tested on a noise induced dataset. The consistent
outcomes of this research demonstrate that image processing techniques and ablation study
integrated with transfer learning method can accelerate the diagnosis which could greatly
assist clinical experts in the treatment of breast cancer.
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result in a preprocessed dataset. (C) Data augmentation techniques applied to the preprocessed dataset to increase volume 
of the dataset, resulting in an augmented dataset, (D) experimenting with various pre-trained models and selecting the 
model based on highest classification accuracy on the augmented dataset, results in the proposed BreastNet18 model (fine-
tuned VGG16). (E) An ablation study conducted on proposed model results in a more robust network with higher accu-
racies and (F) results of the final model are analyzed with performance matrices along with feature map analysis. 
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• Pre-trained networks namely VGGNet16, VGGNet19, ResNet50, InceptionV3, Mo-
bileNetV2, and DenseNet201 are modified by fine-tuning the model’s final layers to 
determine the best classifier for the augmented dataset. 

• BreastNet18 model is proposed based on a fine-tuned VGG16 architecture after thor-
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Figure 1. Working flow of the entire classification process where each step is represented by a block. Block (A) represents the
original mammogram dataset from CBIS DDSM. (B) Various image preprocessing steps applied to the original dataset result
in a preprocessed dataset. (C) Data augmentation techniques applied to the preprocessed dataset to increase volume of the
dataset, resulting in an augmented dataset, (D) experimenting with various pre-trained models and selecting the model
based on highest classification accuracy on the augmented dataset, results in the proposed BreastNet18 model (fine-tuned
VGG16). (E) An ablation study conducted on proposed model results in a more robust network with higher accuracies and
(F) results of the final model are analyzed with performance matrices along with feature map analysis.

2. Research Aim and Scope

The aim of this study is to construct an effective automated deep learning method to
assist radiologists by classifying cancerous lesions into benign calcifications, benign masses,
malignant calcifications, and malignant masses with accurate and fast performance. The
objectives and approach can be summarized as follows:

• Initially, artefacts and noise presented in raw mammograms are removed by applying
noise reduction and data pre-processing algorithms, the quality of the mammograms is
improved and the breast lesion emphasized with different data enhancement methods.

• Preprocessing algorithms and their parameter values which result in the best outcome,
after experimentation with our dataset, are selected.

• Statistical analysis such as MSE, PSNR, SSIM, RMSE, and histogram analysis is per-
formed on the pre-processed images to ensure the quality and pixel information has
not deteriorated.

• The number of mammograms is increased eight times using seven data augmentation
techniques to deal with overfitting issues and the dataset is split into train, validation,
and test sets.

• Pre-trained networks namely VGGNet16, VGGNet19, ResNet50, InceptionV3, Mo-
bileNetV2, and DenseNet201 are modified by fine-tuning the model’s final layers to
determine the best classifier for the augmented dataset.

• BreastNet18 model is proposed based on a fine-tuned VGG16 architecture after thor-
ough experimentation with our dataset as it yields the highest accuracy among the
pre-trained models.
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• An ablation study is conducted on the proposed model in order to improve its classifi-
cation performance.

• To avoid the possibility of overfitting, the model is evaluated by employing k-fold
cross validation technique.

• Once the model offers adequate performance, to further investigate the robustness, it
is tested on a noise induced dataset.

3. Literature Review

Early detection of breast cancer and classification of mammogram images with the
help of different Deep Learning Classifiers is a major area of research. However, there
is a limited availability of labeled mammographic images which affects the viability of
training a CNN from scratch [17]. In a recent study [18], it was found that a pre-trained
model provides a better performance on a DDSM dataset and is able to minimize the loss
function during the gradient descent process. This was implemented using various image
classification models (AlexNet, VGG16, VGG19, MVGG, Mobile Net, and ResNet50) which
were modified by tuning the feed-forward neural networks. The proposed hybrid model, a
combination of MVGG and ImageNet, performed best and provided an accuracy of 94.3%,
a precision of 93.5%, a sensitivity of 93.7% and an F1-score of 93.7%. Two experiments were
conducted, to classify cancerous and non-cancerous mammography lesions. The authors
introduced five transfer learning models in the first approach while in the second approach;
a support vector machine was applied. They also employed several image processing and
augmentation techniques to improve the classification performance but did not describe
the processes in detail in their paper. Recorded results showed that, their proposed
ConvNet + SVM model attained a training accuracy of 97.7% with validating accuracy
of 97.8%. Furthermore, pre-trained and fine-tuned VGGNet16 model acquired accuracy
of 90.2%, VGGNet 93.5%, GoogLeNet 63.4%, MobileNetV2 82.9%, ResNet50 75.1%, and
DenseNet121 72.9% [19]. Other authors [20] combined various convolution and capsule
features in a feature fusion method to derive an updated feature set. These new features
are more notable than convolution or capsule features and have a better classification
performance. Their network was able to simultaneously extract capsule features and
convolution features and achieved an accuracy of 94.52%. Mammographic mass detection is
one of the most important areas of Computer Aided Diagnosis (CAD) and can be achieved
by using DCNN as a feature extractor [21]. These authors combined scoring features,
Gray-Level Co-occurrence Matrix (GLCM) and Histogram of Oriented Gradient (HOT) as
input features. Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost)
were trained using these inputs. They found that an XGBoost classifier performed better
than SVM, obtaining an accuracy of 84%. Hamid et al. [22] proposed an architecture
based on VGG16 and VGG19 models for the automatic classification of breast cancer
from histopathology images. This hybrid classifier resulted in an accuracy of 95.29%,
97.73% sensitivity, and an F1 score of 95.29%. Other authors [23] evaluated CNN to
classify mammograms in three stages: abnormal or normal, mass or calcification and
finally malignant or benign. In classifying normal and abnormal mammograms, VGG19
obtained the best result with an AUC of 94% and an accuracy of 93.45%. The second-best
result was obtained with their proposed Multi-view Features Fusion (MVFF) model with
93.4% AUC and 93.73% accuracy. In the classification of abnormality type, an accuracy of
92.29% was achieved in the third stage, their MVFF model achieved an accuracy of 77.66%.
Wang et al. [24] proposed a new method based on the combination of deep features with
CNN. However, they only used 400 mammogram images, with 200 images of malignant
masses and 200 of benign masses. Extreme learning machine (ELM) and support vector
machine (SVM) classifiers were used for classification. ELM outperformed the SVM
classifier with an accuracy of 86.50%. Li et al. [5], proposed an improved neural network
model called DenseNet-II for the classification of benign and malignant mammography
images. In their study, five different models were compared. They recorded an accuracy
of 94.55% using a DenseNet-II classifier. VGG16, VGG19, and ResNet50 are pre-trained
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networks known because of their wide and deep architectures. VGG16 and VGG19 hold
the first position for localization and the second position for classification in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC-2014) [25]. In this experiment, three pre-
trained networks (VGG16, VGG19, and ResNet50) were compared and found that a hybrid
approach performed better than a fully trained network, obtaining an accuracy of 92.60%,
an area under curve (AUC) of 95.65%, and a precision score of 95.95%. Ribli et al. [26]
proposed a CAD system based on a successful object detection framework called Faster
R-CNN. They used VGG16 network as the base of CNN achieving a 95% AUC score
for classification. Another new CAD system for the classification of breast masses into
benign and malignant tumors was developed by Ragab et al. [4] using two different
segmentation approaches. Similarly, a DCNN model was utilized [21] for the extraction
of classification features. A fine-tuned AlexNet with SVM resulted in an accuracy of
87.2%. CNN performs well on a large number of datasets [27] due to its self–learning
strategies. An AlexNet-like architecture had an AUC score of around 85% but deeper
networks and with an increased number of kernels resulted in an accuracy of 89.6%. An
accuracy of 87.5% was obtained without data augmentation techniques and an accuracy
of 92.9% with data augmentation. A completely integrated CAD system using a deep
learning classifier to perform detection, segmentation, and classification of mammograms
was proposed by Al-antari et al. [28]. For performing segmentation, a full resolution
convolutional network (FrCN) was utilized. To detect and classify breast tumor, CNN
was also used. The suggested system’s first two stages obtained 98.96% accuracy in mass
detection and a 92.97% accuracy in mass segmentation. These segmented mass images were
used to classify breast tumors and an overall accuracy of 95.64% was obtained by CNN in
this classification stage. A deep feature based framework for breast lesion classification
was designed by Jiao et al. [29]. It mainly consisted of a CNN with a series of decision
mechanisms. The fine-tuned CNN was trained on a large number of natural images. The
proposed model had an improved accuracy of 96.7%. Currently, deep learning models
are widely used on image classification applications as they yield good performance with
minimal misclassification rate. However, Wang et al. [30] examined whether these models
were able to sustain high performance on unseen external data using mammograms. Six
deep learning networks were assessed on four mammogram data sets. Digital Database for
Screening Mammography or a joint dataset that contained Digital Database for Screening
Mammography were employed for training and validation. Three unseen dataset were
used to test the models. Though the models were able to attain a good performance on the
validation dataset, the performance dropped significantly while testing on external dataset,
recording area under the receiver operating characteristic curve scores between 0.44 and
0.65. Paquin et al. [31] developed a CNN model using mammograms on a simplified feature
learning and fine-tuned network to distinct cancer from normal mammograms. Their
proposed architecture performed best on the DDSM mammogram dataset by attaining
accuracy, sensitivity, specificity, and precision of 92.84%, 95.30%, and 96.72% respectively.
Data preprocessing, augmentation, and k-fold cross validation was carried out to increase
the robustness of model. Jadoon et al. [32] proposed two methods, namely, CNN-discrete
wavelet (CNN-DW) and CNN-curvelet transform (CNN-CT) to classify mammograms into
normal, benign and malignant cases. Data augmentation was carried out by mammogram
patches and contrast limited adaptive histogram equalization(CLAHE) was employed
to enhance the mammograms. In the first approach, CNN-DW, the mammograms were
decomposed into four subbands in coexistence with two-dimensional discrete wavelet
transform (2D-DWT). In the second approach, a discrete curvelet transform (DCT) was
employed. Their proposed model resulted in an accuracy of 81.83% and 83.74%, for the first
and the second approach, respectively. To classify normal and abnormal mammograms,
Cardezi et al. [33] introduced a VGG-16 deep learning model with the Image retrieval
in Medical Applications (IRMA) dataset. The model was evaluated employing 10 fold
cross validation on SVM, simple logistics, binary trees, and K nearest neighbor (KNN)
classifiers with k value of 1, 3, and 5. They achieved 100% accuracy with SVM, KNN, and
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binary trees. For the simple logistic classifier, an accuracy of 99.9% was achieved while
all of the classifiers recorded an AUC value of 1.0. A novel method to detect abnormal
lesions in mammograms, combining scale invariant feature transform (SIFT) keypoints and
transfer learning with pre-trained CNN models (PyramidNet and AlexNet) was proposed
by Bruno et al. [34]. Two datasets were used, both of which were augmented and image
patches were extracted. One of these datasets was the public available dataset Mini-MIAS,
the other was their own dataset Suspicious Region Detection on Mammogram from PP
(SuReMaPP). For mini-MIAS their proposed approach was able to attain a sensitivity of 98%
and a specificity of 90%. For SuReMaPP the sensitivity was 94% and the specificity 91%.

4. Dataset

A total of 1459 mammograms, provided by CBIS-DDSM, are analyzed for this research.
The DDSM is a database of mammograms and the CBIS-DDSM [35] dataset is an updated
version of DDSM. CBIS-DDSM contains 398 images with benign calcifications, 417 images
with benign masses, 300 images with malignant calcifications with the remaining ones
malignant masses. In this dataset, all images are 224 × 224 pixels and in RGB format. The
description of the dataset is summarized in Table 1.

Table 1. Dataset description.

