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Abstract

Ancestral sequence reconstruction (ASR) uses an alignment of extant protein sequences, a phylogeny describing the history of the

protein family and a model of the molecular-evolutionary process to infer the sequences of ancient proteins, allowing researchers to

directly investigate the impact of sequence evolution on protein structure and function. Like all statistical inferences, ASR can be

sensitive to violations of its underlying assumptions. Previous studies have shown that, whereas phylogenetic uncertainty has only a

very weak impact on ASR accuracy, uncertainty in the protein sequence alignment can more strongly affect inferred ancestral

sequences. Here, we show that errors in sequence alignment can produce errors in ASR across a range of realistic and simplified

evolutionary scenarios. Importantly, sequence reconstruction errors can lead to errors in estimates of structural and functional

properties of ancestral proteins, potentially undermining the reliability of analyses relying on ASR. We introduce an alignment-

integratedASRapproachthatcombines informationfrommanydifferent sequencealignments.Weshowthat integratingalignment

uncertainty improvesASRaccuracyandtheaccuracyofdownstreamstructural andfunctional inferences,oftenperformingaswell as

highly accurate structure-guided alignment. Given the growing evidence that sequence alignment errors can impact the reliability of

ASR studies, we recommend that future studies incorporate approaches to mitigate the impact of alignment uncertainty.

Probabilistic modeling of insertion and deletion events has the potential to radically improve ASR accuracy when the model reflects

the true underlying evolutionary history, but further studies are required to thoroughly evaluate the reliability of these approaches

under realistic conditions.
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Introduction

Aside from happening upon a piece of preserved ancient DNA

(Meyer et al. 2016) or reversing the arrow of time (Micadei

et al. 2019), ancestral sequence reconstruction (ASR) is the

only available technique for directly investigating the

sequence, structure and function of ancient molecules.

Because ASR studies rely on statistical inferences of ancestral

sequences that cannot be validated directly, the accuracy with

which ancestral protein sequences can be inferred has been a

major concern of the ASR research community (Hall 2006;

Randall et al. 2016; Eick et al. 2017). Previous studies have
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suggested that ASR is expected to be highly accurate in many

cases (Randall et al. 2016; Vialle et al. 2018). Interestingly,

studies have shown that the accuracy of the phylogenetic

tree describing the evolutionary history of the protein fam-

ily has only a very weak impact on ASR accuracy and

generally only affects the most statistically ambiguous se-

quence positions (Hanson-Smith et al. 2010). This largely

counterintuitive result is due to the fact that the same

evolutionary scenarios that make the phylogenetic tree un-

certain also make ancestral sequences more similar across

different phylogenies.

Some studies have suggested that there may be a trade-off

between sequence reconstruction accuracy and the accuracy

with which some structural and functional properties of the

sequence can be inferred (Williams et al. 2006; Matsumoto

et al. 2015; Arenas et al. 2017). Specifically, maximum-a-

posteriori (MAP) ASR [also referred to as maximum-

likelihood fMLg ASR], which reconstructs the most accurate

protein sequences, can produce biased inferences of struc-

tural stability. This stability bias can be alleviated using a sam-

pling approach that randomly generates ancestral sequences

from the posterior probability (PP) distributions at each site.

However, this sampling approach produces sequences that

are less accurate than MAP reconstruction, which can impact

inferences of other structural or functional properties (Eick

et al. 2017).

One recent study found that the alignment of extant pro-

tein sequences forming the basis for phylogenetic inference

and ASR can have a potentially strong affect on ASR accuracy

(Vialle et al. 2018). That ASR accuracy depends on alignment

accuracy is concerning, as the “correct” alignment of extant

protein sequences can hardly ever be known with certainty,

and there are few reliable methods for diagnosing alignment

error or ambiguity (Dickson et al. 2010; Penn et al. 2010). It is

currently unknown whether the same alignment errors that

cause ASR errors also impact the inferred structural or func-

tional properties of reconstructed ancestral sequences, and no

general methodologies exist to alleviate the impact of align-

ment error on ASR.

