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Abstract: The SARS-CoV-2 coronavirus epidemic has led to an increase in the number of people
with depression. Symptoms related to the mental sphere (mainly depression and anxiety) may
be experienced by one third of the worldwide population. This entails the need for the effective
and rapid treatment of depressive episodes. An effective drug seems to be s-ketamine, which was
accepted in March 2019 by the Food and Drug Administration (FDA) for the treatment of drug-
resistant depression. This drug provides a quick antidepressant effect with maximum effectiveness
achieved after 24 h. It also appears to reduce the occurrence of suicidal thoughts. However, research
into undesirable effects, especially in groups of people susceptible to psychotic episodes or those
who use alcohol or psychoactive substances, is necessary.

Keywords: ketamine; depression; anxiety; NMDA receptor; neurodegeneration; GABA; COVID-19
pandemic

1. Introduction

As of 1 May 2021, there were 153 million confirmed COVID-19 cases, and 3.2 million
related deaths have been reported by the WHO. The regions of the Americas and Europe
have been the most affected (almost half (48%) of all reported COVID-19-associated deaths
occurring in the Americas, and one third (34%) in Europe) [1]. According to the World
Health Organization, before the COVID-19 pandemic, approximately 350 million people
worldwide were suffering from depression [2]. The worldwide distribution of so-called
major depression (MD) or major depressive disorders (MDD) was estimated from 3% in Japan to
16.9% in the USA; in most other countries the prevalence ranged between 8% and 12% [3,4].

The SARS-CoV-2 coronavirus epidemic has produced changes in these statistics for
several months. According to the available data, symptoms related to the mental sphere
(mainly depression and anxiety symptoms) may affect one third of the general popula-
tion [5]. According to Santomauro et al., there has been an increase of 27.6% per 100,000
population cases of major depressive disorder globally due to the COVID-19 pandemic,
with increases in North Africa and the Middle East of 37.2%, in Latin America and the
Caribbean of 37.8%, and in Central Europe, Eastern Europe, and Central Asia of 29.4%.
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The authors also estimated an increase of 25.6% per 100,000 population cases of anxiety
disorders globally, mainly in South Asia, where an increase of 35.1% was noted, but also
in North Africa and the Middle East, where there has been an increase of 32.4%, in Latin
America and the Caribbean, with an increase of 31.7%, and in Central Europe, Eastern Eu-
rope, and Central Asia, with an increase of 30.0% [6]. In a broader perspective, depressive
disorders in the time of the COVID-19 pandemic have many negative consequences, both
medical and sociological, and significantly reduce both quality of life and the adaptability
of the individual [7].

Depression is a complex and heterogeneous disease, and its etiopathogenesis involves
many factors at different psychological, biological, genetic and social levels [8]. Despite the
great medical and social importance of MD, there is no clear concept behind its causes and
the mechanism of its development. Several theories explaining the onset of depression have
been proposed and confirmed by biochemical, immunological and physiological studies.
In parallel to the well-known theories of depression (“monoamine”, “cytokine”, “stress”—
the hypothalamic–pituitary–adrenal (HPA) axis), other theories, including altered brain
neural plasticity, neurogenesis and circadian desynchronosis (chronobiological model),
have been proposed to explain the onset of MD symptoms [9,10].

A detailed understanding of the mechanisms underlying depression appears to be
essential to provide an appropriate therapeutic approach in order to alleviate or arrest the
disease. Guidelines for treating depression suggest selective serotonin reuptake inhibitors
(SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs) among other drugs,
including agomelatine, bupropion, mirtazapine and vortioxetine as first-line drugs [11,12].
However, about one-third of depressed patients treated report little or no symptomatic im-
provement. This phenomenon often leads to discontinuation of therapy and deterioration
in the quality of patients’ lives and increases the risk of successful suicide attempts [13].

Over the past few years, ketamine has become more popular as a potential new drug
in the pharmacotherapy of MD [14,15]. It has been successfully used as a general fast-acting
anesthetic for a long time. Ketamine is a derivative of phencyclidine, a substance belonging
to the group of psychodysleptic agents, also known as hallucinogens [16].