Name Description

Total Number of Images 1459
Dimension 224 × 224

Color Grading RGB
Benign Mass 417

Benign Calcification 398
Malignant Calcification 300

Malignant Mass 344

After getting the dataset, we found some blank images as well as some images with
just artefacts classed as malignant masses. These images may cause a reduction of accuracy.
We therefore manually removed 17 images. After removing the images we were left
with 327 malignant mass mammograms while the number of mammograms in the other
classes remained the same as before. As a result, a dataset of 1442 images is generated
containing four different classes. Figure 2 showcases examples of four classes along with
their characteristics and artefacts.
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5. Image Preprocessing Techniques

Image pre-processing is regarded to be the first and foremost task before feeding the
images into a neural network to achieve a satisfactory accuracy and decrease the computa-
tional time of a model. Without applying pre-processing techniques on mammograms, it is
difficult for a neural network model to classify them. Therefore, we first focus on image
pre-processing. Beeravolu et al. [9] describes diverse pre-processing techniques which can
be implemented without affecting the original image quality. Two other studies [4,24] used
well-known methods to enhance the contrast of mammograms.

In this section, we describe how the quality and quantity of mammograms can be
boosted. This includes background removal, artefact removal, and image enhancement.
Figure 3 illustrates the main processes and sub-processes of the image pre-processing
step. The main processes include artefacts removal, line removal, image enhancement and
verification.

Biology 2021, 10, x FOR PEER REVIEW 8 of 45 
 

 

5. Image Preprocessing Techniques 
Image pre-processing is regarded to be the first and foremost task before feeding the 

images into a neural network to achieve a satisfactory accuracy and decrease the compu-
tational time of a model. Without applying pre-processing techniques on mammograms, 
it is difficult for a neural network model to classify them. Therefore, we first focus on 
image pre-processing. Beeravolu et al. [9] describes diverse pre-processing techniques 
which can be implemented without affecting the original image quality. Two other studies 
[4,24] used well-known methods to enhance the contrast of mammograms. 

In this section, we describe how the quality and quantity of mammograms can be 
boosted. This includes background removal, artefact removal, and image enhancement. 
Figure 3 illustrates the main processes and sub-processes of the image pre-processing step. 
The main processes include artefacts removal, line removal, image enhancement and ver-
ification. 

Firstly, artefacts are removed from the mammograms followed by some algorithms 
(binary masking, morphological opening [36] and largest contour detection [37]) to get a 
more accurate result. Secondly, a “remove line” step is performed to get rid of the vertical 
line attached with the breast contour. Previously described approaches, such as inRange 
operation [38], Gabor filter [39], morphological operations [40], and inverse mask methods 
are used in this research. The sub-process morphological operation has two other sub-
processes: opening and dilation. Thirdly, Image enhancement, a procedure of improving 
the brightness and contrast of original images, is applied to make the cancerous lesion 
more visible. The sub processes of this step are gamma correction [41], CLAHE(1st) [42], 
CLAHE(2nd) and a filter of ImageJ software: green fire blue [9]. After applying CLAHE, 
an improvement of visibility can be noticed. CLAHE is then employed again to improve 
the contrast level. In other words, CLAHE is applied twice in our process. We did not 
apply CLAHE a third time as this may affect the details of mammograms by over-ampli-
fying the contrast level. Finally, in the verification section, assessment techniques such as, 
MSE, PSNR, SSIM, RMSE, and Histogram Analysis are applied to the processed images 
to evaluate the produced results. 

The complete image pre-processing flow is illustrated in Figure 3. The output of a 
previous step is employed as the input of next step (e.g., the output of binary making is 
the input of morphological opening). A resulting image after every process is also shown. 

 

Figure 3. Process diagram of image pre-processing where each step is represented with a block. Block (A): artefacts present in
the original mammograms are removed using various methods: binary masking, morphological opening, and largest contour
detection resulting in artefact free mammograms; (B) lines attached to the breast part of the mammograms are removed
using various methods: inRange Operation, Gabor filter, Morphological opening, and Invert mask operation; (C) image
enhancement techniques: Gamma correction, CLAHE, and Green Fire Filter of ImageJ software; and finally in Block (D)
quality of the enhanced images is verified using image statistical analysis.

Firstly, artefacts are removed from the mammograms followed by some algorithms
(binary masking, morphological opening [36] and largest contour detection [37]) to get a
more accurate result. Secondly, a “remove line” step is performed to get rid of the vertical
line attached with the breast contour. Previously described approaches, such as inRange
operation [38], Gabor filter [39], morphological operations [40], and inverse mask methods
are used in this research. The sub-process morphological operation has two other sub-
processes: opening and dilation. Thirdly, Image enhancement, a procedure of improving
the brightness and contrast of original images, is applied to make the cancerous lesion
more visible. The sub processes of this step are gamma correction [41], CLAHE(1st) [42],
CLAHE(2nd) and a filter of ImageJ software: green fire blue [9]. After applying CLAHE, an
improvement of visibility can be noticed. CLAHE is then employed again to improve the
contrast level. In other words, CLAHE is applied twice in our process. We did not apply
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CLAHE a third time as this may affect the details of mammograms by over-amplifying
the contrast level. Finally, in the verification section, assessment techniques such as, MSE,
PSNR, SSIM, RMSE, and Histogram Analysis are applied to the processed images to
evaluate the produced results.

The complete image pre-processing flow is illustrated in Figure 3. The output of a
previous step is employed as the input of next step (e.g., the output of binary making is the
input of morphological opening). A resulting image after every process is also shown.

5.1. Artefacts Removal

Sometimes, undesired objects or areas accidentally appear in images as shown in
Figure 2. This may hamper the performance of the model; hence, successful background
removal is a crucial step in image pre-processing. As illustrated in Figure 2 some images
contain artefacts as well as a thin white border vertically or horizontally. In most cases
this border appears in the left, right or top edge of the images. We have therefore ap-
plied binary masking, morphological opening, and Largest Contour detection to remove
these artefacts.

5.1.1. Binary Masking

All kind of images, texts, and videos are stored in computer as a series of binary digits
(zeroes or ones). With python we can manipulate every individual bit and decide which to
keep and which to remove. In a binary mask, there are two bits where white denotes ‘1’
and black denotes ‘0’. By applying the mask on an image, pixels can be filtered out when
the mask [pixel] = 0 and the desired bits can be kept when the mask [pixel] = 1. OpenCV is
a tool of python which allows creating binary structural elements of different shapes and
sizes. As stated previously, most of the mammograms we are working with contain a thin
border either on the top, the bottom, the left or the right side (Figure 4). Removal of this
border is crucial as the intensity of tumor and this border are nearly similar which might
affect the classification performance. Several approaches such as cropping could be applied
for the purpose. However, cropping can result in losing necessary details by shrinking the
image. Hence, to get the best outcome, binary masking is applied with a rectangular mask.
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The cv2.rectangle () method is used to create a rectangular mask of the same dimen-
sions as our input image. This method requires five parameters, input_image, start_point,
end_point, border_color and border_thickness. Input_image is the image to which the
mask will be applied, start_point refers to the starting coordinates of the rectangular mask
(x and y coordinates), end_point represents the end coordinates of the rectangular mask
(x and y coordinates), border_color is the color of the border, and border_thickness is the
thickness of the border. As the size of the image border which needs to be removed is not
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large, the thickness of the binary mask border can be taken as only 5 px so that the border
is removed without losing any necessary pixels or information. Therefore, we use a tuple
of color (0, 0, 0) as a border_color and a thickness of 5 px as border thickness. After creating
the mask, a bitwise_AND is performed to apply the mask on original images. Bitwise AND
requires two parameters, the original image and the binary mask. For any bit presented in
the input, the output bit will be 0 if the mask bit is 0.

In this step, after loading the input image, a binary mask is constructed of the same
dimension. Finally, the mask and the input are merged. The white edges have been
removed successfully from images by applying binary masking which is illustrated in
Figure 5.
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5.1.2. Morphological Opening

Before applying morphological opening, the image is binarized as our goal is to acquire
a binary mask. The cv2.threshold function is used, which is a global thresholding method.
This function requires three arguments, input image, threshold value and maximum value.
In our case, binary thresholding is applied with a threshold value of 127 and a maximum
value of 255. Several other threshold values were tried but 127 produced the best outcome.
The pseudo-code for this algorithm is shown below (Algorithm 1):

Algorithm 1 Binary thresholding

1. START
2. READ source image, s(x,y) where x and y denotes the pixel coordinates
3. threshold value, t = 127
4. maximum value, m = 255
5. FOR pixel in s(x,y):
6. IF s[pixel] < t:
7. s[pixel] = 0
8. ELSE
9. s[pixel] = 255
10. END IF
11. END FOR
12. END

Morphological opening is applied on this mask and after removing artefacts, the mask
will be merged with the original image. Morphological operations such as bitwise filtering
by a given kernel can produce noteworthy outcomes in terms of removing small noise and
irrelevant artefacts from image. Over the last decades, different morphological operations
have proven their worth. Morphological opening [40], a function of openCV, is useful in
this regard. Morphological opening can be defined as:

X # B = (X	 B)⊕ B (1)
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where X is the input image, B is the kernel, X # B is the opening of X by B, X 	 B is the
erosion of X by B, and (X	 B)⊕ B is the dilation of X	 B by B. Morphological opening is
the combination of erosion and dilation.

YB( f ) = δB(εB( f )) (2)

In Equation (2), dilation from erosion is defined by δB and (εB( f )) Here, YB( f ) is the
morphological opening.

One-dimensional opening [36] with size u means that all runs of pixels are deleted
which are less than u, while the rest of the pixels remain untouched (Algorithm 2).

Algorithm 2 Morphological opening

1. BEGIN
2. VOID open1d(image,u) {
3. FOR i in 1,length(image.lines) do
4. line = image.lines[i]
5. filtered = []
6. FOR j in 1,length(line.runs) do
7. if runs[j].width() >= u then
8. filtered.append(line.runs[j])
9. ENDFOR
10. image.lines[i] = filtered
11. ENDFOR
12. END

Morphological opening is applied on the binary image using a kernel. The shape of
this kernel depends on the characteristics and the size of the artefacts to be removed. As
shown in Figure 6, we have experimented with different kernel sizes to select the most
suitable kernel for our images.
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In Figure 6b, after binarizing the original image, small noises become visible which
were difficult to found in Figure 6a, the source image. To eliminate tiny noises from image,
a small kernel size would be suitable. Figure 6c shows how a small kernel size of (5, 5)
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removes the noise from the images. However, the artefacts are still present. As the artefacts
presented in our image are quite large, the filter or kernel should be large enough to
eradicate these artefacts, but not so large that it removes the breast area. Red marked areas
of Figure 6f–h show how with an increase of filter size, more pixel information is lost. For
the entire dataset, it is found that for a kernel size of (20, 20), results in the optimal outcome.
The algorithm is applied using the cv2.morphologyEx function. Along with kernel size, this
function requires another parameter, type of morphological operation. As morphological
opening is applied, cv2.MORPH_OPEN is used. Thus, the noises are removed from the
binarized image and the noise-free mask is then merged with the original image with the
help of bitwise_AND function. Figure 7 shows how the artefacts have been removed with
the binary mask provided by morphological opening.
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5.1.3. Largest Contour Detection

After the completion of morphological opening, some images still contain large arte-
facts that the morphological opening could not remove. The kernel size could be increased
to remove these artefacts. But as described, this approach would result in losing neces-
sary details for most of the mammograms (Figure 6). We therefore use another approach
to remove these unwanted objects from the mammograms, largest contour detection.
Contour detection algorithms are fundamentally required for performing practical tasks,
such as object recognition [37]. Using contour detection, boundaries can be found for
every object presented in an image. Using openCV, contours can be detected and regions
can be marked with the help of the findContours, and drawContours functions. The
function findContours takes three arguments, input image, contour retrieval mode, and
contour approximation method. Our first parameter is the breast mammogram (output
of morphological opening). The second argument, contouring retrieval mode is passed
cv2. RETR_EXTERNAL, as our aim is to retrieve the largest blob. As a third parameter,
cv2.CHAIN_APPROX_SIMPLE is used. Rather than retrieving all the coordinates presents
in a contour, cv2.CHAIN_APPROX_SIMPLE reserves only the important coordinates. For
instance, it does not retrieve all the points of a rectangular shapes contour. Only the four
necessary points by which a rectangle can easily be identified and derived are stored,
eradicating the redundant points. This approximation method is employed as it saves
memory while not compromising the quality of the output. Afterwards, findContours
function provides outputs of a python list of all contours and a hierarchy.