Here, we develop and evaluate a novel ASR approach that

combines information from many different sequence align-

ments to infer “alignment-integrated” ancestral sequences.

Although this approach does not completely eliminate the

impact of alignment errors on ASR accuracy, we found that

integrating sequence alignments reduces both ASR errors and

errors in the structural and functional properties of inferred

ancestral sequences, often performing as well as structure-

guided sequence alignment. Our study suggests that, partic-

ularly for cases in which diverse structures of different protein

family members are not available to guide the alignment pro-

cess, integrating different alignments can be a reliable ap-

proach for mitigating the impact of alignment errors on

ASR accuracy.

Results and Discussion

Alignment Errors Vary with Alignment Method and Protein
Domain Family

To assess the impact of alignment errors on ASR accuracy, we

used structural alignments of individual protein domains to

simulate sequence data along empirical domain-family phy-

logenies (see supplementary table S1 and fig. S1,

Supplementary Material online), with sequence composition

and insertion–deletion (indel) patterns inferred from the struc-

tural alignment (see Materials and Methods section).

Simulated data were then aligned using a variety of

sequence-based methods as well as a “structure-guided” ap-

proach that used the original structural alignment to “seed”

the alignment of additional sequences (see Materials and

Methods section). Comparing sequence-alignments and

structure-guided alignments to the correct simulated align-

ment allowed us to evaluate the extent to which the simula-

tion conditions generated alignment errors that could

potentially impact ASR accuracy.

In general, both sequence-alignments and structure-

guided alignments underestimated the correct alignment

length by placing fewer gaps in the alignment, resulting in

overestimation of the proportion of variable and parsimony-

informative positions (supplementary table S2 and fig. S2,

Supplementary Material online). Across the five different

protein-domain families used in this study, inferred align-

ments underestimated alignment length by 1.3-fold, on aver-

age (t-test P¼ 6.41e�4), and the number of gaps by 1.2-fold

(P¼ 1.69e�3). The proportion of variable sites was overesti-

mated by 1.8-fold (P¼ 4.97e�19), and the proportion of

parsimony-informative sites was overestimated by 1.9-fold

(P¼ 2.28e�13). Structure-guided alignments were no differ-

ent from sequence-alignment methods in any of the calcu-

lated alignment attributes (t-test P> 0.10), suggesting

structure-guided and sequence-alignment methods tend to

make similar errors in alignment length and the numbers of

variable and parsimony-informative sites.

Although the general trend of alignment length underes-

timation is strongly supported by our data and is consistent

with results from a previous study (Fletcher and Yang 2010),

we observed significant variation in alignment errors, both

across protein domain families and across alignment methods

(supplementary table S2 and fig. S2, Supplementary Material

online). For example, ClustalW tended to underestimate align-

ment length to a greater degree than other sequence-

alignment methods (by 2.3-fold on average, vs. 1.1-fold for

other methods; t-test P< 0.034). Across all alignment meth-

ods, the caspase activation and recruitment domain (CARD)

protein domain family’s correct alignment length was under-

estimated to a greater degree (1.9-fold) than the other pro-

tein domain families (1.2-fold; t-test P< 0.06). In contrast to

this general trend of alignment length underestimation,

mafft, probalign and tcoffee tended to overestimate the
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lengths of the correct DSRM1 and DSRM2 protein domain

family alignments (by 1.3-fold; P< 4.07e�4). These results

suggest different alignment methods produce different types

of alignment errors for different protein domain families.

However, variation in alignment accuracy across replicate

data sets of the same protein domain family was low, with

the standard deviation (SD) never exceeding 11% of the in-

ferred mean value of each alignment attribute (see supple-

mentary table S2, Supplementary Material online). This

suggests that most of the variation in alignment accuracy is

expected to be due to the particular interaction between a

chosen alignment algorithm and the way a protein domain

family has evolved, rather than stochastic variation in the sim-

ulated evolutionary process.