In March 2019, the Food and Drug Administration (FDA) approved the use of in-
tranasal s-ketamine for the treatment of drug-resistant depression [17]. There have been
more and more reports indicating the effectiveness of this substance in the therapy of
so-called treatment-resistant depression (TRD) [18]. Bartoli et al. report that ketamine sig-
nificantly reduces the frequency of suicidal thoughts in depressive patients [19]. McIntyre
et al. state that intravenous ketamine is an effective antidepressant in people with the
above-mentioned drug-resistant depression [20]. Will the N-methyl-D-aspartate (NMDA)
receptor potentially be a new treatment target for depression [21]?

2. Methodology

An exhaustive review of the literature published up to October 2021 in PubMed
(U.S. National Library of Medicine) was performed. Our search strategy combined the
following terms: ketamine, depression, NMDA receptor, neurodegeneration, GABA. The
full articles were downloaded, as well as books on the treatment of depression, to find
possible additional related publications.

3. N-Methyl-D-Aspartate (NMDA) Receptor

The stimulating effect of amino acids on the activity of neurons was first described by
Curtis in 1959 [22]. He showed a depolarizing effect of glutamic acid (GLU) on rat spinal
neurons. Twenty consecutive years have been spent on research proving that GLU is one of
the most important excitatory neurotransmitters in the central nervous system (CNS) [23],
and that glutamate receptors are ubiquitous in the brain and spinal cord. There are three
families of ionotropic glutamate receptors: N-methyl-D-aspartate (NMDA)—the agonist
is NMDA; α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)—the agonist is
AMPA; and kainic—stimulated by kainic acid. There are many binding points of the
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so-called competitive antagonists (the same site where GLU and NMDA bind) within the
NMDA receptor [24,25].

At rest, the NMDA receptor is inactive due to the voltage-dependent blocking of the
channel pores by magnesium ions. Unlike AMPA, NMDA receptors are non-selective for
cations such as Ca2+, Na2+ and K2 + ions. Ca2+ influx is crucial for NMDA receptor induc-
tion. The influx of calcium into the cell activates calcium-dependent enzymes, stimulates
the formation of free radicals and leads to swelling and cell death. It also leads to the release
of a large amount of GLU, which is found in significant amounts in CNS cells. Glutamate
outside the cell can depolarize cell membranes, damage subsequent cells and is responsible
for the spread of the neurodegeneration process. This glutamate loop can increase the
extent of damage after trauma, ischemia and encephalitis [26]. Ca2+/calmodulin-mediated
activation of the NMDA receptor also leads to the activation of nitrogen oxygen synthetase
(NO), which plays a key role in nociception and neurotoxicity. The results of NMDA
receptor activation are shown in Figure 1.
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Figure 1. The effects of NMDA receptor activation. Created with BioRender.com (accessed on 1 September 2021).

Already in the 1950s, Lucas and Newhouse [27] presented the possible toxic effects
of GLU on cells. However, the author of the concept of neurotoxicity of excitatory amino
acids in the brain is Olney [28], who described the mechanism of excessive stimulation of
NMDA receptors by GLU in the pathogenesis of various forms of nerve cell damage. He
also drew attention to the role of NMDA receptors and the possibility of modulating the
glutamatergic system function through antagonists of these receptors.

The functioning of the glutamatergic system determines the proper functioning of
cognitive processes, memory and learning. The results of many studies indicate a relation-
ship between the dysfunction of the glutamatergic system and neuroplasticity disorders
and neurodegenerative processes in the course of Alzheimer′s or Huntington′s disease [29].
NMDA receptors are involved in global and focal ischemia and in various neurological
diseases [30].

Scientific research confirms the involvement of the glutamatergic system in the pro-
cesses of mood regulation. People suffering from depression showed a decreased level of
this neuromediator in the cingulate cortex, with elevated levels in the occipital cortex. [31].
Dysfunction of AMPA receptors (including the decreased expression of mGlu3 subunits) in
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the prefrontal cortex and the increased expression of NMDA receptors were reported in
patients suffering from affective disorders [32].

In addition, the glutamatergic system is involved in neuroplasticity processes, such
as the formation and proper functioning of synapses, axon and dendrite cytoskeleton
and in the maintenance of the level of neuromediators. It is possibly involved in all CNS
functions [33–35]. The influence on the glutamatergic system is therefore the basis of
intervention in many brain dysfunctions.