The drawContours function takes the image and the list of contours as arguments. As
our aim is to find the breast, which is larger contour than the artefacts, we will just pass the
image, the largest contour and the index of the contour as arguments. Thus, with the help
of findContours function we locate all the objects in the mammograms, organize them in
descending order and select the largest object. This method requires binary thresholding.
By applying binary thresholding, all the objects in the image will be converted to white
(1) having same intensity value. The remaining pixels of the image will be converted to
black (0) and ignored. All white pixels separated by black pixels will be considered as a
contour. As a result, this algorithm can utilize the benefit of binary thresholding while
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looking for the borders of the objects with similar color intensity. A thing to be noted is
that the algorithm would not work properly with RGB (red, green, blue) format because
the intensity values of the objects may vary while largest contour detection algorithm
requires similar intensity. The findContours function returns a list of all the contours from
which the largest one can easily be detected. The max function is used to find the largest
contour from the list. Two arguments are passed to the function, contour list and a key,
which is cv2.contourArea. Using the key, the function extracts the largest contour from the
list. After getting the largest contour, draw Contours function draws the area over it and
a binary mask containing only the largest blob is returned. This function requires three
parameters, the source image, the list of contours, the index of contours to be drawn, color
and thickness. We have passed the mammogram as the source image. In the contour list
there is just one contour as max function derives only the largest one. Therefore, as third
argument, −1 is passed as the contour index, as −1 refers to all the contours presented in
contour list. For color and thickness (255, 255, 255) and 1 are passed respectively. Finally,
the original image is merged with this binary mask. The result is shown in Figure 8.
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5.2. Remove Line

As can be seen from Figure 3, ‘remove line’ is another function to remove artefacts
from the image. Some images were found to have a straight bright line attached to the
breast contour (Figure 2). For this purpose, some other algorithms are applied and the
entire process flow is showed in Figure 9.

Biology 2021, 10, x FOR PEER REVIEW 13 of 45 
 

 

converted to black (0) and ignored. All white pixels separated by black pixels will be con-
sidered as a contour. As a result, this algorithm can utilize the benefit of binary threshold-
ing while looking for the borders of the objects with similar color intensity. A thing to be 
noted is that the algorithm would not work properly with RGB (red, green, blue) format 
because the intensity values of the objects may vary while largest contour detection algo-
rithm requires similar intensity. The findContours function returns a list of all the con-
tours from which the largest one can easily be detected. The max function is used to find 
the largest contour from the list. Two arguments are passed to the function, contour list 
and a key, which is cv2.contourArea. Using the key, the function extracts the largest con-
tour from the list. After getting the largest contour, draw Contours function draws the 
area over it and a binary mask containing only the largest blob is returned. This function 
requires three parameters, the source image, the list of contours, the index of contours to 
be drawn, color and thickness. We have passed the mammogram as the source image. In 
the contour list there is just one contour as max function derives only the largest one. 
Therefore, as third argument, -1 is passed as the contour index, as -1 refers to all the con-
tours presented in contour list. For color and thickness (255, 255, 255) and 1 are passed 
respectively. Finally, the original image is merged with this binary mask. The result is 
shown in Figure 8. 

 
Figure 8. Work flow of largest contour detection. 

5.2. Remove Line 
As can be seen from Figure 3, ‘remove line’ is another function to remove artefacts 

from the image. Some images were found to have a straight bright line attached to the 
breast contour (Figure 2). For this purpose, some other algorithms are applied and the 
entire process flow is showed in Figure 9. 

 
Figure 9. Complete remove line process. Figure 9. Complete remove line process.



Biology 2021, 10, 1347 14 of 44

5.2.1. InRange Operation

The way in which we can differentiate the line from the actual breast contour is
by looking at its properties. The line contains the brightest pixels and it is vertical and
straight. Hence, the line removal task involves detecting the brightest pixels of the image
which form a vertically straight line. In binary thresholding, the inRange function allows
color based segmentation of the desired object. For color based segmentation HSV (Hue,
Saturation, and Value) [38] provide better result than RGB (red, green, blue) or any other
color space. The following operations are performed to convert an image from the RGB to
HSV format [43]:

V ← max(R, G, B) (3)

S←
{

V − min(R,G,B)
V If V 6= 0

0 otherwise

}
(4)

H ←


60(G−B)

V−min(RGB) If V = R

120 + 60(B−R)
V−min(RGB) If V = G

240 + 60(R−G)
V−min(RGB) If V = B

 (5)

With the help of openCV’s inRange function shown in Equation (6), any pixel in this
range is kept while the rest is ignored.

Output ←
{

1 If Input ∈ Range
0 If Input /∈ Range

}
(6)

The InRange function takes the input image, lowest color range and highest color range
as arguments and returns a binary mask containing only the pixels that fall within the given
range. In our study, the image resulting from the artefacts removal process is converted
to HSV and two color ranges are selected for the filter. For the inRange operation, the
possible color ranges are between (0, 0, 200) and (255, 255, 255). The lowest color is selected
after experimenting with several values. For this tuple, the optimal outcome is achieved as
for most of the mammograms, the lowest pixel value is around the (0, 0, 200) value. After
applying this method, the bright vertical line is extracted successfully. However, along
with this a portion of the breast has also been extracted in mask-1 shown in Figure 9.

5.2.2. Gabor Filter

If mask-1 (shown in Figure 9) is used to remove the line from images, then some breast
part will be eliminated as well. Gabor is a linear filter which is widely used in texture
analysis, feature selection and extraction in image processing [39]. A two-dimensional
Gabor kernel can visualize an image in such a way that any shape, size and angle of
particular object can be identified. This filter resembles the human brain’s visual system
and can carry out complex feature extraction which is difficult to accomplish for normal
filters. Gabor filters are band pass filters, which mean they perform with in a certain band
of frequencies. Let the Gabor function G have the parameters: x, y, σx, σy, σ and ϕ. Here,
x and y are the size of the two-dimensional kernel, σx and σy (sigma) are the standard
deviation in the x- and y- directions respectively, ϕ denotes the orientation of the filter and
λ (lambda) typically represents wavelength. A 2-D Gabor filter is a complex sinusoidal
plane modulated by a Gaussian function in the spatial domain [44].

h
(

x, y, λ, φ, σx, σy
)
=

1
2πσxσy

exp

−1
2

 R2
1

σ2
x

+
R2

2
σ2

y


exp

{
i
2πR1

λ

}
(7)

where, R1 and R2 are
R1 = x cos ∅+ y sin ∅ (8)
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R2 = y cos ∅− x sin ∅ (9)

In the frequency domain, the Gabor filter is defined as follows:

H
(
u, v, λ,∅, σx, σy

)
= Kexp2− 2π2σ2

x

(
F− 1

λ

)2
+ σ2

y F2
2 (10)

where K is a constant, and F1, F2 are defined as:

F1 = u cos ∅+ v sin ∅ (11)

F2 = u cos ∅− v sin ∅ (12)

By changing the parameters above, filters can be created to match the region that
should be extracted. For instance, if the features are large, the sigma value should be large
and vice versa. The value of ϕ is changed to get the features in horizontal, vertical, diagonal,
or any other direction. The wavelength can be minimized or maximized by changing the
value of lambda. For pseudo code of the Gabor filter, see Algorithm 3 [44].

Algorithm 3 Pseudo-code of Gabor feature extraction

1. BEGIN
2. FOR each frequency f in the frequency list f_list:
3. FOR each orientation ϕ in the orientation list o_list DO
4. Construct a gabor filter g(f, ϕ),
5. Convolve g(f, ϕ) with original image I, get response image R,
6. Compute the mean (m) response in R,
7. Count the # of pixels Np that have a larger value than m,
8. Divide R into X x Y frames,
9. FOR i in range(1,X);
10. FOR j in range(1,Y):
11. Count the # of strong response Ni,j and Compute the ratio r:
12. r = Ni,j/Nr;
13. Append r to the feature vector z:
14. Finally, z = [r1,r2, . . . r|f_list|*|o_list|*X*Y].
15. END

In this case, Gabor filter is applied using cv2.getGaborKernel function which requires
six arguments: ksize, sigma, theta, gamma, lambd, psi, and ktype. Here, ksize is the size
of the Gabor filter or kernel, sigma is the standard deviation value for Gaussian function,
theta is the orientation of the Gabor function, gamma is the spatial aspect ratio, lambd
is the wavelength, psi is the phase offset, and ktype is the filter type. By changing these
values, a suitable Gabor kernel can be formed of several shapes and orientations, based
on the characteristics of the dataset and the target application. For our dataset, a Gabor
kernel is created with a kernel size of (5, 5), sigma of 3, theta of 1*np.pi/1, lambd of = 1*np.
Pi/4, gamma of 0.5, phi of 20 and ktype of cv2.CV_32F. After creating the kernel, using
cv2.filter2D function, the Gabor filter is applied on the image. Here, Gabor filter is applied
on the resultant image after extracting brightest pixel (mask-1). The resulted image after
applying Gabor filter is denoted as mask-2 as shown in Figure 9.

5.2.3. Morphological Operations

Morphological operations are typically used to eliminate imperfections from an image
during pre-processing [45]. In this section, morphological opening and dilation to generate
the final mask is described.

Opening

After the previous step, some noise is still present in Mask-2 (shown in Figure 9). To
overcome this issue, morphological opening is performed again. As stated, the kernel
or filter size depends on the operation to be performed. In this step, to apply morpho-
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logical opening, the cv2.getStructuringElement function is used to create a rectangular
kernel (1, 30) to extract the straight vertical line while ignoring every object with a height
below 30. Thus, the noise in mask-2 is removed, resulting in an output denoted as mask-3
as shown in Figure 9.

Dilation

Dilation, represented by the symbol of ⊕, is a morphological operation that adds
pixels to the boundaries of foreground objects in order to expand them [46]. A given kernel
decides how many pixels are to be added to emphasize the size of the foreground object.
Equation (13) is used in this regard.

X⊕ B = ∪
b∈B

Xb = ∪
x∈X

Bx = {x + b|x ∈ X, b ∈ B} (13)

where X is the input image, B is the given kernel and ⊕ is the symbol of addition [40].
As the vertical line in mask-3 is perceived to be too thin, we have dilated it by a dilation
operation. In this step, morphological dilation with a kernel size of (5, 5) is applied using
cv2.dilate function to expand the area of the foreground object of a vertical straight line.
The resultant image, mask-4 is shown in Figure 9, where the line is more visible.

5.2.4. Inverse Mask

In order to eliminate the vertical line from the original mammogram, this mask-4
needs to be inversed. Hence, mask-4 is inverted by cv2.bitwise_NOT function so that all the
pixels except the vertical line of the input image are considered as 1. Equation (14) shows
how the pixels of a mask are inverted by subtracting every pixel of the mask from 255.
Here, inv_im denotes the mask after inversion and im denotes the mask before inversion.

inv_im = 255 − im (14)

The black pixels of mask-4 will be transformed in white and white pixels in black,
resulting in mask-5 as show in Figure 9. Finally, the breast part of the input images is
extracted by applying bitwise_AND operation to merge the input image and mask-5.

5.3. Image Enhancement

Details of a mammogram are often indistinct which makes it difficult for a model to
analyze them. By adjusting brightness, contrast, and smoothness, the quality of an image
can be improved. Brightness is a relative term defined as the overall lightness or darkness
of an image. Contrast, on the other hand, is the difference in brightness between the object
and the background presented. For instance, a bright object on a dark background can be
detected more accurately than a dark object on a dark background.

In mammography images, fatty tissues appear dark in a mammogram while both
dense breast tissues and tumors have a light appearance. So, even a small tumor can easily
be detected in fatty tissues but in dense breast tissues, even large tumors are difficult to
detect. Almost 70% of the mammograms of our dataset contain dense tissues. For this
reason, good accuracy in detecting tumors cannot be expected without enhancing the
image quality. The processes and sub processes of image enhancement are briefly described
in this section.