We quantified the distance of each inferred alignment

from the correct simulated alignment using a position-wise

distance metric, which estimates the probability that a ran-

domly selected residue from a randomly selected sequence

was aligned to an incorrect residue from another randomly

selected sequence (Blackburne and Whelan 2012). In general,

the results of this distance-based alignment assessment (sup-

plementary table S3 and fig. S3, Supplementary Material on-

line) were consistent with those of more traditional alignment

metrics (supplementary table S2 and fig. S2, Supplementary

Material online). Across all protein domain families and align-

ment methods, the probability of randomly selecting an in-

correctly aligned residue was 0.31. However, there was

strong variation in alignment distances across both domain

families and alignment methods (supplementary table S3 and

fig. S3, Supplementary Material online). The CARD family pro-

duced larger average alignment distances than the other do-

main families (0.72 across alignment methods, vs. 0.21 for the

other domain families; t-test P< 9.67e�6). Across protein

domains, structure-guided alignments were>1.25-fold closer

to the correct alignment than any of the sequence-alignment

methods (t-test P< 0.033). There were no detectable system-

atic differences in alignment distances among sequence-

alignment methods, which produced average distances be-

tween 0.24 (msaprobs and probcons) and 0.43 (probalign;

one-factor ANOVA P¼ 0.92).

Overall, these results suggest the test cases used in this

study cover a range of alignment difficulties that do not

strongly favor particular sequence-alignment algorithms

over others and represent a reasonable test suite for assessing

the impact of alignment errors on ASR under realistic condi-

tions. Structure-guided alignment methods have been shown

to out-perform sequence-alignment in previous studies (Kim

and Lee 2007), which has typically been attributed to the

generally stronger conservation of protein structure versus

sequence (Ingles-Prieto et al. 2013). Our alignment-distance

results are consistent with these findings, but more traditional

alignment metrics did not strongly differentiate structure-

guided from sequence-alignment methods, suggesting the

structure-guided approach might produce only marginally

better alignments under the challenging conditions used in

this study.

Alignment Errors Reduce ASR Accuracy

Each set of empirical simulation conditions (see Materials and

Methods section) was used to generate replicate correctly

aligned extant protein sequences at the tips of the phylogeny

and correct ancestral sequences at every internal node. We

assessed ASR error rates at each node on the phylogeny by

comparing the ancestral sequence inferred using only an

alignment of the extant protein sequences to the correct sim-

ulated ancestral sequence at that node. Three types of ASR

errors were considered: 1) residue errors, in which both the

inferred and correct ancestral sequences have an amino-acid

residue at the given alignment position, but the residues dif-

fer; 2) insertion errors, in which the inferred ancestral se-

quence has a residue at the given alignment position, but

the correct ancestral sequence has a gap character (“�”),

and 3) deletion errors, in which the inferred ancestral se-

quence has a gap character, but the correct ancestral se-

quence has an amino-acid residue. The ASR error rate for

an inferred ancestral sequence was calculated as the number

of ASR errors, divided by the length of the pairwise alignment

of the correct to the inferred ancestral sequence (i.e. errors/

site). The expected ASR error rate for a given ancestral node

was calculated as the mean error rate over replicates.

Given a sequence alignment, phylogenetic tree and statis-

tical model of the molecular-evolutionary process, reconstruc-

tion of the most likely residue at each position in the

alignment and node on the phylogeny has been well-

described, as has the assessment of statistical confidence in

the residue reconstruction (Yang et al. 1995; Koshi and

Goldstein 1996). However, due to the way gap characters

are encoded in most phylogenetic models, standard ASR

does not reconstruct historical insertions or deletions (indels),

resulting in ancestral sequences with no gap characters (Hall

2006). Unfortunately, the methodological details of ancestral

indel reconstruction are poorly described in many published

ASR studies (Chang et al. 2002; Gaucher et al. 2003;

Bridgham et al. 2006; Voordeckers et al. 2012; Tan et al.