The renaissance in anesthetic ketamine as the first non-competitive NMDA receptor
antagonist is currently noted. Non-competitive NMDA receptor antagonists act at a site
other than the agonist recognition site by blocking the NMDA receptor in the channel in a
usage-dependent manner (i.e., the channel must first be opened by the agonist in order to
be bound to the antagonist).

New research also indicates other potential mechanisms of NMDA receptor antagonist
action protecting against the progression of neurodegeneration. According to this work,
for instance, amantadine may exhibit a double protective mechanism, completely inde-
pendent of blocking the NMDA receptor and consisting in both the inhibition of microglia
stimulation (and thus the inflammatory process) and the astroglial stimulation (thus the
production of trophic factor (GDNF—glial derived neurotrophic factor)). Today, many
researchers consider both of these phenomena, the microglia stimulation and reduction in
trophic factors, as crucial in the processes of neurodegeneration and depression [36–38].

4. Ketamine Characteristics

Ketamine is a synthetic, non-barbiturate anesthetic synthesized by Calvin Stevens
of the Parke-Davis Pharmaceutical Company in 1962 (Ann Arbor, MI, USA), which was
looking for an alternative to the potent hallucinogenic agent phencyclidine [39,40].

Due to its rapid onset and short duration of action, with only minor cardio-respiratory
depression compared to other general anesthetics, and possible use in maintaining anes-
thesia via inhalation, ketamine is the drug of choice for short-term surgery, especially in
children, and is also used in veterinary medicine [41,42]. Ketamine produces dissociative
anesthesia (i.e., a sense of separation from the body and surroundings) [40,43]. Under
dissociative anesthesia, the patient remains awake and seems to be conscious (i.e., the eyes
may be open with nystagmus present), but shows no response to surgical pain. He/she is
in complete analgesia and total amnesia, with reflex protection in the airways (intubation is
not necessary), spontaneous breathing and cardiovascular stability (i.e., blood pressure and
heart rate do not drop and may even increase slightly) [44]. The dissociative state appears
to result from functional dissociation—inhibition of the thalamocortical pathways and stim-
ulation of the limbic areas of the brain [45]. These neural systems help maintain the neural
connections required for consciousness. Ketamine is also proposed as an effective pain
reliever and a therapeutic agent in the treatment of alcoholism [46], heroin addiction [47]
and anorexia [48]. It is recommended in the treatment of depression due to its long-lasting
effects and quick onset of action (within four hours after administration) [49–52].

In 2000, Berman et al. demonstrated that a dose (0.5 mg/kg) of ketamine exerts a rapid
and long-lasting antidepressant effect in patients with MDD [53]. Zarate et al. confirmed
the rapid and long-lasting antidepressant effect of ketamine in patients with refractory
MDD and found that ketamine reduces the tendency to have suicidal thoughts in patients
with MDD [54]. Although ketamine has a strong antidepressant effect, its side effects may
limit widespread use [55–57].

Ketamine (Ki = 0.53 µM for NMDAR) racemic mixture with different proportions of
(R)-ketamine and (S)-ketamine.

Binder affinity (S) of ketamine (Ki = 0.30 µM) to NMDAR is about four times stronger
than (R)-ketamine (Ki = 1.4 µM).

The anesthetic effect of (S)-ketamine is approximately three to four times stronger, but
the psychomimetic side effects are greater than those of (R)-ketamine. Studies showed that
(R)-ketamine has a stronger antidepressant effect than (S)-ketamine. Recent studies showed
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that the order of antidepressant effects after intranasal administration is: (R)-ketamine
> (R, S)-ketamine > (S)-ketamine; and that the order of adverse effects in rodents is (S)-
ketamine > (R, S)-ketamine > (R)-ketamine. As was mentioned in the introduction, on
5 March, 2019, the US FDA approved (S)-ketamine nasal spray (Spravato ™) for cases of
treatment-resistant depression [58]. A clinical trial of (R)-ketamine and (2R, 6R)-HNK in
humans is currently underway.

