
Prediction of EGFR Mutation Status in
Non–Small Cell Lung Cancer Based on
Ensemble Learning
Youdan Feng1†, Fan Song1†, Peng Zhang1, Guangda Fan1, Tianyi Zhang1, Xiangyu Zhao1,
Chenbin Ma1, Yangyang Sun1, Xiao Song2, Huangsheng Pu3, Fei Liu4 and Guanglei Zhang1*

1Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang
University, Beijing, China, 2School of Medical Imaging, Shanxi Medical University, Taiyuan, China, 3College of Advanced
Interdisciplinary Studies, National University of Defense Technology, Changsha, China, 4Beijing Advanced Information and
Industrial Technology Research Institute, Beijing Information Science and Technology University, Beijing, China

Objectives: We aimed to identify whether ensemble learning can improve the
performance of the epidermal growth factor receptor (EGFR) mutation status
predicting model.

Methods: We retrospectively collected 168 patients with non–small cell lung cancer
(NSCLC), who underwent both computed tomography (CT) examination and EGFR test.
Using the radiomics features extracted from the CT images, an ensemble model was
established with four individual classifiers: logistic regression (LR), support vector machine
(SVM), random forest (RF), and extreme gradient boosting (XGBoost). The synthetic
minority oversampling technique (SMOTE) was also used to decrease the influence of
data imbalance. The performances of the predicting model were evaluated using the area
under the curve (AUC).

Results: Based on the 26 radiomics features after feature selection, the SVM
performed best (AUCs of 0.8634 and 0.7885 on the training and test sets,
respectively) among four individual classifiers. The ensemble model of RF,
XGBoost, and LR achieved the best performance (AUCs of 0.8465 and 0.8654 on
the training and test sets, respectively).

Conclusion: Ensemble learning can improve the model performance in predicting the
EGFR mutation status of patients with NSCLC, showing potential value in clinical practice.
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INTRODUCTION

According to the estimates of cancer burden by GLOBOCAN 2020, lung cancer remained the
most common cancer type and the leading cause of cancer death in China (Cao et al., 2021).
Non–small cell lung cancer (NSCLC) is the main type of lung cancer, which accounts for
80%–85% (Singh et al., 2021). In recent years, molecular targeted therapy has become one of the
effective treatments in clinical tumor therapy for lung cancer. Studies have shown that some
genetic markers contribute to prognosis remarkably, such as the epidermal growth factor
receptor (EGFR), kirsten rat sarcoma viral oncogene (KRAS), and anaplastic lymphoma kinase
(ALK) genes (Yang et al., 2017; Alanazi et al., 2020; Lee et al., 2021).
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EGFR, a transmembrane glycoprotein, comprising 1,186
amino acids with tyrosine kinase (TK) activity, plays an
important role in signal transduction. EGFR is encoded by the
EGFR gene, which contains 28 exons. Mutations on its exons 18,
19, 20, and 21 may lead to abnormal EGFR activation (Herbst
et al., 2018), which is one of the causes of tumorigenesis.

Many studies have found that EGFR gene mutation status is
closely related to some EGFR-targeting drugs, such as tyrosine
kinase inhibitor (TKI). In 2004, Paez et al. (2004) found that TKI
had a significant effect on patients with EGFR mutations, which
were more common in women, adenocarcinoma patients, non-
smokers, and Asians. In addition, studies have shown that 75% of
the patients with EGFR mutations respond better to TKI
treatment than those without mutations (Gazdar, 2009). The
current explanation for this phenomenon is that mutations in the
EGFR gene enhance the sensitivity of tumor cells to TKIs.
Therefore, EGFR mutation status is considered to be a
predictor of the therapeutic effect of TKI.

At present, the gold standard of EGFR gene mutation status
detection is DNA sequencing after tissue biopsy (Paez et al.,
2004). However, tissue biopsy is difficult to be widely used in
clinical practice due to its invasive nature, difficulties in
repetition, and temporal and spatial heterogeneity of tumors.
Therefore, it is necessary to find a noninvasive, easily repeatable,
and comprehensive detection method. The emergence of
radiomics makes it possible to solve this problem.