5.3.1. Gamma Correction

Gamma correction, also known as ‘Power Law Transform’, works by controlling the
brightness of an image as well as emphasizing the transition of values from dark to light
and vice versa by using a nonlinear transformation. By altering this gamma value, the
optimal brightness can be acquired in order to detect objects more accurately [41]. With
increasing gamma values, dark pixels of an image become darker and bright pixels become
brighter. The effect is not the same for all pixels as it balances the overall light and dark
tone. As our aim is to highlight the breast lesion on a dark background, gamma correction
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is adopted for the better distribution of light and dark areas. In this method, the first step
requires rescaling the color intensity range from [0, 255] to [0, 1.0]. In Equation (15) for the
gamma correction, m is the input mammogram, g is the gamma value, and o refers to the
output image.

o = m ˆ (1/g) (15)

where, g > 1 means brightening the details.
g = 1 means no effect.
g < 1 means darkening the details.
A power law transformation [47] is denoted by Equation (16), where x and y are the

coordinates of the image:
g(x, y) = [ f (x, y)]γ (16)

By experimenting with different gamma values for our images, a suitable gamma
value of 2.0 is found which is shown in Figure 10.
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Figure 10. Experimental results with different gamma value.

For gamma > 2, the image becomes darkened and pixel information is being lost. For
gamma < 1, the image is found faded. In both cases, cancerous tumors are less visible which
might lead to poor performance of the CNN. A suitable gamma value can be selected by
experimenting with a few different values. A universal value of 2.0 would not be suitable
for all datasets, but it is suitable in this case. Finally, the output is scaled back to the original
range [0, 255]. Figure 11 shows the procedure of employing the gamma correction process.
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5.3.2. Results of the First CLAHE

By using gamma correction, the overall brightness of the image is balanced. After-
wards, to balance the overall contrast, the ‘Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE)’ method is used. CLAHE is an advanced variant of Adaptive Histogram
Equalization (AHE). Ragab et al. [4] outlined the comparison between these two algorithms
and explained why they chose CLAHE over AHE. CLAHE was developed for medical
imaging to improve the quality of complex structures [39]. CLAHE enhances contrast
locally and improves the readability of medical images [40].

The mathematical equations and formula of CLAHE are briefly explained by the
author of this study [42]. Let the size of an image be N × N, and the size of each tile for
that image n× n. Then total number of tiles is calculated by using Equation (17),

T =
N × N
n× n

(17)

The histograms for these tiles are constructed by computing clip limit CL = NCL × NAVG
where NCL is the normalized contrast limit and NAVG is the average number of pixels. The
average number of pixels is calculated by applying Equation (18),

NAVG =
Nx× Ny

Ng
(18)

where Ng is the number of gray levels for each tile and Nx and Ny are the number of pixels
in the x and y dimensions of the tile. For a gray level j, the frequency nj exceeds CL, where
CL represents the clipped pixels. Let, the number of clipped pixels be NΣcl. The average of
the clipped pixels can then be calculated by Equation (19),

Ncp =
N ∑ cl

Ng
(19)

This is distributed to each corresponding gray level. The number of pixels left to
redistribute can be found by using Equation (20),

Nr =
Ng

Nr
(20)

where Nr is remaining number of clipped pixels. Thus, the distribution is complete and
the contrast limited histogram of a tile is achieved. After performing CLAHE on these
tiles, artefacts known as artificial boundaries appear in the image. To eliminate these
neighborhood tiles are combined using bi-linear interpolation. For mammogram b(x, y),
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where X × Y is the size of the image and L is the maximum intensity level, the CLAHE
processed image is obtained by the following formula:

Ic(x, y) = T(l(x, y)) =
(L− 1)

XY

K

∑
j

nj, (21)

The CLAHE algorithm has also been described in [42] (Algorithm 4).

Algorithm 4 CLAHE

Input: Image after gamma correction I;
1. Resizing l to N × N; Decompose l—(n) tiles; (n)—N × N/n × n
2. Hm—histogram(m); // histogram of a n × n tile;
3. Clip limit: CL—Ncl × Navg of Hn using CL;
4. pixels—distribution over the remaining pixels;
5. CLAHE(n)—equalization of contrast limited the histogram tile histogram for the image(l)
6. bc—bilinear interpolation of CLAHE
Output: CLAHE processed image bc

CLAHE is applied using the cv2.createCLAHE function which requires two param-
eters, clipLimit and tileGridSize. We have applied a few values of these parameters and
selected the ones which led to the optimal outcome. The results are shown in Figure 12.
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5.3.3. Outputs after Applying CLAHE a Second Time

As can be observed from Figure 12, with increasing tileGridSize and clipLimit values,
necessary pixel information was lost. To distinguish tumors from dense tissue, contrast
enhancement is crucial. For this reason, CLAHE is applied again with the same clipLimit
value and tileGridSize and it is found that the mammograms are now perfectly enhanced
without the loss of any important information. Applying CLAHE twice enhances the
visibility of the tumor which results in a higher accuracy. This approach may also be
applicable for mammogram like datasets where differentiating the ROI from surrounding
tissues is quite challenging.



Biology 2021, 10, 1347 20 of 44

5.3.4. Green Fire Blue

The final enhancement process uses the ImageJ software tool called “Look Up Tables
(LUTs)” [9]. This filter is applied on the image to separate the tumor, dense tissues, and
surrounding cells in three different colors. There are several filters associated with LUT.
We experimented with the filters to find the most suitable one for our dataset. ‘Green Fire
Blue’ (GFB) is the LUT filter which worked best in our case. The output of the experimental
results with different filter is shown in Figure 13.
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Figure 13 illustrates that, for GFB, the cancerous lesion can be better distinguished compared
to other filters. However, the other filters have also been assessed as shown in Section 8.3.5.

In addition, the GFB filter produces the desired outcome on the mammograms after
applying CLAHE second time which is illustrated in Figure 14.
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(b) GFB applied on CLAHE 1st, (c) CLAHE 2nd, (d) GFB applied on CLAHE 2nd.

Figure 14 demonstrates that when GFB is applied on CLAHE once, along with the
expected tumorous lesion, surrounding dense tissue turns into similar pixel values. When
GFB is used after applying CLAHE twice, the tumorous lesion, surrounding dense tissue
and other cells are perfectly separated into three different pixel values.

Figure 15 illustrates how a cancerous portion is highlighted gradually after every
image processing step.

For a better understanding, the parameter value selected for all algorithms based on
the considerations described above are given in Table 2.
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Table 2. Selected parameter values for all pre-processing algorithms.

Process Algorithm Function/Method Parameter Value

Binary masking cv2.rectangle() Thickness = 5

Morphological opening cv2.threshold() Threshold = 127, maximum = 255,
type = cv2.THRESH_BINARY

cv2.morphologyEx() Type = cv2.MORPH_OPEN,
kernel size = (20, 20)

Artefacts removal cv2.threshold() Threshold = 127, maximum = 255,
type = cv2.THRESH_BINARY

Largest contour detection cv2.findContours()

Contour retrieval mode = cv2.
RETR_EXTERNAL, contour

approximation method =
cv2.CHAIN_APPROX_SIMPLE

max() key = cv2.contourArea

cv2.drawContours() Index = −1, border color = (255, 255,
255), thickness = 1

inRange Operation cv2.inRange() Lowest = (0, 0, 200),
highest = (255, 255, 255)

Gabor Filter cv2.getGaborKernel()

Kernel size = (5, 5), sigma = 3,
theta = 1*np.pi/1, lambd = 1*np. Pi/4,

gamma = 0.5, phi = 20 and
ktype=cv2.CV_32F

Remove line cv2.filter2D() Source image, kernel

Morphological opening cv2.getStructuringElement() Structuring element = cv2.MORPH_RECT,
kernelSize = (1, 30)

cv2.morphologyEx() morphological operation =
cv2.MORPH_OPEN

Morphological dilation cv2.dilate() kernelSize = (5, 5)

Image enhancement Gamma correction np.array() Gamma value = 2.0

CLAHE cv2.createCLAHE() clipLimit =1.0, tileGridSize = (8, 8)

Moreover, as a part of an ablation study, the impact of the parameter values and
choosing suitable algorithms for these pre-processing steps on the model’s performance is
described in Section 8.3.6.

5.4. Verification

Several algorithms have been used for image processing which may effect on image
quality. Statistical analysis is performed to ensure that the image quality is not reduced. We
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have computed the value of PSNR, MSE, SSIM, and RMSE [9], and generated histogram
plots by comparing original images and the ‘Green Fire Blue’ enhanced images.

5.4.1. MSE

MSE defines the cumulative squared error between the pixels of the two images to be
compared. It provides an estimate of the image quality. The range of MSE value is between
0 and 1 where a value close to 0 means good image quality. Values greater than 0.5 mean
that the quality has been decreased. A value of 0 indicates that image is noise free.

MSE =
1
pq∑m−1

i=0 ∑n−1
j=0 (O(m, n)− P(m, n))2 (22)

where O is the ground truth image (i.e., original image), P is the processed image, p and q
denotes the pixels of O and P, and m, n denotes the rows of the pixels p, q.

5.4.2. PSNR

PSNR denotes the ratio of the maximum possible power of a signal to the power of the
corrupting noise affecting the quality of a processed image. For the calculation of PSNR,
first the value of MSE is calculated. Then PSNR is derived using this formula:

PSNR = 20 log10

(
(MAX)√

MSE

)
(23)

where MAX is the maximum value of pixels of the image (i.e., 255). For an 8-bit image, a
good PSNR value lies usually between 30 to 50 dB [9].

5.4.3. SSIM

SSIM measures the reduction of image quality caused by pre-processing algorithms.
The estimation is in the range of −1 to 1, where 1 denotes ‘perfect structural similarity’ and
0 denotes ‘no similarity’ [9].

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)
(µ2

x + µ2
x + c1)

(
σ2

x + σ2
y + c2

) (24)

where µx and µy are the averages of two images (x, y), calculated by using the Gaussian
window. σ2

x and σ2
y denote the variance, σxy is the covariance of the images. c1 and c2

are the two variables utilized in order to stabilize the division, where c1 i (0.01 × 255)2
and c2 = (0.03 × 255)2 and 0.01 and 0.03 are default values.

5.4.4. RMSE

RMSE measures the difference of quality between the original image and the processed
image. A lower RMSE, especially values close to 0 means less errors and good image quality.

RMSE =

[
N

∑
j=1

(
d fi
− dd

)2
/N

] 1
2

(25)

where ∑ represents summation,
(

d fi
− dd

)2
is the square of differences and N is the size of

the dataset. Values for ten images, selected at random are shown in Table 3.
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Table 3. MSE, PSNR, SSIM, and RMSE values for ten images.

Image MSE PSNR SSIM RMSE

Image_1 15.37 37.67 0.962 0.13
Image_2 15.63 37.29 0.961 0.13
Image_3 14.25 38.28 0.964 0.12
Image_4 13.31 37.31 0.962 0.13
Image_5 13.37 39.67 0.967 0.11
Image_6 11.53 41.29 0.973 0.09
Image_7 13.63 39.28 0.963 0.11
Image_8 12.47 40.36 0.969 0.10
Image_9 15.21 37.79 0.963 0.13
Image_10 13.82 39.31 0.966 0.11

5.4.5. Histogram Analysis

A histogram of an image refers to the distribution of intensity of the image by gener-
alizing the pixels having specific intensity levels. This analysis is considered a statistical
representation of an image where the intensity level can vary from 0 to 255. It is a graph
where the x-axis denotes the intensity value and the y-axis denotes the number of pixels.
The resemblance of two images can be visualized using histogram plots of pixel intensity.
It is imperative that the histograms of processed image and original image remain similar
after image processing; otherwise the key features might be lost due to processing which
may cause poor interpretation of model. We adopted histogram analysis method in our
study to investigate whether the features of the original mammogram remain unchanged
in the processed mammogram. Figure 16 shows the histogram analysis of an artefacts
removed mammogram and a processed mammogram. The histogram of artefacts removed
image is presented on the left and the histogram analysis of processed image after applying
green fire blue on the right. The original artefact removed image was in gray scale format
and the Green fire blue enhanced image is in RGB color format. Green fire blue assigns
three shades of colors, green, yellow, and blue to each pixel of the gray scale image based on
pixel intensity level. As can be seen from Figure 16, despite the different color specification,
the histogram analysis shows similar pixel intensity levels for both images. The specific
pixels in both images have nearly similar intensity level and it can therefore be concluded
that no significant image information was lost due to image processing.
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6. Data Augmentation

In this section, data augmentation techniques are discussed. Data augmentation
techniques are used to enlarge our dataset before splitting the dataset into separate datasets
for training, testing and validation. After splitting, the training dataset is utilized to train
our transfer learning models.