5. Ketamine—The Receptor and Non-Receptor Mechanism of Action

Ketamine has been known for many years as an antagonist of glutamate receptors [21].
Like phencyclidine, ketamine blocks the NMDA receptor in a non-competitive manner.
It blocks the open channel and reduces the average channel open time. Ketamine also
reduces the frequency of channel openings [59]. NMDA receptor antagonism is responsible
for the specific properties of ketamine, such as amnesia and its psychosensory, analgesic
and neuroprotective effects. Ketamine also has glutamate-independent effects. It interacts
with many receptors, such as opioid, monoaminergic, cholinergic, nicotinic and muscarinic
receptors. It potentiates the inhibitory effects of GABA (GABA-A complex) [60]. Ketamine
binds to the mu, delta and kappa opioid receptors. The affinity of S(+)-ketamine for opioid
receptors is two to three times higher than that of the R (−) isomer. The effect of ketamine
on opioid receptors is not antagonized by naloxone [61].

Undoubtedly, its action on the monoaminergic system is important. Ketamine causes
a hyperadrenergic state (i.e., stimulates noradrenergic neurons and inhibits the uptake of
catecholamines, increasing the release of norepinephrine, dopamine and serotonin).

Inhibition of norepinephrine uptake is stereospecific, the R (−) isomer only inhibits
its uptake by neurons, while the S (+) isomer also inhibits extra neuron uptake. There
is a prolonged synaptic action leading to an increased transfer of norepinephrine into
the blood circulation [59]. Alpha-2 agonists are able to reduce this hyperadrenergic state
and also the psychological phenomena caused by ketamine [62]. Due to its interaction
with the serotonin transporter [63], ketamine also inhibits the uptake of dopamine and
serotonin [64]. Some of the effects of ketamine include the purinergic system, such as
urinary toxicity [65].

Ketamine interacts with sodium channels. It binds to the same site inside sodium
channels as local anesthetics [66]. It is also effective as a topical pain reliever [67]. Moreover,
ketamine inhibits neuronal potassium channels [68]. This mechanism may explain some of
the neuroprotective properties of S (+) isomers.

Several studies suggest that ketamine, through glutamate and/or neurotrophic recep-
tors, stimulates the mammalian target of rapamycin (mTOR) pathway in the prefrontal
cortex (PFC) [51,69,70]. mTOR is a threonine–serine protein kinase involved in cell prolifer-
ation, mortality, survival and protein synthesis [71], including the neurotrophic growth
factor (BDNF) that binds to the neurotrophin receptor (TrkB). Studies showed that chronic
ketamine treatment was able to counteract the decline in BDNF protein in the hippocampus
and nucleus accumbens [72]. The process of antidepressant action of ketamine was shown
in Figure 2.

Heise et al. demonstrated that ketamine increases the BDNF expression and exerts
antidepressant effects in experimental animals, but not in knockout animals of the eukary-
otic elongation factor 2eEF2K kinase [73]. eEF2K is a kinase important for the regulation
of protein translation elongation [74]. Liu and Dumni believe that eEF2K can play a role
in processes such as learning and memory, and in depression [75]. Ketamine activation
of mTOR can be suppressed by rapamycin, a specific mTOR inhibitor. Rapamycin blocks
ketamine-induced synaptogenesis and abolishes the antidepressant effect of ketamine [51].
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6. Ketamine Toxicity

Being an analog of phencyclidine, ketamine is ten times less potent and causes less
severe dysphoria and hallucinations. Unfortunately, the psychomimetic effects made
ketamine a popular party/club drug. It produces euphoric and dissociative effects at low
doses and immobilizing and hallucinogenic effects at high doses.

The 2015 World Drug Report classified ketamine as a worldwide recreational drug.
However, ketamine abuse is relatively minor, and phencyclidine derivatives account for
only 1% of the “new psychoactive substances”. This type of ketamine use often occurs
in conjunction with other substances, including alcohol, amphetamines, MDMA, cocaine
and caffeine. In the United States, the abuse of ketamine has increased since the 1980s.
However, compared to the sharp increase in opioid abuse and the illegal abuse of cannabis,
the abuse of ketamine is relatively small. Ketamine use is becoming increasingly popular as
a recreational drug in Southeast Asian countries, such as Taiwan, Malaysia, and China [76].

Currently, there is little information on the toxicokinetics of ketamine in the human
population. Gable estimated the mean lethal dose to be 600 mg/kg, or 4.2 g for a 70 kg
human, on average [77].