2016), making it difficult to assess how ancestral gaps were

inferred. Although some methods have been developed that

infer ancestral gaps as part of a more complex likelihood

model (Redelings and Suchard 2005; Herman et al. 2014;

Holmes 2017; Shim and Larget 2018), these approaches are

largely untested and have not been adopted in many ASR

studies. Many historical ASR studies probably used

maximum-parsimony reconstruction of presence–absence an-

cestral states or a parsimony-like subjective criterion to place

ancestral gap characters (Hall 2006; Hanson-Smith and

Johnson 2016). Other studies have suggested using ML

(MAP) reconstruction of presence–absence states to infer
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ancestral gaps (Ashkenazy et al. 2012), which is the approach

we take here (see Materials and Methods section).

Assuming the correct simulated alignment, we found that

site-wise MAP reconstruction of ancestral gap states gener-

ated error rates comparable with residue reconstruction (sup-

plementary tables S4–S8 and figs. S4–S7, Supplementary

Material online). Averaged across all protein domain families

and ancestral nodes, ASR error rates were low when the cor-

rect alignment was known in advance (supplementary table

S4, Supplementary Material online), and the rate of residue-

reconstruction errors (6.18e�3 errors/site) was slightly worse

than the rate of erroneous insertions (8.49e�4 errors/site) or

deletions (8.17e�4; t-test P< 0.013). This pattern was gener-

ally observed across all the protein domain families (supple-

mentary tables S4–S8 and figs. S4–S7, Supplementary

Material online). Only in the case of the CARD family was

the residue reconstruction error rate (3.37e�3) slightly lower

than the rate of erroneously inferred insertions (3.55e�3) or

deletions (3.44e�3), and these differences were not statisti-

cally significant (t-test P> 0.31). For all other domain families,

residue reconstruction error rates were slightly higher than

indel reconstruction error rates (P< 0.039). These results sug-

gest site-wise MAP reconstruction of ancestral gap states—

although failing to accurately model statistical dependencies

among contiguous gaps (Ashkenazy et al. 2012)—provides a

robust methodology for systematically inferring ancestral

insertions and deletions under realistic conditions, provided

the alignment is accurate.

When the alignment is not known in advance and must be

inferred from the sequence data, we found errors in ASR were

higher overall and increased with increasing distance from the

correct alignment (fig. 1; supplementary tables S4–S8 and

figs. S4–S7, Supplementary Material online). Total ASR error

rates were >4.8-fold higher when ancestral sequences were

inferred using sequence-alignment methods (t-test

P< 5.78e�3). Even when structure-guided alignments were

used to infer ancestral sequences, total ASR error rates were

4.4-fold higher than when the correct alignment was known

in advance (t-test P< 6.84e�3). These results were generally

consistent across ASR error types and protein domain families

(supplementary tables S4–S8 and figs. S4–S7, Supplementary

Material online). Residue errors increased by at least 2.6-fold

when sequence-alignment was used, compared with the cor-

rect alignment (t-test P< 0.013), and indel errors increased by

12.3- and 12.7-fold, respectively (t-test P< 4.37e�3). In all

cases, structure-guided alignments produced ancestral

sequences that had >1.5-fold fewer errors than sequence-

alignment methods (t-test P< 8.43e�3).

In general, there was a strong correlation between an in-

ferred alignment’s distance from the correct alignment and

total ASR error rate (fig. 1; r2 > 0.78, mean r2 ¼ 0.88).