6.1. Data Augmentation

To expect good outcome from a deep learning model, 1442 images are not sufficient.
Data augmentation techniques [48] can result in an improvement in accuracy. Data aug-
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mentation techniques are also a well-known strategy to expand the diversity of the dataset,
improving the robustness of the model and contributing to the overall prediction accuracy
which has been proven its worth in the field of deep learning. This technique can reduce
overfitting in CNN models [49] as the model will have enough distinct data to train on
and can also accelerate convergence. The most commonly applied data transformation
techniques are flipping, rotating, zooming, mirroring, and cropping. We employ seven
augmentation methods on the pre-processed dataset: (1) vertical flipping, (2) horizontal
flipping, (3) horizontal-vertical flipping, (4) rotating 30◦, (5) rotating 30◦-horizontal flip,
(6) rotating −30◦, (7) rotating −30◦-horizontal flip that are shown in Figure 17. A dataset
of 11536 mammograms is generated by augmenting the original dataset of 1442 images
eight times. The data augmentation process is illustrated in Figure 17.
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6.2. Data Split

The next and last step before training involves splitting the dataset. To assess the
impact of training–testing data size on the model’s overall accuracy, three splitting ratios
for training–testing data (90:10, 80:20, and 70:30) are commonly used [25]. In a recent
study [22] 20% images of the dataset were used as test dataset to make the final prediction.
We split the mammograms into three sets with a ratio of 70:10:20 for training set, validation
set and test set respectively. After splitting the augmented dataset of 11536 mammograms
we get 8074 mammograms in the training set, 1156 mammograms in the validation set and
2306 mammograms in the testing set. The mammograms distribution for the four classes in
the training, testing and validation sets are shown in Figure 18. The validation set is kept
smaller than test set. As validation data are evaluated in every epoch during the training
phase, the computational time of the epochs will increase for a larger validation set.
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7. Proposed Model

As described earlier, to find the best transfer learning model for our classification
problem, we experimented with a total of six state of the art models to determine the
optimal network based on accuracy. During the training phase, only the weights of the last
FC layer of every model were modified and updated. We have created a transfer learning
method by adding one flatten and dense layer at the bottom of the pre-trained models. The
models are fine-tuned by adding a flatten layer right before the FC layers and changing the
output layer with four neurons.

7.1. Transfer Learning and ImageNet

Transfer learning refers to reusing a pre trained model on a different problem. In
other words, transfer learning is the process of using the weights of a pre-trained model
which was trained on a large dataset to a smaller dataset in order to improve the accuracy.
Deep learning requires a large number of labelled images (i.e., ImageNet) to train for
a given classification problem from scratch [50]. In many cases, sufficient data are not
available in the medical imaging domain, and obtaining datasets as detailed as ImageNet
remains a challenge [51]. Unfortunately, this also applies to publicly available, breast
cancer datasets. To deal-with this concern, transfer learning and fine-tuning can help to
increase the accuracy of classifiers by transferring knowledge from another domain where
large datasets are available [49]. Transfer learning of a CNN model that is pre-trained
with a large scale natural image dataset (i.e., ImageNet), to medical images [51] can be a
promising approach. The performance of a fine-tuned network is not much reduced even
when the size of training data is quite small [25]. Medical images (i.e., mammograms)
may greatly differ from the natural images (i.e., ImageNet), but pre-trained knowledge
can be utilized to attain significant improvement of the model’s performance [52] as the
pre-trained model’s weight parameters have already been trained to detect primal features
such as edges, corners and textures. This method has proven to be very effective in dealing
with small data sets. A definition of transfer learning [53], is as follows: in order to improve
the performance of a target training model FT over a target domain DT (i.e., processed
mammograms) for the evaluation of a target learning task TT (breast cancer classification)
by using the pre-trained weights of a source learning task Ts (i.e., imageNet) of a given
source domain Ds (i.e., natural images):

Ds 6= Ds (26)

Ts 6= Ts (27)

The knowledge of Ds and Ts is used for DT and TT . In our case, DT (processed
mammograms) are quite different from Ds (natural images). But the visual properties of
the ROI (region of interest) of any image are quite similar generally (i.e., edges, textures,
shapes, etc.) [49]. For pre training, the weights of the ImageNet dataset are used. ImageNet
is a wide-ranging dataset consisting of over 14 million 256 × 256 labelled natural images in
more than 1000 classes which is publicly available. A model trained with this database,
can be used as the foundation for various object detection and ROI segmentation problems
especially in smaller datasets of medical image classification problem [51]. Comprehensive
annotated medical image dataset equivalent to ImageNet is challenging to get as data
collection is laborious, and quality assurance is expensive. In this regard, transfer learning
from ImageNet to CAD problems has shown some promising results [54].

7.2. Transfer Learning Model and Finetuning

A total of six pre-trained models: InceptionV3, MobileNetV2, ResNet50, DeneNet201,
VGG16, and VGG19 are trained on the training dataset and evaluated using the testing
dataset to find the best performing model among them.
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7.2.1. MobileNetV2

MobileNetV2 is proposed by Google community. It consists of two types of blocks
and each block contains three layers. In both blocks the first and third layers are 1×1
convolutional layer with 32 filters and the second layer is a depthwise convolutional layer.
Rectified linear activation function (ReLU) is used in all layers. Longitudinal bottlenecks
situated between the layers play a key role in preventing non-linearity from damaging a
large amount of data. The difference between the two blocks is in stride size as block 1 has
stride of one and block 2 has stride of two.

7.2.2. ResNet50

A combination of convolution filters with multiple sizes is used in the ResNet50
architecture to tackle the deterioration issue of CNN models and reduce the training time
caused by deep structure. ResNet50 is made up of a total of 48 convolutional layers along
with a maxpool layer and an average pool layer. This architecture has over 23 million
trainable parameters.

7.2.3. InceptionV3

InceptionV3 focuses on reducing the required computing power by altering prior
Inception designs. Factorized convolutions, regularization, dimension reduction, and
parallelized calculations are some of the strategies used in keeping the computational cost
low. InceptionV3 has some key updates compared to earlier inception models, including
label smoothing, factorized 7×7 convolutional layers and the usage of an auxiliary classifier
to send label information down the network. The training time is lessened in InceptionV3
model by replacing larger convolutions with smaller convolutions.

7.2.4. DenseNet201

The primary objective of this model is to achieve higher accuracy with fewer param-
eters. Each layer in DenseNet receives extra input from all prior levels and passes on its
own feature-maps to all following layers. Each layer uses the previous layers feature maps.
This allows the network to be thinner and more compact, resulting in fewer channels. In
other words, each layer accepts the feature maps of the previous layer as input, and the
feature maps of the subsequent levels convey all the data by explicitly connecting all the
layers in the network.

7.2.5. VGG16

VGG16 is a DCNN model proposed by Simonyan and Zisserman [55]. The model
achieved 92.7% top 5 test accuracy in ImageNet dataset and it won the Large-Scale Visual
Recognition Challenge (ILSVRC) competition proposed by the Oxford Visual Geometry
Group [17]. The increased depth of the VGG model can aid the kernel to learn more complex
features. In research on the effectiveness of transfer learning [25] it was found that a pre
trained and fine-tuned VGG16 achieved a much higher accuracy then a fully trained network.

7.2.6. VGG19

VGG19 is a variation of the VGG model which has 19 layers in total. It has three
additional FC layers containing 4096, 4096, and 1000 neurons respectively at the end of the
VGG16 model making it a total of 19 layers. It also consists of five maxpool layers and a
Softmax layer. The convolutional layers are equipped with ReLU activation function.

7.3. Training Approach

To train the models, the maximum number of epochs was set to 350 and the batch
size to 16 [22]. Optimizer Adam was used with a learning rate of 0.001. The weights of
the best model, based on a minimum loss value using ‘callback’ function of Keras [22]
were saved during the training process. To analyze the model’s accuracy, we have used
Keras’s CSVLogger function which saves a comma-separated values (CSV) file of training
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and validation performances for every epoch. ‘Categorical cross-entropy’ is used as the
default loss function of multi class problems [56]. As mentioned earlier, ‘Softmax’ activation
is used for the prediction of probability for each class. Softmax normalizes all the values in
the range of 0 to 1 and the summation of these values always equals 1. If the probability
of class changes it affects the values of the probabilities for the other classes so that the
summation of probabilities does not change.

so f tmax(zi) =
exp(zi)

Σjexp(zi)
(28)

The mathematical expression of the Softmax function is described in Equation (28),
where zi refers to the outputs of the output neurons and the inputs of the Softmax function.
Exp () is a non-linear exponential function which is applied to each value of zi. The
bottom part of the Equation (28) (Σjexp(zi)) normalizes the exponential values by dividing
them by the summation of exp(zi). As we have experimented with multiple models and
configurations, three computers were utilized equipped with Intel Core i5-8400 Processor,
NVidia GeForce GTX 1660 GPU, 16 GB of Memory, and 256 GB DDR4 SSD for storage.

7.4. BreastNet18

Of the six architectures described above, fine-tuned VGG16 yields the highest clas-
sification accuracy. We therefore propose a model, called BreastNet18, which is built
upon a fine-tuned VGG16 architecture where several experiments are carried out with our
dataset to evaluate the performance. Moreover, an ablation study is carried out to increase
the robustness of the architecture for the mammogram classification task. The model’s
architecture is shown in Figure 19.
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The original VGG16 has a depth size of 23 and, as the name indicates, it has 16 layers.
It consists of five blocks and each block contains two or three convolution layers followed
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by a Maxpooling layer. A convolution layer performs a linear operation by multiplying an
array of input data with a two-dimensional array of weights, known as filter or kernel.

( f ∗ g){n} =
m

∑
k=1

g(k) · f (n− k + m/2) (29)

Here, g( ) and f ( ) are the input function and the kernel function and ( f ∗ g) denotes
the dot product of these functions over a number of variables n. After obtaining the feature
matrix from the convolution layer, the Maxpooling layer decreases the dimensions of the
maps by applying filters or kernels. For an input image size of (m×m) and a filter size of
(( f × f )), the output size after applying the filter on the input matrix will be:

(m×m) ∗ ( f × f ) = (m− f + 1)× (m− f + 1) (30)

Our modified model BreastNet18 is generated by adding a flatten and a dense layer
after the fifth block of VGG16. As by default the input layer of the architecture requires that
the size of the image, which is an RGB image, is 224 × 224 × 3, our input dimension for
the first convolutional layer is 224 × 224 × 3. In this context, the first block contains two
convolutional layers with 64 channels of 3 × 3 kernel size and the same padding followed
by a 2 × 2 Maxpooling layer of stride 2 × 2. Similarly, the second block contains two
convolution layers of 128 channels, with a kernel size of 3 × 3, followed by a Maxpooling
layer of stride 2 × 2 as in block one. The last three blocks contain three convolutional
layers followed by a Maxpooling layer. The channel sizes of the three convolutional layers
in blocks 3, 4 and 5 are respectively 256, 512 and 512, all having the same kernel size of
3×3. The initial input image is shrunken to half the size in each Maxpooling layer. After
the stack of convolutional and Maxpooling layers the outputted feature map from the
last Maxpooling layer is of size 7 × 7 × 512. A flatten layer has been added to make a
1 × 25,088 feature vector. A dense layer has also been added which outputs four channels
for the four classes. There is a Softmax activation function at the end which normalizes
the classification vector obtained from FC. As shown in Figure 19, the light blue boxes in
five blocks represent convolutional blocks which are imported from the VGG16 model,
pre-trained on the ImageNet database.

As explained above, our proposed BreastNet18 model is obtained by the addition of
one flatten and one dense layer after the fifth block of the VGG16 network. As shown in
Figure 20, there are two phases: pre-training and fine-tuning. In the pre-training phase,
during the training process of our experiment, the weights of the layers remain frozen.
The purple boxes represent the flatten layer and the dense layer of BreastNet18 which
are updated by the new features of our mammograms in the fine-tuning phase. The last
FC layer is modified to classify four classes instead of 1000 classes. Thus, the pre-trained
weights of VGG16 have been transferred using the transfer learning method and the model
was then retrained with our mammogram dataset. Finally, the activation function ‘Softmax’
calculates the probabilities for each of the classes and generates the predicted outcome.