The symptoms of ketamine overdose are similar to those of phencyclidine overdose,
although the effects of ketamine wear off more quickly. Physical signs and symptoms
depend on the dose and interactions with other compounds taken at the same time. Gen-
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eral symptoms, including sedation and disturbed consciousness, may occur when using
ketamine. In addition, horizontal, vertical or rotational nystagmus, pupil dilation and
excessive salivation are observed. Moreover, cardiovascular symptoms, such as hyperten-
sion, tachycardia, palpitations, arrhythmias and chest pain, have been noted. Abdominal
pain, tenderness, nausea and vomiting may occur. The neurological symptoms include
an altered mental state (confusion), paranoia, dysphoria, restlessness, confusion, slurred
speech, dizziness, ataxia, dysarthria, trismus and muscle stiffness. Less pain sensation
affects the possibility of injuries occurring [78–80].

Usually, in patients with symptoms of ketamine poisoning, observation and, if neces-
sary, symptomatic treatment are sufficient. The effects of ketamine poisoning usually last
from 15 min to several hours depending on the dose, route of administration, metabolic
capacity and intrinsic sensitivity to the effects of the drug [81].

Patients who are asymptomatic but report recent ketamine use should be followed up
for six hours. Patients who experience mild symptoms of intoxication should be monitored
for 1–2 h after the last symptoms have subsided. Monitoring includes observation of
respiration and circulation because ketamine has the potential to cause cardiopulmonary
disorders, especially when it is taken in combination with other medications.

There are no medications approved by the US Food and Drug Administration to treat
ketamine overdose, but medications can help manage agitation and psychosis. Benzodi-
azepines, such as lorazepam and diazepam can relieve agitation, psychomimetic effects,
hypertension, hyperthermia and seizures. Lorazepam is usually given at a dose of 2 to
4 mg intravenously or intramuscularly, and diazepam is usually given intravenously at
a dose of 5 to 10 mg. Butyrophenones, including haloperidol, have been used to treat
psychotic and agitation episodes [81].

In hyperthermia, sedation is used, and when it is ineffective, cold compresses are
applied. Drugs that help relieve symptoms include alpha-2 agonists, such as clonidine.
Clonidine can treat or prevent the psychomimetic side effects of ketamine, increase hemo-
dynamic stability by lowering blood pressure and provide synergism with the analgesic
effect of ketamine [82,83]. Clonidine is usually administered at a dose of 2.5–5 mg/kg by
oral administration. Atropine or glycopyrrolate can prevent and treat hypersalivation asso-
ciated with ketamine use, while physostigmine can treat nystagmus and blurred vision. In
turn, administration of crystalloids may improve hydration. Hemoperfusion and dialysis
are usually unsuccessful in ketamine intoxication due to the large volume of ketamine
distribution [80].

7. Discussion

Studies seem to confirm the effectiveness of using s-ketamine in MDD. In the long-
term studies, the majority of patients responded to the treatment with 84 mg, and about
one third of patients responded to 56 mg, given weekly or every other week. The results
also suggest that s-ketamine reduces the risk of suicide [84–87]. The adverse dissociative
symptoms occurred within about 30 to 40 min following its administration and subsided
after two hours. The increase in blood pressure lasting 10 to 40 min was recorded, which
usually subsided two hours after the drug was administered. Other side effects included
dizziness, headache, dysgeusia, sedation and nausea. Only dizziness and nausea were
dose dependent. The studies were carried out in groups of patients taking s-ketamine in a
dose of 14 mg, 28 mg, 56 mg and 84 mg [88,89]. The most commonly reported side effects
of s-ketamine in people with depression are dizziness (67%), nausea (37.5%), disturbance
in attention (29.2%) and fatigue (29.2%) [85].

8. Conclusions

Ketamine is the first drug found to exert an impact on treatment-resistant depression
with immediate effect. It also seems to reduce the occurrence of suicidal thoughts and
provides a quick antidepressant effect with maximum effectiveness achieved after 24 h.
The efficacy and safety of its medium- and long-term use have not yet been well researched.
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Evidence from previous studies suggests that ketamine significantly reduces the severity of
depression. However, extrapolation of these results should be attempted cautiously, as the
patients included in the studies have not had a history of psychotic episodes or disorders
related to the use of alcohol or psychoactive substances, which is not representative of all
depressed patients who may benefit from this therapy.
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