The concept of radiomics was first proposed by Lambin in
2012 (Lambin et al., 2012). Based on the development of machine
learning and data mining technology, radiomics points out a
medical image analysis methodology that combines image

segmentation, feature extraction, feature analysis, and data
mining. Radiomics has been widely used in medical image
analysis, such as early screening and subtype classification of
tumors and prediction of patient survival. Furthermore,
radiogenomics combines radiomics with genomics to analyze
the relationship between radiomics features in medical images
and gene mutation status at the molecular level.

There has been a lot of research on EGFR mutation status
prediction by radiomics (Gevaert et al., 2017; Velazquez et al.,
2017; Jia et al., 2019; Jiang et al., 2019; Li et al., 2019; Pinheiro
et al., 2020). Velazquez E R et al. (2017) established a random
forest (RF) model with 16 radiomics features extracted from 763
patients, which obtained the area under the curve (AUC) of 0.8 on
the test set. After combining radiomics features with semantic
features, the AUC of the RF model was improved to 0.86.
Pinheiro G et al. (2020) used principal component analysis
(PCA) and t-distributed stochastic neighbor embedding
(T-SNE) to select the features. The extreme gradient boosting
(XGBoost) model established with selected features obtained the
highest AUC of 0.83.

It can be concluded that the current research studies on
EGFR mutation status prediction mostly used a single classifier
and most of them evaluated the model performance only on
one test set, making the results not convincing enough. In
addition, the performances of previous models need to be
improved to make the model available in clinical diagnosis.
In this research, we tried to explore the relationships between
CT radiomics features and EGFR mutation status in patients
with NSCLC and construct a more effective model based on
ensemble learning.

FIGURE 1 | Framework of our proposed radiomics model. It includes volume of interest (VOI) segmentation, radiomics feature extraction, and model construction.
In the model construction process, we make data expansion with the SMOTE on the training set and feature selection on the training and the test sets. The most
appropriate hyperparameter of the model is selected by the average accuracy on the validation set in the training process, and the best model is sent to the testing
process.
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MATERIALS AND METHODS

Patients
Our research is based on the public dataset NSCLC-Radio Genomics
by the Cancer Imaging Archive (TCIA) (Bakr et al., 2018), including
data from 211 patients with NSCLC from the Stanford University
School ofMedicine and the Alto Veterans Affairs Health Care System.
The patients were selected from a pool of early-stage NSCLC patients,
receiving CT examination within 1month before surgery. The tissue
slices from patients were later used to obtain mutation data and gene
expression data using gene expression microarrays or RNA-
sequencing or both. A total of 168 subjects (125 mutant type; 43
wild type) were finally enrolled in our study, excluding projects
without the EGFR phenotype.

CT Image Acquisition and EGFR Mutation
Detection
CT images were recorded in DICOM format. Since this is a
retrospectively collected dataset, different subjects were scanned

using different scanners, scanning protocols, and scanning
parameters. The common scanning parameters were as follows:
slice thickness of 0.625–3mm (median: 1.5 mm) and an X-ray
tube current of 124–699mA (mean 220mA) at 80–140 kVp
(mean 120 kVp). All CT image slice thicknesses were unified to
1mm with an interpolation algorithm before segmentation. Other
detailed parameters were recorded in the DICOM headers.

Mutation detection was performed on exons 18, 19, 20, and 21
on the EGFR gene in 206 patients, of which 125 patients were wild
type, 43 patients were mutant, and the information of others was
lost. Therefore, a total of 168 patients had the EGFR mutation
status, which was stored in the CSV file of clinical information.

Region of Interest Segmentation
Initial ROI segmentation of 144 subjects was provided by the
TCIA with an unpublished automatic segmentation algorithm.
After that, all segmentations were viewed and checked by a
professional thoracic radiologist and an additional thoracic
radiologist. The segmentations from the TCIA were
incomplete, so we made further process.

FIGURE 2 | Description of 1,409 radiomics features. (A) Process of feature extraction. (B,C) 14 filters and five matrixes used in (A). The numbers of extracted
features are indicated in parentheses.
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The anonymized thin-slice CT images (1 mm, DICOM
format) were delineated and segmented on lung window
(window width, 1200 HU; window level, −500 HU) using ITK-
SNAP (www.itk-snap.org). Two radiologists with 15 and 4 years
of experience in chest CT image interpretation, blinded to the
clinical data of each subject, segmented the nodules slice by slice.
Finally, segmentation results were output as three-dimensional
ROI files (NRRD format) for subsequent feature extraction.