7.5. Ablation Study

In CNN based applications, an ablation study is commonly performed to examine
the stability and performance of the model after removing or altering different layers
and hyper-parameters. When these components are changed within the architecture of
a model, the network can show identical, increased, or decreased performance. Mostly,
by experimenting with different hyper-parameters such as optimizer, learning rates, loss
functions, and batch sizes, the accuracy can be boosted. Changing the architecture of the
model also impacts on the overall performance. In this research, various configurations of
our proposed BreastNet18 model are investigated by randomly eliminating or modifying
different components and parameters. In this regard, four case studies are performed and
the findings analyzed. Results suggest that the overall accuracy is increased which proves
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the effectiveness of this technique for the study of DCNN. The results of this ablation study
are described in Section 8.3.
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8. Results and Discussion
8.1. Evaluation Matrix

In order to evaluate the transfer learning models, we have used several metrics:
precision, recall, F1-score, accuracy (ACC), sensitivity, and specificity. A confusion matrix
was generated for all the models. From this we get the values of true positive (TP), true
negative (TN), false positive (FP), false negative (FN) cases. In some cases, area under
curve (AUC) value was calculated. Furthermore, false positive rate (FPR), false negative
rate (FNR), and false discovery rate (FDR), mean absolute error (MAE), and root mean
squared error (RMSE) was calculated for doing statistical analysis of the models.
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AUC value is derived from receiver operating characteristic (ROC) curve which plots
the true positive rate (TPR) against false positive rate (FPR) at several threshold values
where TPR is another term of Recall. FPR is calculated as:

FPR = 1− Specificity = 1− TN
TN + FP

(41)

8.2. Results of Transfer Learning Models

Table 4 shows the results from all six models. It can be seen that the VGG16 model
achieved the best test accuracy of 97.13% with a test loss of 0.081. VGG16 also had the
highest training and validation accuracy of 97.79% and 96.83% respectively while maintain-
ing a 0.18 training loss and a 0.11 validation loss. VGG19 recorded accuracies close to the
best model with 96.63%, 95.63% and 96.24% respectively for training accuracy, validation
accuracy and testing accuracy. DenseNet201, a deep model, produced a test accuracy of
86.92%. MobileNetV2, ResNet50 and InceptionV3 all had a moderate performance with
accuracies between 75% and 80%. VGG16 recorded a precision of 97.29%, a recall of 97.02%
and an F1 score of 97.15%. It also had good sensitivity and specificity, of 98.03% and 98.14%
respectively. All these results (Table 4) clearly highlight the classification capabilities of
VGG16 and its robust performance on our dataset. We have therefore chosen VGG16 as
our base model and subsequently performed various ablation studies on it to make the
model more robust for this classification problem.

Table 4. Performance comparison of transfer learning models on preprocessed augmented mammogram dataset.

Classifier
Name

Pre
(%)

Recall
(%)

F1
(%)

Spe
(%)

Sen
(%)

Tr_Acc
(%)

Tr_Loss
(%)

Val_Acc
(%)

Val_Loss
(%)

Ts_Acc
(%)

Ts_Loss
(%)

MobileNetV2 77.93 77.78 77.85 78.15 77.91 78.72 0.327 77.62 0.375 77.84 0.366
ResNet50 80.12 79.91 80.01 81.21 81.35 80.43 0.380 79.81 0.324 79.98 0.301

DenseNet201 87.06 86.83 86.94 88.21 88.63 88.03 0.292 86.77 0.284 86.92 0.271
InceptionV3 76.74 76.84 76.78 78.85 79.91 76.91 0.421 76.21 0.392 76.87 0.384

VGG16 97.29 97.02 97.15 98.03 98.14 97.79 0.182 96.83 0.115 97.13 0.081
VGGNet19 96.33 96.27 96.29 97.33 97.17 96.63 0.221 95.63 0.205 96.24 0.197

8.2.1. Statistical Analysis of the Models

Table 5 shows the experimental results of the statistical analysis for the different
models. To evaluate the statistical significance of the proposed method compared to
other methods, false positive rate (FPR), false negative rate, false discovery rate, Kappa
coefficient (KC) value and Matthew’s correlation coefficient (MCC) values are derived for
all six transfer learning models. VGG 16 outperformed all the other models with a FPV
value of 1.97%, FNR of 2.98% and FDR of 2.71%. VGG19 had a FPV of 2.67%, FNR of 3.37%
and FDR of 3.67% which is close to the results of VGG16. On the other hand, InceptionV3
resulted in the poorest outcome with a FPR value of 21.85%, FNR of 23.16% and an FDR
of 23.26%. Moreover, regarding KC and MCC, VGG16 provided the best performance
achieving the scores of 98.52% and 88.62% respectively. The lowest KC and MCC values
were recorded for InceptionV3 with a KC value of 75.81% and an MCC value of 67.02%.

Table 5. Statistical result analysis of the models.

Classifier Name FPR (%) FNR (%) FDR (%) KC (%) MCC (%)

MobileNetV2 21.15 22.22 22.07 78.65 68.56
ResNet50 18.79 20.09 19.88 80.63 70.48

DenseNet201 11.79 13.17 12.94 86.27 77.25
InceptionV3 21.85 23.16 23.26 75.81 67.02

VGG16 1.97 2.98 2.71 98.52 88.62
VGGNet19 2.67 3.73 3.67 97.46 86.50
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For further comparison, mean absolute error (MAE) and root mean squared error
(RMSE) are calculated to assert the effectiveness in terms of error rates which is shown in
Table 6. In this regard, the best performing model is the one with the lowest error rate. It is
clear from Table 6 that VGG16 had the lowest MAE value (2.44%) with a RMSE value of
7.20%. VGG19 recorded similar error rates with an MAE of 3.16% and an RMSE of 12.51%.
Other transfer learning models gave MAE values ranging from 10% to 18% and RMSE
values ranging from 25% to 37%.

Table 6. Result analysis of the models based on error matrices.

Classifier Name MAE RMSE

MobileNetV2 17.09 32.57
ResNet50 15.37 36.51

DenseNet201 11.78 26.65
InceptionV3 19.32 44.36

VGG16 2.44 7.20
VGGNet19 3.16 12.51

8.2.2. Comparison among the Models Based on Layer Depth and Trainable Parameters

For a small dataset, a CNN with lower layer depth architecture is preferable to get a
good performance while minimizing computational cost. A deep CNN architecture with
large number of trainable parameters increases the need to have a large dataset and results
in a high computational cost. Often, in publicly available medical datasets, the number of
samples is quite inadequate. Therefore, to achieve a good performance from such datasets,
using a CNN model with less layer depth can be a better approach. The specifications of
the models in terms of layer depth and trainable parameters are shown in Table 7.

Table 7. Specifications of the models.

Model Layer Depth Trainable Parameters

VGG19 19 50,178
Mobilenetv2 53 125,442

ResNet50 50 200,706
InceptionV3 48 102,402
DenseNet201 201 188,162

VGG16 16 50,178

As we are experimenting with small number of images, VGG16 with a relatively
shallow layer depth of 16 layers and 50,178 trainable parameters is preferable compared to
other models. Moreover, this model yielded the highest classification performance with no
indication of overfitting.

8.3. Results of Ablation Study

As ablation study, four experiments are performed, altering different components
of the proposed BreastNet18, based on the fine-tuned VGG16 architecture. By making
alterations to various components a more robust architecture with higher classification
accuracy can be achieved. For this purpose, an ablation study for various components:
Batch size, Flatten layer, Loss function, Optimizer, and learning rate is performed.

8.3.1. Ablation Study 1: Changing Flatten Layer

In Table 8, the optimizer is denoted as ‘OP’, the learning rate as ‘LR’, the validation
loss as ‘Val_Loss’, the validation accuracy as ‘Val_Acc’, the test loss as ‘Ts_Loss’, and
the test accuracy as ‘Ts_Acc’. A flatten layer is connected to the FC layer that converts
2-dimensional feature maps of the preceding convolutional layers into a 1-dimensional
array. In our study, previously a flatten layer was added to flatten the feature maps. This
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layer is replaced with GlobalAveragePooling2D and GlobalMaxPooling2D to observe its
impact on the network’s performance. Table 8 shows that for GlobalAveragePooling2D, the
network performs with identical results and for GlobalMaxPooling2D the accuracy drops
slightly.

Table 8. Ablation study by changing Flatten layer.

Case Study Layer Name Val_Acc (%) Val_Loss
(%)

Ts_Acc
(%)

Ts_Loss
(%) AUC (%) Finding

Flatten 96.98 0.12 97.13 0.12 97.57 Identical performance
1 GlobalAveragePooling2D 96.98 0.12 97.13 0.12 97.57 Identical performance

GlobalMaxPooling2D 96.02 0.19 96.56 0.19 97.34 Accuracy dropped

8.3.2. Ablation Study 2: Changing Batch Size

The number of training samples utilized in a single iteration is referred to as batch
size. In our study, we have experimented with various batch sizes (Table 9) to find the
best batch size for our proposed model. After changing the batch size from 64 to 16 and
32, an increase in both test and validation accuracies is observed (Table 9). While testing
with batch size 16, the test accuracy was 97.44%. The highest test accuracy, 97.57%, and the
lowest loss, 0.81, are observed with a batch size of 32. As batch size 32 gives improved test
accuracy, this batch size is used further experimentation.

Table 9. Ablation study by changing Batch size.

Case Study Batch Size Val_Acc (%) Val_Loss
(%) Ts_Acc (%) Ts_Loss (%) AUC (%) Finding

16 96.98 0.16 97.44 0.197 97.72 Accuracy increased
2 32 97.03 0.09 97.57 0.064 97.98 Accuracy increased

64 96.83 0.11 97.13 0.081 97.57 Identical accuracy

8.3.3. Ablation Study 3: Changing Loss Functions

Experimentation with various loss functions, Categorical Crossentropy, Cosine simi-
larity, and Mean Squared Error loss was carried out to find the suitable loss function for
our proposed model. Table 10 shows the performance of the model with the selected loss
functions. While equipped with Categorical Crossentropy the model had a 97.57% test
accuracy which is the best result. Both the Cosine similarity (96.93%) and the Mean Squared
Error loss functions resulted in a small decrease in test accuracy (96.72%). To achieve the
best classification performance, the Categorical Crossentropy loss function was selected for
further experimentation.

Table 10. Ablation study by changing Loss function.

Case Study Loss Function Val_Acc
(%)

Val_Loss
(%)

Ts_Acc
(%)

Ts_Loss
(%) AUC (%) Finding

Categorical
Crossentropy 97.03 0.09 97.57 0.064 97.98 Identical accuracy

3 Cosine similarity 96.86 0.12 96.93 0.05 96.94 Identical accuracy
Mean Squared Error 95.64 0.18 96.72 0.08 96.86 Accuracy dropped

8.3.4. Ablation Study 4: Changing Optimizer and Learning Rates

It can be observed from Table 11 that the performance improved with optimizer Adam
resulting in the highest test accuracy of 98.02% with a learning rate 0.0008. Adam with
learning rate 0.0008 also had the lowest test loss, of 0.05. The highest validation accuracy
is 97.03%, achieved with optimizer Adam with learning rate 0.0008. The majority of the
models had a reasonable performance with accuracies above 95%.
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Table 11. Ablation study by changing Optimizer and learning rate.

Case Study OP LR Val_Loss
(%)

Val_Acc
(%)

Ts_Loss
(%)

Ts_Acc
(%) AUC (%) Findings

Adam 0.006 0.56 94.89 0.3110 95.0997 95.63 Accuracy dropped
0.001 0.09 97.03 0.06 97.57 97.98 Identical accuracy

4 0.0008 0.14 97.03 0.05 98.02 98.27 Accuracy increased
Nadam 0.006 0.42 95.15 0.26 96.18 96.94 Accuracy dropped

0.001 0.14 96.62 0.08 97.31 97.67 Accuracy dropped
0.0008 0.14 96.19 0.08 97.48 98.15 Accuracy dropped

Adamax 0.006 0.18 95.50 0.10 96.61 96.82 Accuracy dropped
0.001 0.18 94.89 0.14 95.35 95.46 Accuracy dropped

0.0008 0.19 94.29 0.15 94.96 95.27 Accuracy dropped
RMSprop 0.006 0.83 93.94 0.44 95.35 95.53 Accuracy dropped

0.001 0.20 94.46 0.14 94.27 94.65 Accuracy dropped
0.0008 0.22 94.24 0.12 94.10 95.68 Accuracy dropped

8.3.5. Ablation Study Based on Different ImageJ Filters

As previously mentioned, we have evaluated the effect of using different filters in the
preprocessing stage, see Table 12.

