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Background: In recent years, deep learning has been widely used in a variety of

ophthalmic diseases. As a common ophthalmic disease, meibomian gland dysfunction

(MGD) has a unique phenotype in in-vivo laser confocal microscope imaging (VLCMI).

The purpose of our study was to investigate a deep learning algorithm to differentiate

and classify obstructive MGD (OMGD), atrophic MGD (AMGD) and normal groups.

Methods: In this study, a multi-layer deep convolution neural network (CNN) was trained

using VLCMI from OMGD, AMGD and healthy subjects as verified by medical experts.

The automatic differential diagnosis of OMGD, AMGD and healthy people was tested

by comparing its image-based identification of each group with the medical expert

diagnosis. The CNN was trained and validated with 4,985 and 1,663 VLCMI images,

respectively. By using established enhancement techniques, 1,663 untrained VLCMI

images were tested.

Results: In this study, we included 2,766 healthy control VLCMIs, 2,744 from OMGD

and 2,801 from AMGD. Of the three models, differential diagnostic accuracy of the

DenseNet169 CNN was highest at over 97%. The sensitivity and specificity of the

DenseNet169 model for OMGD were 88.8 and 95.4%, respectively; and for AMGD 89.4

and 98.4%, respectively.

Conclusion: This study described a deep learning algorithm to automatically check

and classify VLCMI images of MGD. By optimizing the algorithm, the classifier model

displayed excellent accuracy. With further development, this model may become an

effective tool for the differential diagnosis of MGD.

Keywords: deep learning, meibomian gland dysfunction, convolution neural network, in-vivo confocal microscopy,

DenseNet CNN
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INTRODUCTION

The meibomian gland (MG) is a modified secretory sebaceous
gland arranged vertically in the upper and lower eyelids and
with openings at the eyelid edge (1). The MG can maintain
the dynamic balance of the ocular surface by secreting lipids
(meibum) into the tear film, thus helping to prevent tear
evaporation, to lubricate the eye surface, and form barriers for
protection from microbes and other environmental organisms
(2–4). Meibomian gland dysfunction (MGD) is a chronic and
diffuse meibomian gland disease, the main feature of which is
the obstruction of the gland’s terminal ducts and/or abnormal
meibum secretion (5). The prevalence of MGD ranges from 46.2
to 68.0% in Asians (6). The earliest evaluation of meibomian
gland function used the slit lamp and direct observation, but
these evaluation methods are approximate. The later infrared
imaging technology was effective in diagnosing MGD. It used
infrared penetrating camera technology and enhanced contrast
function to facilitate meibomian gland imaging (7). It allowed
quantitative assessment of the meibomian glands (such as their
presence or absence) but not morphological characteristics at
the cellular level. In recent years, scholars have found that
in-vivo laser confocal microscopy imaging (VLCMI) allows
observation of the microscopic morphology of the meibomian
glands in-vivo (8, 9) and investigation of the pathophysiological
process of MGD, with particular significance for the diagnosis
of MGD.

Artificial intelligence (AI) is a branch of computer science
which uses logical operation methods to establish related
databases and application models (10). Machine learning is an
implementation method of artificial intelligence which extracts
generalized rules from data through algorithms characterized
by “learning” (11). These rules are represented by mathematical
models, including a descriptive analysis of given data. At
the same time, other automated methods required experts
in the field to define the descriptive rules of the data after
which they were implemented by computer programmers
in the automated system. The clinical application of AI in
ophthalmology diagnosis and treatment includes automatic
detection and quantification of ocular lesions or features,
automatic screening of ocular diseases, AI-based diagnostic
grading, and clinical decision support in retinal treatment and
prognostic disease models (12–14). A previous study showed
that the application of AI technology in retinal disease was
based on the detection of disease-related features on color
fundus photography images. The primary retinal markers used
in this procedure were large retinal blood vessels and optic
discs, sometimes including foveal features, because these markers
exist in every fundus image (15). So far, deep learning and
other artificial intelligence methods have developed rapidly in
ophthalmic research. Glushan’s development and validation of
deep learning detection algorithms for diabetic retinopathy has
been fully recognized (16). Therefore, the development of a deep
learning algorithm to automatically identify MGD may reduce
the uncertainty of MGD screening and decrease the challenges
for human assessors, reducing the need for medical resources and
long-term finance.