Feature Extraction
In this study, we extracted 1,409 radiomics features (Figure 1)
from the three-dimensional volume of interest (VOI) for each
subject by the pyradiomics package (vision 2.1.2). The extracted
radiomics features mainly include three categories: shape,
intensity, and texture.

The 14 shape features were calculated from the VOIs directly,
reflecting the shape of the VOI region in two and three dimensions,
describing the size and shape of VOI, such as elongation, flatness,
surface area to volume ratio, and volume. In addition to the original
image, 14 filters were used to obtain additional information and
both the original VOIs and filtered VOIs were calculated in the
process of intensity feature and texture feature extraction. 18 of the
270 intensity features were extracted from the original VOIs, and
the others were extracted from the filtered VOIs. Intensity features
can reflect the intensity distribution of voxel points in the image,
including entropy, energy, maximum, minimum, average, and
median. Similar to the intensity features, 1,125 texture features
were extracted through five matrixes on the original and filtered
VOIs. Texture features describe the texture of an image with gray
changes, such as autocorrelation, average intensity, energy,
contrast, and gray difference (Sacconi et al., 2017; Takeda et al.,
2017).

Data Division and Expansion
The extracted radiomics features were divided into the training
set and test set in the ratio of 9:1, shown in Table 1. In this
research, each subject is obtained only from one patient, so there
is no risk of data leakage. Due to the imbalance between the two
categories (the number of wild types is three times as common as
mutant types), we used the synthetic minority oversampling
technique (SMOTE) algorithm (Chawla et al., 2002) only on
the training set to balance the dataset. After the SMOTE, the
number of subjects in both categories is equal.

Feature Selection
In this research, a total of 1,409 features were extracted, whose
number was much larger than that of patients, causing the
overfitting of the model. To reduce the dimension of
radiomics features, this research used the variance selection

method and Lasso algorithm (Robert, 2018) for feature
selection after data normalization on Python 3.7. In addition,
z-score was used for standardization to make features conform to
normal distribution before feature selection.

Model Construction
After feature selection, the selected features were sent into the
prediction model. First, we used individual classifiers
independently as prediction models, including RF (Breiman,
2001), XGBoost (Chen and Guestrin, 2016), logistic regression
(LR) (Kleinbaum and Klein, 2010), and support vector
machine (SVM) (Cortes and Vapnik, 1995). After that, we
used two ensemble learning strategies, hard voting and soft
voting, to combine the advantages of individual classifiers.
Furthermore, to obtain the optimal hyperparameters of
models, we used 5-fold cross-validation on the training set
and selected hyperparameters according to the average
accuracy of models on the five validation sets. The
strategies of individual and ensemble model construction
are summarized in Figure 2.

RESULT

Results of Feature Selection
After feature extraction, 1,409 radiomics features were obtained
from the original dataset. The process of feature selection used
variance selection and the Lasso algorithm successively. In
variance selection, the threshold value was set to 0, meaning
the unchanged features were filtered out. There were 1,243
original features left through the variance filter.

For a great influence on the feature selection result of the
regularization parameter λ in Lasso, a linear regression classifier
was used with 5-fold cross-validation on the training set to obtain
the appropriate value of λ. The relationship between loss function
MSE and λ is shown in Figure 3. Marked by the black vertical line,
when the value of λ is 0.05, the average MSE on five-folds is the
lowest.

Searching around 0.05, the λ was eventually determined to
be 0.04. There were 26 remaining features after feature
selection, and the number of each category was compared
in Figure 4. The proportion of intensity features increases
after feature selection, so it is speculated that intensity
features have a great contribution to this research; on the
contrary, shape features may contribute little to this research
for its number is 0 after feature selection. The weight of each
selected feature in the linear regression classifier is shown in
Figure 5. It can be seen that skewness and small area high gray
level emphasis contribute most to this model.

Performance of Individual Models
In this research, the selected features were input into four
individual classifiers for training. During the training process,
the optimal hyperparameters were determined according to the
performance of the individual classifier on the validation set.
Then, each individual classifier was trained with all data on the
training set, and the obtained individual model was used to make

TABLE 1 | Number of each phenotype in the dataset before the SMOTE.