Table 12. Performance analysis for different imageJ filters.

Filter Val_Acc (%) Test_Acc (%) F1_score (%)

Green fire blue 97.03 98.02 98.15
Blue orange icb 94.78 95.23 95.27

6 shades 94.42 94.11 94.25
16 colors 95.43 95.87 95.93

It can be observed from Table 12 that the dataset formed by applying ‘Green Fire
Blue’ filter outperforms others with a test accuracy of 98.02% and an F1 score of 98.15%,
demonstrating the robustness of applying this filter.

8.3.6. Ablation Study Based on Image Processing Algorithms

As a part of our ablation study, the impact of the applied pre-processing algorithms
with suitable parameter values on the model’s performance is also investigated. Results
are shown in Table 13. This assesses the effectiveness of employing the pre-processing
algorithms before training the model.

Table 13. Result of ablation study based on image preprocessing algorithms.

Experiment Test Accuracy (%) Validation Accuracy (%) F1_Score (%)

Raw image 79.32 72.86 79.36
Artefact removal 88.45 87.38 88.62

CLAHE 1ST 94.63 91.67 94.74
CLAHE 2ND 95.21 93.07 93.28

Green fire blue 98.02. 97.03 98.15

It is observed that the accuracy increases gradually for every step, from 79.32% to
98.02%. As described, after applying CLAHE twice, the cancerous lesion is more high-
lighted, which combined with Green Fire Blue filter results in the best accuracy (98.02%).

8.4. Performance Analysis of Best Model

After conducting the ablation study on the proposed BreastNet18 model, an improve-
ment in classification accuracy is observed when the optimal batch size, learning rate and
optimizer are used. Table 14 gives an overview of the final configuration of BreastNet18.
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For this configuration of BreastNet18, the training accuracy curve, validation accuracy
curve, training loss curve over the training phase, and confusion matrix were generated.

Table 14. Configuration of proposed architecture after ablation study.

Configuration Value

Image size 224 × 224
Epochs 90

Optimization function Adam
Learning rate 0.001

Batch size 32
Weight decay 0.0001

Activation function Softmax
Dropout 0.5

Momentum 0.9

In Figure 21, the learning curves for our best performing model are presented, loss
curve and accuracy curve. As can be seen, the training curve converges smoothly from
the first to the last epoch with almost no bumps. The gap between the validation accuracy
curve and the training accuracy curve gives no indication of overfitting during training.
Like the training curve, the loss curve shown in Figure 21 converges steadily to the final
epoch. In conclusion, after analyzing the training and loss curves, no evidence of over
fitting or underfitting was found.
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Figure 21. Loss curve and accuracy curve over 350 epochs for Adam with learning rate 0.0008.

Figure 22 a represents the confusion matrix for the model with the highest accuracy.
The row values represent the actual label of the test images and the column values represent
the predicted label of the test images. The diagonal values are the TP. The confusion matrix
of the proposed BreastNet18 model with the optimal configuration based on the ablation
study, Adam and learning rate 0.0008, is not biased to any one class and predicts all classes
almost equally. However, the model had the best results for Benign Mass (BM).
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The receiver operator characteristic (ROC) probability curve is plotted and the area
under the curve (AUC) value is derived from the ROC curve. The AUC is used as a
summary of the ROC curve and represents the ability of a model to distinguish the different
classes. An AUC value close to 1 indicates that the model is able to detect most classes. As
can be seen in Figure 22b, the ROC curve almost touched the peak of y-axis which means
that the false positive rate is close to 0 and the true positive rate is close to 1. We get an
AUC value of 98.27% which demonstrates the effectiveness of the model.

In addition, feature maps generated by the model and the model’s capability to extract
abstract features are evaluated. Figure 23 shows the feature maps produced at the end of
each Block of BreastNet18. Although the inputted images were in RGB format, the feature
maps created are in grayscale format. Figure 23 gives an impression of the learned feature
maps for all four classes (BC, BM, MC and MM). As can be observed in the primary feature
maps (Figure 23), the first two blocks of the architecture are dedicated to learning distinct
textural features while preserving the structural information of the input image. Abstract
representations of the images are learned with the deep layers of Block 3, 4, and 5 which
can be seen in the final feature maps of Figure 23. The architecture was able to successfully
distinguish cancerous features from the images and a clear discriminative pattern can be
observed from the feature maps obtained from images of four different classes (BC, BM,
MC, and MM). Discriminative feature distribution in the feature maps of the different
classes adds to the generalization capability of the model, increasing the performance of
the proposed BreastNet18 architecture.

8.5. Check on Overfitting

In this work, we have used k-fold cross validation [57] on the augmented dataset to
assess the generalization capabilities of our model and to observe whether there is any
concern for overfitting. Overfitting occurs when a model has a relatively high training
accuracy but much lower validation accuracy. A k fold cross validation is performed on
the augmented dataset for ensuring that every observation from the original dataset has a
chance of appearing in the training and test set. It is a standard practice to detect overfitting
in a CNN model. We experimented with k values of 5 and 10 as these are conventional
values [58] for k fold cross validation. Experimental results of 5-fold and 10-fold are shown
in Tables 15 and 16.
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Table 15. Result of 5-Fold cross validation.

Accuracy Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Validation Accuracy

Training 97.93 99.35 98.83 98.57 99.06
Validation 96.85 98.71 97.74 98.26 98.53 98.01

Table 16. Result of 10-Fold cross validation.

Accuracy Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Average

Validation
Accuracy

Training 97.34 99.06 97.40 99.15 98.83 98.72 98.86 99.07 98.47 98.60
Validation 97.48 98.63 96.81 98.72 97.95 97.64 98.54 98.26 96.88 98.15 97.90

It is found that our proposed model achieved an average validation accuracy of 98.01%
in 5-fold cross validation on an enhanced augmented mammography dataset. On the other
hand, the model achieved an average validation accuracy of 97.90% using 10-fold cross
validation. Most of the folds showed validation accuracies above 96% in both 5-fold and
10-fold cross validation. No fold displays an alarming difference between training and
validation accuracies. Moreover, all training and validation accuracies are fairly balanced in
every fold. This suggests that our method has the ability of yielding optimal performance
without evidence of overfitting even in different shuffling scenarios.

8.6. Evaluation on Noise Induced Test Set

While dealing with real world mammograms, image quality is often found to be cor-
rupted due to artefacts and noise. Since our proposed system performs with optimal accuracy
on mammograms of a public dataset, it should be investigated how the model performs as
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noise increases. The presence of noisy images in a dataset can significantly affect the overall
performance and tends to decrease classification accuracy. This phenomenon occurs due to
the loss of important information in noisy data. The model is therefore tested on a dataset
containing noisy mammograms. To create mammograms which are similar to real world noisy
mammograms, we have added Gaussian noise [59] with a value of 0.1 [60] on preprocessed
mammograms. Experimental result of noise induced dataset are shown in Table 17.

Table 17. Experimental result on noisy dataset.

Noise Amount Optimizer Learning Rate Test Accuracy (%) F1_Score (%)

Gaussian 0.1 Adam 0.001 95.87 95.44

With the noise induced dataset, a slightly reduced accuracy of 95.87% and an F1
score of 95.44% are observed. While a reduction in accuracy is predictable, it is small
demonstrating that our proposed approach can be expected to yield optimal performance
even with real world noisy images.

8.7. Comparison with Previous Literature

In this section, we compare our model with some recent studies which were mentioned
in the literature review section. Table 18 shows the best accuracy achieved by previous
similar studies and our proposed model BreastNet18.

Table 18. Accuracy comparison with existing literature.

Work Model Dataset Batch Epoch Optimizer Learning Rate Accuracy

Nasir Khan et al.
(2019) [23] MVFF CADx

CBIS-DDSM: 3568
mammograms & MIAS:

322 mammograms
32 100 SGD 0.001 93.73%

Al-antari et al.
(2018) [28]

Fully Integrated
CAD

INbreast Toward a
Full-field Digital
Mammographic

Database: 410
mammograms After
augmentation: 896

24 100 Adam 0.0001 95.64%

Hameed et al.
(2020) [22]

Full trained
VGG16 + VGG19

Fine-tuned
VGG16 + VGG19

Pathology department of
Colsanitas Colombia
University provided

544 image of
breast cancer.

32 200 Adam 0.0001 93.53%
95.29%

Khamparia et al.
(2021) [18]

Hybrid MVGG16
ImageNet

Digital Database for
Screening

Mammography (DDSM)
containing

2620 mammograms.

32 15 - - 94.3%

Institute of
Electrical and

Electronics
Engineers, n.d. [17]

Pre-trained VGG16
with 1 FC layer

Digital Database for
Screening

Mammography (DDSM)
containing

2620 mammograms.
Mammographic Image

Analysis Society
containing

332 mammograms.

20
15

500
500

Nadam
RMSprop - 90.5%

91.2%

Shallu and Mehra,
(2018) [25]

VGG16 + LR
VGG19 + LR

ResNet50 + LR

BreakHis dataset used in
collaboration with the

Prognostic and
Diagnostic Laboratory
containing 7909 breast

cancer images.

- - - -
92.60%
90.40%
79.40%
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Table 18. Cont.

Work Model Dataset Batch Epoch Optimizer Learning Rate Accuracy

Li et al. (2019) [5]

AlexNet
VGGNet

GoogLeNet
DenseNet

DenseNet-II

The First Hospital of
Shanxi Medical

University provided
2042 full-field digital

mammograms.
With augmentation the

data set was increased to
30,630 images

- - - 0.01

92.70%
92.78%
93.54%
93.87%
94.55%

Our work BreastNet18

Pre trained on ImageNet
dataset consisting of over

14 million images.
CBIS-DDSM dataset:
1442 mammograms.
After augmentation:

11,536 mammograms.

32 350 Adam 0.0008 98.02%

More than half of the studies shown in Table 18 used VGG16 and datasets similar
to ours. Kamparia et al. [18], used transfer learning with their proposed MVGG model,
based on the VGG16 image classification model, similar to our method. They used the
DDSM database for mammograms. With their best model they were able to achieve an
accuracy of 94.3%. Similar studies were described by others [17]. A fine-tuned VGG16
network with a FC layer resulted in an accuracy of 90.5% with optimizer Adam using the
DDSM mammogram database. A fairly recent study conducted by Shallu and Mehra [25],
used the DDSM database for training a fine-tuned pre trained VGG16. Their highest
accuracy was 92.60%. Hameed et al. [22] described experiments with VGG16 and VGG19
achieving an accuracy of 94.71% with pre-trained VGG16. Li et al. [5] introduced some
pre-trained models in their study and got a highest accuracy of 92.78% with VGGNet.
All these studies achieved their highest accuracy by employing a VGG16 based model.
However, the performance of two other CAD systems [23,28] was also compared with ours.
For training purpose, they used CBIS-DDSM database and obtained an accuracy of 93.73%
and 95.64% respectively, where [28] used optimizer Adam similar to ours. Furthermore, a
comparative analysis of early detection of nodules, in previous literatures and our research
has also been done. Wang et al. [61] developed a CAD system where a 3D U-Net model
was used for breast nodules detection, and a multiple layer CNN for classification. Their
proposed U-Net model achieved a sensitivity of 91%. The CNN model performed best
achieving a classification accuracy of 87.5%, a sensitivity of 87.0% and a specificity of 88.0%.
Matheus and Schiabel [62] designed a module to identify and categorize breast nodules on
mammograms at an early stage. ROIs containing nodules were detected using a neural
network. Segmentation of the detected nodule was carried out in order to classify benign
and malignant cases. They achieved a detection sensitivity of 74% and a sensitivity of
81.28%. In breast imaging, low pixel resolution and the surrounding tissue, a small size of
the nodule or a difficult location may all lead to poor performance [61]. In our research this
issue is addressed by enhancing and highlighting the nodules in different pixel value and
intensity as in Figure 24.
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Figure 24. Examples of different classes based on nodules.

Figure 24 shows that our image processing techniques are able to successfully highlight
potential cancerous nodules in different color intensity. This improved the effectiveness
of our model. Our model outperforms the models described above with and accuracy
of 98.02%, despite using a small dataset. By conducting image pre-processing and data
augmentation, our proposed model is able to achieve an outcome that surpasses recent
state of the art studies. This achievement demonstrates the potential of BreastNet18 in
classifying breast cancer from mammograms with the highest accuracy.