Similarly high correlations were observed for rates of insertion

and deletion errors (r2 > 0.76, mean r2 > 0.85). However,

residue errors were less strongly correlated with the distance

from the correct alignment (mean r2¼ 0.55), largely because

muscle and probcons residue-errors were only very weakly

correlated with alignment distance (r2 < 0.23). Interestingly,

Fig. 1—Errors in ASR correlate with alignment errors. We simulated

protein evolution using empirically derived conditions from five protein

domain families and aligned the resulting sequences using structure-

guided and seven different sequence-alignment methods. We measured

the position-wise distance of each alignment from the correct simulated

alignment (x axis), which estimates the probability of selecting two incor-

rectly aligned residues at random. We used each alignment to infer the

most likely ancestral sequence at each node on the phylogeny and com-

pared the inferred ancestral sequence to the correct simulated sequence to

estimate ASR error rates. ASR errors were divided into four categories: 1)

residue errors, in which both correct and inferred ancestral sequences have

a residue at a given position in the alignment, but the residues differ; 2)

insertion errors, in which the inferred sequence has a residue at a given

alignment position, but the correct sequence has a gap; 3) deletion errors,

in which the inferred sequence has a gap, but the correct sequence has a

residue, and 4) total errors. Sequence-wide error rates (errors/site; y axis)

were computed by dividing the number of errors by the length of the

pairwise alignment of the inferred and correct ancestral sequences. Dotted

lines indicate least-squares linear regressions.
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whereas error rate increased with alignment distance at

roughly the same rate for alignment algorithms other than

ClustalW (slope of the best-fit regression line was 0.25–0.45

for total ASR error rate), ClustalW’s total ASR error rate in-

creased much more rapidly as the alignment diverged from

the correct alignment (slope¼ 1.08; ANCOVA P< 1.63e�3).

ClustalW’s ASR error rates were generally higher than the

other alignment methods, even at comparable alignment dis-

tances (see fig. 1), suggesting that, in addition to an align-

ment’s distance from the correct alignment, the specific types

of alignment errors made can also affect how alignment

errors impact ASR accuracy.

Our results confirm that ASR accuracy can be negatively

impacted by alignment errors (Vialle et al. 2018) and suggest

structure-guided alignment—although not a panacea—gen-

erally produces more accurate ancestral sequences than

sequence-alignment methods.

Alignment-Integrated ASR Improves Accuracy

Unlike the phylogeny (Hanson-Smith et al. 2010), our results

and those of a previous study (Vialle et al. 2018) strongly

suggest the sequence alignment—which can never be known

with certainty in practice—can have a strong impact on ASR.

We hypothesized that integrating over alignment uncertainty

could potentially alleviate this negative impact. To test this

hypothesis, we developed a heuristic approach that recon-

structs ancestral residues and gap states by integrating infor-

mation from the seven sequence-alignment methods

examined in this study, placing equal prior weight on each

alignment (see Materials and Methods section).

We found that integrating information from many

sequence-alignment algorithms reduced ASR error rates,

compared with relying on any single sequence-alignment

method (fig. 2; supplementary tables S4–S8 and figs. S4–

S7, Supplementary Material online). On average, integrating

over alignment uncertainty improved total ASR error rates by

>1.3-fold, compared with choosing any single sequence-

alignment method (t-test P< 0.022). Although alignment-

integrated ASR always generated fewer errors in residue

and deletion reconstructions, improvements in these types

of ASR errors were generally small and not always statistically

significant. The fold-improvement in residue reconstruction

error rates ranged from 1.1 (compared with tcoffee; t-test

P¼ 0.17) to 1.8 (ClustalW; t-test P¼ 0.012), whereas the im-

provement in deletion error rates ranged from 1.1-fold (prob-

cons; P¼ 0.18) to 2.1-fold (probalign; P¼ 8.43e�3). The most

dramatic reduction in ASR error rate was observed for inser-

tion errors, for which alignment–integration improved error

rates by >2.9-fold, compared with single sequence-

alignment methods (t-test P< 7.04e�3).