FIGURE 1 | In-vivo laser confocal microscope images of obstructive (A) and

atrophic MGD (B) and healthy eyes (C). MGD, meibomian gland dysfunction.

As far as we know, no diagnostic approach using AI
technology for MGD morphological characteristics has been
reported previously. Therefore, the purpose of this study was to
assess the ability of AI models to detect different types of MGD
using VICMIs.

METHODS

Study Subjects
The institutional review board of the First Affiliated Hospital of
Nanchang University approved this study, which was conducted
in accordance with the tenets of the Declaration of Helsinki.
This was a single-center, clinical study. Eight thousand three
hundred eleventh VLCMIs were included, among which 2,766
were from healthy controls, 2,744 for diagnosis of OMGD, and
2,801 for diagnosis of AMGD (Figure 1). All the subjects were
recruited at theOphthalmologyDepartment of the First Affiliated
Hospital of Nanchang University. Diagnoses were conducted by
the ophthalmology expert team and the artificial intelligence
screening system. Inclusion criteria for the healthy group were
as follows: 1. 18–50 years of age; 2. No significant ocular
discomfort and no apparent abnormalities on eyelid margin
examination; 3. No eye diseases, no history of eye surgery
or trauma and no contact lens wear; 4. No serious systemic
disease and able to cooperate to undergo all examinations; 5.
Voluntary participation in the study. Inclusion criteria for the
MGD group were as follows: 1. Absence of meibomian glands;
2. Abnormal meibomian gland secretion and meibomian gland
opening; 3. Changes in quantity and quality of meibomian gland
secretions, and any of the above signs combined with symptoms
can diagnose MGD. Exclusion criteria: 1. Age younger than 18
or older than 50 years; 2. Patients who are not newly diagnosed
in our hospital or have undergone MGD related treatment; 3.
Have a history of eye surgery; 4. Have a history of eye trauma;
5. Combined ocular inflammation (such as blepharitis, seborrheic
dermatitis, etc.) or eyelid conjunctival scarring disease; 6. Contact
lens wearer; 7. Unable to complete all inspections due to other
factors; 8. Involuntary take part in this research.

In-vivo Laser Confocal Microscopy
All subjects were examined using the in-vivo confocal microscopy
(IVCM; Heidelberg Retina Tomograph II-Rostock Cornea
Module, Dossenheim, Germany) as previously described (17).
Briefly, the subjects were under topical anesthesia, and the
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eyelid was everted. The center of the Tomo-Cap with comfort
gel was placed onto the palpebral conjunctiva and gradually
moved from the focal plane into the subconjunctival tissue
until the glands were visualized. The images of the underlying
meibomian glands were observed and captured by the software
(Python 3.7.6; tensorflow GPU 2.0). We scanned the glands
while moving the lens from the eyelid margins toward the fornix
(vertical movements) and along the palpebral width (horizontal
movements). During the examination, no subjects complained
of discomfort. The images were two-dimensional with a 400 ×

400µm field of view. For each subject, three high-quality digital
images of nasal, middle, and temporal glands (total nine images
of each eyelid) were selected.

Definition of Meibomian Gland
Abnormalities
Normal meibomian glands were sebaceous glands situated
vertically and parallel to each other. Each gland contained grape-
like acini, connected by the duct. The acini had convoluted
borders with large cells lining and a lumen consisting of fine
cellular material (18). Previous study shows that the normal
meibomian gland acinar unit density is 113 ± 36.6 glands/mm2

(19). In MGD patients, any change in morphology and the
number of acinar units may be observed. The diameter of
obstructive meibomian acinus was larger than that of normal
meibomian acinus, and the acinus contained eyelid fat blockage.
Atrophic meibomian acinus was characterized by destruction
of acinar epithelial cells with fibrosis (19–21). Based on such
changes, we categorized the MGD group images as atrophic or
obstructive. The atrophic meibomian glands were fibrosed with
abnormal architecture and a reduced acinar unit density. The
obstructive glands showed considerable acinar unit enlargement,
with the acinar unit density again decreased.

All the subjects underwent evaluation by an ophthalmologist,
including tear film breakup time and corneal fluorescein staining,
in order to confirm the clinical diagnosis. The VLCMIs were
classified by the ophthalmologist into three groups: normal,
atrophic, and obstructive.