Wild type Mutant type Total

Training set 112 39 151
Test set 13 4 17
Total 125 43 168
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a prediction on the test set. The performance of each
individual classifier on the validation set and test set is shown
in Table 2.

As displayed in Table 2, the LR and SVM obtain the highest
average accuracy and average AUC, respectively, in the 5-fold
cross-validation. For the SVM, the standard deviations of
accuracy and AUC are the smallest, which demonstrates

that the SVM has stronger robustness than the others for its
less impact caused by data disturbance. On the test set, the
accuracies of the four classifiers are same, among which RF and
XGBoost have the highest AUC, indicating that ensemble
learning can improve the generalization performance of the
classifier.

Considering the accuracy and stability of the model, the
SVM obtains the best overall performance among individual
classifiers. As shown in Figure 6, the SVM makes a good
classification for the small category (mutant type), but the
classification results for the major category (wild type) are not
ideal, with a high false-positive rate. At the same time, the
model classification results on the test set are slightly inferior
to those on the validation set, so further improvement for the
model is needed.

Performance of Ensemble Models
Three or four individual classifiers were selected for both
hard-voting and soft-voting. We evaluated the performance
of ensemble models with accuracy and AUC on the
validation set and test set and part of which is shown in
Table 3.

It can be seen that the performance of the ensemble
classifier is better than that of the individual classifier. The
combination of RF, XGBoost, and LR obtains the best
performance on the test set, while it is not satisfactory on
the validation set. Considering the model performance on the

FIGURE 3 | Feature selection using the LASSO method. Relationship of
MSE and λ.

FIGURE 4 | Variation of feature number through feature selection. (A) Feature number before and after feature selection. (B) Feature ratio before feature selection.
(C) Feature ratio after feature selection.
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validation set, the combination of XGBoost, SVM and LR has
the best comprehensive performance and the model is more
robust, with the further performance on the test set shown in
Table 4.

The accuracy, precision, and F1-score of the ensemble model
with soft-voting of XGBoost, SVM, and LR are improved
compared with those of individual classifiers, and even the
recall is slightly lower than that of XGBoost but is higher than
that of SVM and LR, proving that ensemble learning can combine
the advantages of individual classifier and obtain better
performance. Compared with individual classifiers through
confusion matrix (Figure 7) and ROC curve (Figure 8), the

false-positive rate of the ensemble model is significantly reduced,
which means the ensemble model predicts better on the major
category.

DISCUSSION

Computer-aided diagnosis has shown great potential in many
fields. Radiogenomics is one of the fields in computer-aided
diagnosis, combining radiomics with genomics using high-
throughput radiomics features extracted from medical images
to explore molecular information, such as gene mutation status.
The exploration of radiogenomics can not only work in early
diagnosis in improving the survival rate of a certain disease but
also provide clues to the physiological mechanisms at the
molecular level.

Based on 1,409 radiomics features extracted from the CT
images of NSCLC patients, this research constructed many
models with individual classifiers and ensemble classifiers for
predicting the EGFR mutation status. When the individual
classifier was used alone, each classifier showed a different
advantage. SVM performed best among them for its

FIGURE 5 | Weight of selected features with Lasso in the linear regression classifier.

TABLE 2 | ACC and AUC of individual models.

Classifier Validation set Test set

ACC (Mean ± Std) AUC (Mean ± Std) ACC AUC

LR 0.7944 ± 0.0542 0.8607 ± 0.0547 0.7647 0.7885
SVM 0.7942 ± 0.0503 0.8634 ± 0.0517 0.7647 0.7885
RF 0.7744 ± 0.069 0.7815 ± 0.0741 0.7647 0.8269
XGBoost 0.7744 ± 0.078 0.7911 ± 0.1129 0.7647 0.8269
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outstanding robustness with lowest variance, and LR
achieved an average performance on the validation sets
and test set. As for two classifiers based on ensemble
learning, RF obtained smaller variance on accuracy and
AUC, while XGBoost obtained a higher average,
supporting that bagging ensemble can reduce variance
while boosting ensemble reduces bias. Compared with the
SVM, RF and XGBoost showed better generalization ability
on the test set.