The same general pattern was consistently observed across

all of the protein domain families examined in this study

(supplementary tables S5–S8 and figs. S4–S7,

Supplementary Material online): compared with choosing a

single sequence-alignment method, alignment–integration

improved overall ASR error rates in all cases (by >1.1-fold),

primarily by reducing the rate of insertion errors (by>1.8-fold;

t-test P< 0.022). In the case of the DSRM3 and RNA recog-

nition domain (RD) families, the improvement in total ASR

error rate was not always statistically significant, compared

with some of the sequence-alignment methods. In both

cases, mafft, msaprobs, muscle, and probcons were statisti-

cally equivalent to alignment–integration (t-test P> 0.057),

and probalign was equivalent to alignment–integration for

the RD family (t-test P¼ 0.063).

These results suggest integrating over different sequence-

alignment methods generally improves the accuracy of ASR,

compared with choosing a single sequence-alignment

method, primarily by reducing the rate of erroneously inferred

insertions. The improvement in total ASR accuracy may be

small for highly conserved protein families or other scenarios

in which sequence-based alignments are generally accurate.

Interestingly, integrating over many sequence-alignments

slightly improved ASR error rates, even compared with the

highly accurate structure-guided alignment approach.

Overall, total ASR error rates were reduced by 1.2-fold using

alignment–integration, compared with structure-guided

alignment (fig. 2; t-test P¼ 0.035), even though each of the

individual sequence-alignments was farther away from the

correct alignment than was the structure-guided alignment

(see supplementary table S3 and fig. S3, Supplementary

Material online). Compared with structure-guided alignment,

alignment–integration produced 1.2-fold more residue recon-

struction errors (t-test P¼ 0.059), the same number of dele-

tion errors (t-test P¼ 0.088), and 3.0-fold fewer insertion

errors (t-test P¼ 7.68e�3). This improvement in insertion error

rate was observed for all domain families except the RD

(P< 0.033; see supplementary table S7 and fig. S6,

Supplementary Material online), and total ASR error rates

were never significantly better using the structure-guided

alignment (t-test P> 0.11). These results suggest alignment–

integration is a promising technique for reducing ASR error

rates, even for protein families for which diverse structural

data are not available to generate structure-guided

alignments.

Protein sequence alignments are inferred using diverse

methodologies, and new alignment methods are developed

regularly. Most widely used methods rely on heuristic strate-

gies to place gap characters, with a rough “guide tree” being

used to order pairwise alignments (Chatzou et al. 2016).

However, some methods have extended phylogenetic models

to explicitly incorporate indel events within a probabilistic

framework (Redelings and Suchard 2005; Loytynoja 2014).

We evaluated the accuracy of ancestral sequences recon-

structed from two different “phylogenetically aware” proba-

bilistic alignment methods: PRANK, which uses an indel

model assuming a rough guide-tree approximation of the
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phylogeny (Loytynoja and Goldman 2008; Loytynoja 2014),

and BAli-Phy, which uses Bayesian co-estimation of phylogeny

and sequence alignment (Redelings and Suchard 2005).

Because BAli-Phy is extremely computationally costly (Nute

et al. 2019), analyses were conducted assuming the correct

phylogenetic tree. To facilitate comparisons, PRANK and BAli-

Phy were used only to generate sequence alignments, with

ancestral sequences reconstructed using the same approach

as for other alignment programs (see Materials and Methods

section).

Interestingly, we found that using the MAP alignment gen-

erated by BAli-Phy to reconstruct ancestral sequences was

statistically indistinguishable from assuming the correct simu-

lated alignment (see fig. 2; t-test P¼ 0.16), whereas PRANK

alignments generated using a similar indel model (but without

conditioning on the correct phylogenetic tree topology)

resulted in among the least accurate ancestral sequences

(fig. 2). These results are consistent with those of a recent

study examining protein sequence alignment accuracy, in

which BAli-Phy generated highly accurate sequence

alignments from simulated data, whereas PRANK did not

(Nute et al. 2019). Although these results suggest probabilistic

modeling of indel events could be a productive strategy for

improving the accuracy of protein sequence alignment and

ancestral reconstruction, future studies will be required to

determine why similar approaches can produce very different

results.