9. Limitations

Our proposed approach is carried on a dataset containing a relatively small number of
images. Though the number of images is increased by applying different data augmentation
techniques; the performance of our proposed network could be further assessed using a
larger dataset. Furthermore, in most cases, real world data differ from publicly available
dataset. It could be explored how the model performs on real world data, if we could
further experiment with real world data.

The test dataset used in this research contains a total of 2306 mammograms (667 images
in Benign calc, 636 in Benign Mass, 480 in Malignant Calc and 523 in malignant mass) and
while testing our model with this dataset, it recorded a test accuracy of 98.02%. Fewer than
2% of the images are misclassified which is quite low compared to other studies mentioned
in literature. From the confusion matrix it is observed that among 2306 mammograms, a
total of 48 mammograms from all four classes are misclassified. Among them, the highest
correct predictions are achieved in the Benign Mass (BM) class where only 5 images are
misclassified. For the Malignant Mass (MM), a number of 11 images are misclassified and
for Malignant Calc (MC), a total of 14 images are misclassified. The highest misclassification
rate is noticed for Benign Calc with a total of 18 misclassified mammograms. Figure 25
illustrates an example of a misclassified image for all four classes.
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One potential reason for these misclassifications can be that, even after applying
multiple image processing techniques, the model still has some difficulties in distinguishing
cancer cells from dense breast tissue. In Benign Mass, model misclassified a mammogram
as Malignant Calcification due to the presence of dense tissue. Some of the images of Benign
Mass have similarities with Benign Calcification. On the other hand, the model sometimes
classifies Benign Calcification images as Benign Mass or Malignant Mass as some of the
images of these two classes have a strong resemblance to the Benign Calcification images.
The opposite effect can be observed with Malignant Calcification and Malignant Mass
images. Some of the images of these two classes contain less dense tissue which the model
misinterprets as Benign Calcification and Benign Mass. Another reason can be that there
is a limited data diversity and in this number of images. Though, data augmentation
increases the number of images, the model may not learn enough new features due to the
lack of new data. However, in the majority of the test images the model performs very well
by correctly classifying the cases. The model is robust despite of its minor limitations.

10. Contribution of This Study

The aim of this study is to develop a CNN model to classify breast cancer using
CBIS-DDSM mammography dataset into four intra classes with highest possible accuracy.
We have experimented with several deep learning models which are fine-tuned to carry out
transfer learning in order to find the optimal network based on highest performance and
lowest layers depth as well as less number of trainable parameters. The main challenges of
this study include limited number of images, artefacts and noise present in mammograms
and classifying cancer into four intra classes. Classifying cancer into benign and malignant
is often easier to implement as the model is just predicting whether cancer is present or
not. However, how a cancerous nodule forms from primary stage to critical stage is quite
difficult to interpret as the similarity of lesion structure for intra classes is nearly close.
Therefore, one of the main contributions of this study is the wide exploration of several
standard image preprocessing techniques described in literature for mammogram classifi-
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cation. However, the effectiveness of an algorithm for a specific dataset greatly depends on
image characteristics and the target application. Similar algorithm and technique may not
provide similar and expected outcomes for different datasets, especially in mammography
as the pattern and characteristics of mammography can be quite complex. Therefore, all the
methods and their parameter values employed in this study are evaluated by conducting
extensive experiments and ablation studies. Parameters values are chosen after thorough
experimentation in order to maintain good PSNR scores and achieve optimal outcomes.
We have showed how the changes of parameter values highly impacts on image output
and why an optimal threshold value is crucial to determine and apply. Image processing
algorithms namely binary masking, morphological opening, largest contour detection,
inRange operation, Gabor filter, Gamma correction, CLAHE, Green fire blue filter are
applied with the best suitable parameter values. To assess our techniques, a result analysis
based on these image processing techniques is also added to evaluate how these methods
greatly impact on overall performance. In this regard, one of our most effective approach is
applying CLAHE twice and to the best of our knowledge, no study attempts to experiment
in this way. We have explained that several parameter values are employed at the first
place to get the desired outcome. However, necessary details were lost with altering the
values. Afterwards, CLAHE is applied twice and it is found that in this way the cancerous
lesion is properly enhanced. Another contribution regarding image processing technique
is to highlight the cancerous lesion into different intensity level using Green Fire Blue filter.
As mentioned, distinguishing nodules of different intra classes is challenging to carry out,
this filter greatly impacts on highlighting the nodule, dense tissue and surrounding tissues
into three different pixel intensity levels. Therefore, our approach is able to yield a good
performance in early detection of nodule as well. To address the issue of limited number of
images, several effective and suitable augmentation techniques for our dataset are used.

Apart from image processing and data augmentation techniques, this study also
demonstrates how the performance of a DCNN can be boosted by ablation studies. Ablation
studies include experimenting with various batch sizes, flatten layers, loss functions,
optimizers, and learning rates. Our model outperforms the existing literatures in terms
of accuracy which is demonstrated in literature review section. As several DCNN are
employed, a well statistical analysis among the performances is shown and described.
Though the loss and accuracy curve for the best performing model confirms absence of
overfitting, for a rigorous check we have carried out k-fold cross validation technique with
k values of 5 and 10. Results suggest that, against our high accuracy, the model has no
occurrence of overfitting. However, as the proposed model performs with a high accuracy
with no overfitting issues, it should be checked whether the approach can be appropriate in
a real world dataset. As real world mammograms may have degraded quality and presence
of noise due to technical fault, we have tested our model on noise induced test dataset
and performance did not drop significantly. This simulation evidences that, in future real
world mammography applications, our approach might be constructive and an improved
performance might be attained following this approach. In summary, we have showed a
complete and effective pathway of mammography classification from image preprocessing
to attaining an optimal performance with the help of extensive experimentations and
performance analysis. Furthermore, brief descriptions of all the techniques and ablation
studies are given, which may help scholars to understand the challenges of mammography
classification in similar dataset and effective ways to address them.

11. Conclusions

In this study, a breast CAD system is proposed to classify mammograms into four
classes. Images used in this experiment contain noise and artefacts which were removed
by using image pre-processing techniques. Background removal and image enhance-
ment techniques were employed to further improve the quality of the raw mammograms.
Six pre-trained and fine-tuned DCNN models were experimented with to determine which
model performs with the highest accuracy. A BreastNet18 model is proposed employing
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VGG16 as foundational base, as VGG16 yields the highest accuracy. An ablation study is
carried out on our proposed network, to evaluate and improve the model’s robustness. The
pre-processed image dataset is augmented by seven augmentation techniques resulting
in a dataset of 11536 mammograms. Our Proposed BreastNet18 model performed best
with optimizer Adam and learning rate 0.0008, resulting in a training accuracy of 96.72%, a
validation accuracy of 97.91% and a test accuracy of 98.02%. Our proposed approach based
on image processing, transfer learning, fine-tuning and ablation study demonstrated the
highest rate of correct classification while dealing with complex mammogram images. The
findings of this study demonstrate that image processing and augmentation techniques
can significantly increase a model’s performance. Transfer learning can be an appropriate
approach in computer vision when working with a small number of images. In addition,
configuring the model’s architecture and hyper-parameter employing an ablation study
also has an impact on the overall accuracy. To sustain the robustness of model, it is tested
on a noise induced dataset and overfitting is addressed by employing k fold cross valida-
tion. In both cases, an optimal performance is maintained. Our approach may aid clinical
specialists in diagnosing and treatment planning at an early stage.
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56. Lorencin, I.; Šegota, S.B.; And̄elić, N.; Mrzljak, V.; Ćabov, T.; Španjol, J.; Car, Z. On Urinary Bladder Cancer Diagnosis: Utilization

of Deep Convolutional Generative Adversarial Networks for Data Augmentation. Biology 2021, 10, 175. [CrossRef]
57. Rodríguez, J.D.; Pérez, A.; Lozano, J.A. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Trans.

Pattern Anal. Mach. Intell. 2010, 32, 569–575. [CrossRef] [PubMed]
58. Wong, T.-T.; Yang, N.-Y. Dependency Analysis of Accuracy Estimates in k-Fold Cross Validation. IEEE Trans. Knowl. Data Eng.

2017, 29, 2417–2427. [CrossRef]
59. Moreno-Barea, F.J.; Strazzera, F.; Jerez, J.M.; Urda, D.; Franco, L. Forward noise adjustment scheme for data augmentation. In

Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018;
pp. 728–734. [CrossRef]

60. Wang, S.; Tang, C.; Sun, J.; Yang, J.; Huang, C.; Phillips, P.; Zhang, Y.-D. Multiple Sclerosis Identification by 14-Layer Convolutional
Neural Network With Batch Normalization, Dropout, and Stochastic Pooling. Front. Neurosci. 2018, 12, 818. [CrossRef] [PubMed]

61. Wang, F.; Liu, X.; Yuan, N.; Qian, B.; Ruan, L.; Yin, C.; Jin, C. Study on automatic detection and classification of breast nodule
using deep convolutional neural network system. J. Thorac. Dis. 2020, 12, 4690–4701. [CrossRef] [PubMed]

62. Matheus, B.R.N.; Schiabel, H. A CADx scheme in mammography: Considerations on a novel approach. In Proceedings of the
ADVCOMP 2013: The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences,
Porto, Portugal, 29 September–4 October 2013; pp. 15–18.

http://doi.org/10.1007/s10851-005-4886-2
http://doi.org/10.5815/ijeme.2021.02.03
http://doi.org/10.1007/s11042-020-09752-2
http://doi.org/10.3390/diagnostics9030104
http://doi.org/10.1145/1815330.1815337
http://doi.org/10.1109/IWSSIP.2019.8787271
http://doi.org/10.25046/aj050220
http://doi.org/10.1109/TMI.2016.2528162
http://doi.org/10.1038/nature21056
http://doi.org/10.1186/s40537-016-0043-6
http://doi.org/10.3390/biology10030175
http://doi.org/10.1109/TPAMI.2009.187
http://www.ncbi.nlm.nih.gov/pubmed/20075479
http://doi.org/10.1109/TKDE.2017.2740926
http://doi.org/10.1109/SSCI.2018.8628917
http://doi.org/10.3389/fnins.2018.00818
http://www.ncbi.nlm.nih.gov/pubmed/30467462
http://doi.org/10.21037/jtd-19-3013
http://www.ncbi.nlm.nih.gov/pubmed/33145042

	Introduction 
	Research Aim and Scope 
	Literature Review 
	Dataset 
	Image Preprocessing Techniques 
	Artefacts Removal 
	Binary Masking 
	Morphological Opening 
	Largest Contour Detection 

	Remove Line 
	InRange Operation 
	Gabor Filter 
	Morphological Operations 
	Inverse Mask 

	Image Enhancement 
	Gamma Correction 
	Results of the First CLAHE 
	Outputs after Applying CLAHE a Second Time 
	Green Fire Blue 

	Verification 
	MSE 
	PSNR 
	SSIM 
	RMSE 
	Histogram Analysis 


	Data Augmentation 
	Data Augmentation 
	Data Split 

	Proposed Model 
	Transfer Learning and ImageNet 
	Transfer Learning Model and Finetuning 
	MobileNetV2 
	ResNet50 
	InceptionV3 
	DenseNet201 
	VGG16 
	VGG19 

	Training Approach 
	BreastNet18 
	Ablation Study 

	Results and Discussion 
	Evaluation Matrix 
	Results of Transfer Learning Models 
	Statistical Analysis of the Models 
	Comparison among the Models Based on Layer Depth and Trainable Parameters 

	Results of Ablation Study 
	Ablation Study 1: Changing Flatten Layer 
	Ablation Study 2: Changing Batch Size 
	Ablation Study 3: Changing Loss Functions 
	Ablation Study 4: Changing Optimizer and Learning Rates 
	Ablation Study Based on Different ImageJ Filters 
	Ablation Study Based on Image Processing Algorithms 

	Performance Analysis of Best Model 
	Check on Overfitting 
	Evaluation on Noise Induced Test Set 
	Comparison with Previous Literature 

	Limitations 
	Contribution of This Study 
	Conclusions 
	References