Model Construction
A total of 4,985 VLCMIs were used for training, and 1,663
VLCMIs were used to test the our deep learning system.
Figure 2 shows details of the training data set, the external
test data set and the model construction process. We trained
three types of network structures (DenseNet 121, DenseNet 169,
and DenseNet 201) to classify the meibomian glands into one
of the three classes: normal, atrophic, and obstructive. Sparse
categorical cross-entropy was performed on the primary data set
to differentiate between normal, atrophic, and obstructive. The
training started with multiple iterations on a batch size of 16
images, with a learning rate of 0.001, and stopped at 200 epochs.
Using the same thresholds, the diagnostic performance of the
three classification models was assessed on the five independent
external-testing data sets.

FIGURE 2 | Flow chart illustrating development of the deep learning system.

Statistical Analysis
We derived the receiver operating characteristic (ROC) curve
by changing the thresholds of ratios of the images classified as
different groups and the values output by the neural network.
We calculated the area under the ROC curve (AUC). For the
sensitivity and specificity, we considered the neural network
answer as abnormal if the value output of the ratio of images
classified as the two MGD groups was 0.5 or more and standard
if the value was <0.5. Finally, we used confusion matrix analysis
to evaluate the performance of the automated diagnosis based on
the final test results of the three models.

RESULTS

Performance of Different Deep Learning
Algorithms in the Test Datasets
The ROC curve was used to evaluate the accuracy of the
machine model for autonomous recognition of VLCMIs for
differential diagnosis between different types of MGD and
differentiation between MGD and normal images. Accuracy
of the DenseNet 169 model in differential diagnosis of
OMGD, AMGD and healthy subjects was 97, 99 and 98%,
respectively. The DenseNet 121 model showed accuracy of
94, 96, and 93%, respectively while the DenseNet 201
model showed 94, 97, and 94%, respectively (Figure 3). The
DenseNet169 therefore showed highest accuracy. Compared with
the correct recognition accuracy of medical experts, the correct
recognition accuracy was 91%. The identification accuracy
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FIGURE 3 | The imaging images go through the deep learning algorithm and the output of the final results.

TABLE 1 | Performance of three deep learning algorithms in the test dataset.

Different deep learning models Test dataset

Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

DenseNet 169

Obstructive MGD 88.8% (86.1–91.4%) 95.4% (94.2–96.6%) 97.3% (96.4–98.2%)

Atrophic MGD 89.4% (86.8–91.9%) 98.4% (97.6–99.1%) 98.6% (97.9–99.3%)

Healthy controls 94.5% (92.6–96.4%) 92.6% (91.0–94.1%) 98.0% (97.4–98.6%)

DenseNet 121

Obstructive MGD 85.8% (82.9–88.8%) 87.1% (85.1–89.1%) 93.8% (92.7–95.0%)

Atrophic MGD 69.0% (65.2–72.8%) 99.5% (99.0–99.9%) 95.6% (94.3–96.9%)

Healthy controls 88.8% (86.1–91.4%) 85.2% (83.1–87.3%) 92.7% (91.2–94.1%)

DenseNet 201

Obstructive MGD 89.3% (86.7–91.9%) 85.4% (83.3–87.5%) 94.2% (93.0–95.4%)

Atrophic MGD 70.6% (66.9–74.4%) 99.1% (98.5–99.7%) 96.7% (95.6–97.8%)

Healthy controls 86.4% (83.6–89.3%) 88.6% (86.8–90.5%) 94.1% (92.9–95.3%)

DenseNet 169 demonstrated the highest accuracy.

MGD, meibomian gland dysfunction; CI, confidence interval.

of the DenseNet 169 model was higher than that of the
medical experts.

The DenseNet169 model showed sensitivity and specificity
of 88.8 and 95.4%, respectively, and AUC of 97.3% for
OMGD, 89.4 and 98.4%, respectively and AUC of 98.6% for
AMGD, 94.5 and 92.6%, respectively with AUC of 98.0%
in normal subjects. Further details and the sensitivities and
specificities of the other two DenseNet models are shown in
Table 1.

DISCUSSION

The aim of the present study was to evaluate performance of
the deep learning system to detect different types of MGD in
images obtained using an in-vivo laser confocal microscope. Our

main finding was that the system based on a deep learning
neural network can distinguish between OMGD, AMGD and
normal subjects (Figures 4, 5), the best performing algorithm
being the DenseNet169, with differential diagnostic accuracy of
97 to 99%, sensitivity of over 88% and specificity over 95%
(Figure 6).