Alignment–Integration Increases ASR Ambiguity

It is common practice in many ASR studies to reconstruct

“plausible alternative” states at positions with ambiguous

reconstructions, to evaluate the impact of ASR uncertainty

on downstream analyses (Eick et al. 2017). ASR errors that

are only weakly supported are likely to be identified by this

approach, whereas errors with very high PP will likely be ac-

cepted as “correct,” potentially undermining the validity of

downstream structural or functional analyses.

We found that integrating many sequence-alignment

methods, in addition to reducing ASR error rates, also reduced

the PPs of erroneous ancestral states, when they were inferred

Fig. 2—Alignment-integrated and structure-guided approaches produce fewer ASR errors than single sequence-alignment methods. We simulated

extant and ancestral sequences for five protein domain families, using empirically derived conditions, and aligned the resulting extant sequence data using

the correct simulated alignment, structure-guided, and seven different sequence-alignment methods. We used each alignment to infer the most likely

ancestral sequence at each node on the phylogeny. In addition, alignment-integrated ancestral sequences were generated by combining inferences from the

seven sequence-alignment methods. In each case, we compared the inferred ancestral sequence to the correct simulated ancestral sequence to estimate ASR

error rates (expected errors/site). Error rate distributions were calculated over 10 replicate simulations and all nodes on each of the five protein domain family

phylogenies. We plot the distributions of total- (top), residue-, insertion-, and deletion-errors (bottom) for each alignment method.
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(fig. 3A; supplementary table S9, Supplementary Material on-

line). On average, the PP of erroneously inferred ancestral

states was >0.9 when any single sequence-alignment or

the structure-guided alignment was used to infer ancestral

sequences. In contrast, the alignment-integrated approach

had an average PP of 0.67 for erroneous ancestral states,

which was much more similar to that of the correct alignment

(0.65; t-test P¼ 0.066). Interestingly, this strong similarity be-

tween the alignment-integrated approach and the correct

alignment was primarily confined to residue errors, for which

alignment–integration produced an average PP of 0.59, and

the correct alignment’s mean PP was 0.57 (P¼ 0.093). In the

case of insertion or deletion errors, the correct alignment pro-

duced low average PPs for erroneously inferred ancestral

states (<0.43), whereas alignment–integration’s PPs were

much higher (>0.71, on average; t-test P< 6.85e�3). Even

in these cases, however, alignment–integration produced

much more weakly supported errors than any single

sequence-alignment or structure-guided alignment, whose

mean PPs for erroneously inferred ancestral states were al-

ways >0.9 (t-test P< 8.15e�3).

When ASR errors were made, alignment–integration also

generated much stronger support for the correct ancestral

state than any of the other alignment strategies, including

the correct alignment (fig. 3B; supplementary table S10,

Supplementary Material online). On average, the PP of the

correct ancestral state using sequence-alignment or

structure-guided alignment was <0.046 when the correct

state was not the MAP reconstruction. Assuming the correct

alignment improved the mean PP of the correct state by �3-

fold (to 0.14; t-test P< 8.42e�3). However, alignment–inte-

gration further increased the mean PP of the correct ancestral

state by 2.4-fold, compared with the correct alignment

(P¼ 5.78e�3). Importantly, alignment–integration increased

the PP of the correct state to 0.33, on average, which is higher

than the cutoff of 0.2–0.3 commonly used to identify plausi-

ble alternative ancestral reconstructions (Eick et al. 2017). This

large increase in statistical support for the correct ancestral

state when errors were made by alignment–integration was

most pronounced for deletion errors (mean PP 0.46) and less

pronounced for insertion (mean PP¼ 0.30) or residue errors

(mean PP¼ 0.21). For all types of errors, however, alignment

integration produced>1.3-fold higher PPs for the correct an-

cestral state, compared with the correct alignment (t-test

P< 0.021) and>3.1-fold higher support than any other align-

ment method (P< 4.78e�3).