To combine the advantages of individual classifiers and find a
better ensemble strategy, we tried different combinations of three or
four classifiers with different voting methods. As Table 3 shows, the
highest average accuracy andminimumvariance on the validation set
appear on the combination of XGBoost, SVM, and LR with soft-
voting. Compared to the individual classifier, the ensemble model
improved the accuracy value by nearly three percent and significantly
reduced the variance. This combination absorbed the high accuracy
of LR and low variance of the SVM, overcoming the instability of
XGBoost, which showed advantages of ensemble learning. In
conclusion, it was speculated that the combination of these three
classifiers plays a complementary role in this research. As for the
impact of the voting method, classifiers using soft-voting performed
better than hard-voting because soft-voting is based on probability
produced by the classifier, reducing the impact on classification errors
by the individual classifier, while hard-voting is based on 0 or 1.

Compared with individual models, the performance of ensemble
models was improved on almost all indexes, and the false-positive
rate was significantly reduced. Our ensemble model achieved the

FIGURE 6 | Confusion matrixes of the SVM. (A–E) Confusion matrixes on the validation sets during the 5-fold cross-validation. (F)Confusion matrix on the test set.

TABLE 3 | ACC and AUC of ensemble models.

Classifier Voting method Validation set Test set

ACC (Mean ± Std) AUC (Mean ± Std) ACC AUC

LR — 0.7944 ± 0.0542 0.8607 ± 0.0547 0.7647 0.7885
SVM — 0.7942 ± 0.0503 0.8634 ± 0.0517 0.7647 0.7885
RF — 0.7744 ± 0.069 0.7815 ± 0.0741 0.7647 0.8269
XGBoost — 0.7744 ± 0.078 0.7911 ± 0.1129 0.7647 0.8269
RF + XGBoost + LR soft 0.7944 ± 0.0653 0.8465 ± 0.0659 0.8824 0.8654
XGBoost + SVM + LR soft 0.8275 ± 0.0264 0.8632 ± 0.0559 0.8235 0.8462
RF + XGBoost + SVM soft 0.8011 ± 0.0480 0.8453 ± 0.0684 0.8235 0.8654
RF + XGBoost + LR hard 0.7811 ± 0.0695 — 0.8235 —

All hard 0.8211 ± 0.0456 — 0.7647 —

all soft 0.8144 ± 0.0275 0.8587 ± 0.0550 0.7647 0.8654

The best performance in the models is highlighted in bold.

TABLE 4 | Further performance of the combination of XGBoost, SVM, and LR on
the test set.

Classifier Accuracy Precision Recall F1-score

SVM 0.76 0.67 0.67 0.67
LR 0.76 0.70 0.76 0.72
XGBoost 0.76 0.75 0.85 0.74
Hard-voting 0.76 0.70 0.76 0.72
Soft-voting 0.82 0.76 0.80 0.77
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highest accuracy of 0.88 and the AUC of 0.86 on the test set,
exceeding the level of current other studies, which indicated that the
ensemble learning method was effective.

However, there are still some limitations in this research: 1)
the gold standard for obtaining EGFR mutation status is DNA
sequencing after tissue biopsy, which means it is difficult to build

FIGURE 7 |Confusionmatrixes of the ensemblemodel and individual models on the test set. (A) XGBoost. (B)SVM. (C) LR. (D) Ensemblemodel with soft-voting of
XGBoost, SVM, and LR.

FIGURE 8 | ROC of the ensemble model and individual models on the test set. (A) XGBoost. (B) SVM. (C) LR. (D) Ensemble model with soft-voting of XGBoost,
SVM, and LR.
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a large dataset for model construction; 2) this research is only
based on radiomics features, so the combination with semantic
features may further improve the model performance according
to previous studies (Jia et al., 2019; Jiang et al., 2019; Li et al.,
2019).

In conclusion, this research explored the effectiveness of
ensemble learning in predicting the EGFR mutation status,
showing that ensemble learning can improve the model’s
accuracy and robustness. In addition, compared with shape
features, intensity features may play a more important role in
EGFR mutation prediction. For further research, we will try to
build a larger dataset and construct the model with both semantic
features and radiomics features.
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