MGD is a chronic, nonspecific inflammation of the
meibomian gland, characterized by duct obstruction or abnormal
secretion, and is an important cause of hyperevaporative dry

eye (22). In addition, the symptoms of MGD have a significant

impact on the quality of life of patients, not only causing eye
irritation, but also leading to the sequelae of ocular surface
inflammation and visual dysfunction (5). Age is a risk factor for
MGD. With increasing age, atrophy of the meibomian gland
acinar epithelial cells leads to the large-scale irreversible atrophy
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FIGURE 4 | The output of the discriminant result and the final classification accuracy vary with the number of iterations. MGA, atrophic meibomian gland; MGO,

obstructive meibomian gland; AUC, area under the curve; ROC, receiver operating characteristic curve.

of the gland, with a decrease in lipid secretion (23). In recent
years, the incidence of MGD in the population has increased,
making it the most common disease in ophthalmology clinics.
The estimated pooled prevalence of MGD worldwide was 35.8%
(24). Consistent with this, a global survey of dry eye patients
found that 35% of the population had dry eye, of which 53%
were caused by MGD (25). Difficulties in the clinical diagnosis
and treatment of MGD included extensive effort required for
comprehensive ocular surface analysis and examination, low
precision of examination results of MGD-related dry eye, low
relevance of the severity of the disease to its management, and
poor subjective perception of patient prognosis. At present
ophthalmology clinic, the infrared meibography was performed
with the Oculus Keratograph 5M R© (Wetzlar, Germany)
to evaluate the meibomian gland morphology. Images of

meibomian glands in the entire lower eyelids were obtained. The

meibomian gland function scores were graded according to the
extent of the meibomian gland dropout. It was graded from 0
to 3 (0 = no gland loss; 1 = loss < 33%, 2 = loss between 33
and 66%, 3 = loss > 66%). This method can also evaluate MGD,
but it can only evaluate the morphology of meibomian gland,
not meibomian gland acinus (26). Meibomian gland acinus is
a cell secreting palpebral fat, which can better represent the
function of meibomian gland. However, conventional detection
techniques could not directly observe the morphological and
quantitative changes of meibomian acinus. These problems
restrict the improvement of the diagnosis, treatment level and
long-term management of MGD. In addition, due to the low
medical and economic resources in underdeveloped and remote
areas, the ophthalmologist to patient ratio is low, leading to
delayed diagnosis and deterioration of MGD in some patients.
For example, in Nigeria, reported physician to patient ratio is
as low as 1:2,660 (27). An efficient and socially effective method
for evaluating meibomian gland function is therefore needed
urgently. The AI-assisted diagnosis of ophthalmic diseases such
as cataract, early glaucoma, diabetic retinopathy, and age-related

FIGURE 5 | Pooling process of deep learning algorithms.

macular degeneration is undergoing rapid development (28–31),
but there are few studies on artificial intelligence-assisted
diagnosis or screening of dry eye or MGD. We aimed to make
a preliminary attempt by studying deep-learning models and
conducting a series of in-depth processing of meibomian
gland images such as automatic segmentation of meibomian
conjunctiva and meibomian glands, morphological feature
extraction, and missing rate calculation. The evaluation duration
was about 0.5 s, demonstrating sub-second analysis of the
meibomian gland images.

To date, the IVCM has been used to qualitatively and
quantitatively evaluate the posterior pole, including the optic
disc (32). Recently, IVCM has played an increasingly important
role in the evaluation of meibomian gland function (17, 33).
The advantage of IVCM lies in its imaging of ocular surface
tissue in-vivo at the cellular level, and its option to observe
and measure the microstructure of meibomian glands (34),
providing a new perspective from which to understand the
pathophysiological mechanism of meibomian gland disease (33).
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FIGURE 6 | Performance of three DenseNet deep learning algorithms in the test dataset. (A) Confusion matrices describing the accuracies of deep learning

algorithms. (B) Receiver operating characteristic curves indicating the performance of each algorithm in diagnosis of obstructive MGD, atrophic MGD and healthy

controls. DenseNet 169 model demonstrated the highest differential diagnostic accuracy. Class 0: obstructive MGD; class 1: atrophic MGD; class 2: healthy controls.

MGD, meibomian gland dysfunction.

In addition, related studies have further confirmed that IVCM
can be used for preclinical diagnosis before the significant loss
of glands (18). The arrangement and specific number of acinar
units can be observed using the IVCM, and nine confocal
images at different angles can be obtained from one side of
the eyelid (19). By carefully evaluating the confocal images, we
can look for atrophy of acinar units, presence of inflammatory
cells, and reduced acinar unit density in MGD patients. The
IVCM allows the phenotypic changes in MGD to be described
using new diagnostic parameters, such as acinar unit density and
acinar unit diameter, reflecting histopathological changes such
as glandular atrophy or ductal dilatation, respectively. Healthy
control VLCMIs allow the morphological changes of meibomian
gland acini to be identified at a preclinical stage, before the
appearance of ocular symptoms and morphological changes
of the meibomian gland opening. In MGD, there was more
neutrophil infiltration into the conjunctiva and some Langerhans
cells infiltration into the palpebral conjunctiva, suggesting
that the occurrence of MGD was related to conjunctival
inflammation.We believed that the micromorphological changes
of meibomian glands were earlier than the loss of glands, and
the absence of glands appeared ocular symptoms (i.e., MGD) to
a certain extent. Therefore, the IVCM may play an important
role in the accurate diagnosis of MGD. Combination of the
deep learning module developed by our team provides a novel
technique for diagnosis of MGD.

The term “DenseNets” reflects its dense connection method,
which improves the backpropagation of the gradient, facilitating
network training (35). Since each layer can directly reach the

final error signal, implicit “deep supervision” is realized. The
error signal can rapidly propagate to the earlier layers to
obtain direct supervision from the final classification layer. The
vanishing gradient is alleviated, and the problem of over-gradient
disappearance is more likely to occur at greater network depth
(36). This is because the input and gradient information are
transferred between many layers, and now this kind of dense
connection is equivalent to each layer directly connect the input
and loss so that it can reduce the disappearance of the gradient
so that the deeper network is not a problem. The number
of parameters is reduced, and low-dimensional features are
preserved. In a standard convolutional network, the final output
will only be used to extract the highest-level features. DenseNet
uses high and low feature levels and tends to give a smoother
decision boundary, with good performance even with insufficient
training data (37). The disadvantage of DenseNet is that due
to the need to perform multiple concatenate operations, the
data need to be copied multiple times, video memory is rapidly
used and dedicated video memory optimization technology
is required. In addition, DenseNet is a specialized network,
while others such as ResNet are more generic with a broader
range of applications. Related deep learning studies in dry
eye diseases adopted a VCG19 model, which used machine
algorithms to recognize the anterior segment optical coherence
tomography images of subjects to independently distinguish dry
eye patients from normal subjects, and its recognition sensitivity
and specificity reached 86.36 and 82.35%, respectively (38).
The advantages of deep learning algorithms in the differential
diagnosis of ophthalmic diseases were independent, objective,
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rapid and non-invasive. With the further development and
clinical testing of the model, our model can be used as an
important auxiliary means for the diagnosis and screening
of meibomian gland dysfunction. From our discussion above,
confocal microscopy was very effective in evaluating MGD
and dry eye. Artificial intelligence technology can assist in
reading pictures, quickly diagnosed and classify them, improve
doctors’ work efficiency, and help Internet diagnosis and medical
treatment in timeliness.

However, there are some limitations in our study. The present
model tests the conditions of “meibomian gland atrophy” and
“meibomian gland obstruction” only. The meibomian glands
may also have structural abnormalities and missing structures,
and the model’s image recognition accuracy of the meibomian
glands still needs to be further improved to detect these in
clinical practice. We anticipate collaboration with other hospitals
to establish a multi-center database to make data sources more
universal and extensive, further improve the accuracy of model
interpretation, and promote the further development of artificial
intelligence in assisting the diagnosis of ocular surface diseases. In
the future, while increasing the sample size, we will also combine
other dry eye-related indicators such as the height of the tear
meniscus, tear film break up time, and tear secretion to improve
the model algorithm further.

In summary, we have found good accuracy of an image depth
processing model to evaluate meibomian glands in MGD, and
this method can assist clinicians in analyzing the examination
results better and faster and provide a more reliable basis for
diagnosis. It is of great value as a means to support individualized
treatment of dry eye and chronic disease management. This
model is most appropriate for general ophthalmology clinics with
a low doctor to patient ratio. It can also be used for dry eye
screening in the wider population and follow-up and efficacy
observation in management of dry eye. Finally, the DenseNet169
model may assist ophthalmologists in the diagnosis of MGD,
reducing their workload and pressure related to diagnosis.
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