Although alignment–integration is obviously not a pana-

cea, these results suggest, in addition to improving ASR ac-

curacy, alignment–integration might be an important

approach for “exposing” some potential errors to down-

stream robustness analysis by reducing the statistical support

for erroneously inferred ancestral states and increasing the PP

of the correct ancestral state when it is not inferred as the

MAP state.

The generally favorable increase in statistical ambiguity

when ASR errors are made by alignment–integration does

come at the cost of increased ambiguity for correctly inferred

ancestral states (supplementary table S11 and fig. S8,

Supplementary Material online). On average, correct ancestral

state inferences were made with high statistical confidence

using any of the methods examined in this study (>0.97 mean

PP). However, alignment–integration generated lower statis-

tical confidence in correct ancestral state inferences than any

of the other methods, all of which had >0.99 mean PP for

correctly inferred states (t-test P< 4.07e�3). All of the ASR

methods exhibited stronger statistical support for correctly

inferred ancestral gap states versus correctly inferred amino-

acid residues (t-test P< 0.011). However, this difference was

more pronounced for alignment–integration, compared with

the other ASR methods. When using alignment–integration,

the mean PP of correctly inferred residues was 0.84 (>0.94

for the other methods), whereas the mean PP was 0.98 for

gap states correctly inferred by alignment-integrated ASR.

These results suggest the reduced susceptibility to ASR error

enjoyed by alignment–integration is also associated with in-

creased ambiguity in reconstructed amino-acid residues, even

when they are correctly inferred. This increased ASR ambigu-

ity could potentially increase the operational costs of evaluat-

ing robustness to uncertainty as part of a typical ASR study.

Alignment–Integration Improves Structural and Functional
Inferences

In many ASR studies, the actual ancestral sequences are only

of secondary interest, being commonly used to better under-

stand how the protein’s structural and functional properties

evolved (Eick et al. 2017). In some cases, researchers may

decide to tolerate additional errors in sequence reconstruc-

tion, provided they result in more accurate inferences of spe-

cific structural or functional properties (Williams et al. 2006;

Matsumoto et al. 2015; Arenas et al. 2017). To investigate the

potential impact of alignment errors on the accuracy of down-

stream structural and functional investigations, we generated

structural models of ancestral DSRM1 protein sequences in-

ferred using each alignment method and estimated each pro-

tein’s structural stability and double-stranded RNA (dsRNA)-

binding affinity using computational approaches (see

Materials and Methods section).

We found alignment-integrated ASR generally improved

computational estimates of structural stability and RNA-

binding affinity, compared with relying on a single

sequence-alignment method (fig. 4; supplementary table

S12 and fig. S9, Supplementary Material online). Aside from

probcons, alignment–integration had significantly smaller

errors in inferred structural stability than sequence-alignment

methods (>1.14-fold; t-test P< 0.048), performing similarly to

structure-guided alignment (fig. 4; t-test P¼ 0.19). In this case,

alignment–integration and probcons produced equivalent
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Fig. 3—Alignment-integrated ASR generates lower statistical confidence in erroneous ancestral states and stronger support for the correct state when

errors are made. We used the correct simulated alignment, seven different sequence-alignment methods, structure-guided alignment, and alignment–

integration to infer ancestral protein sequences from five empirically derived simulation conditions. Total- (top), residue-, insertion-, and deletion- (bottom)

error rates (expected errors/site; x axis) were calculated by comparing the inferred ancestral sequence to the correct simulated sequence at each node on the

phylogeny. We used kernel density estimation to calculate the frequency distributions (y axis) of PPs for erroneous MAP ancestral states (left) and the correct

ancestral state (right) when the correct state was not the inferred MAP state.
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errors in structural stability estimates (t-test P¼ 0.12). We

observed similar results for estimated dsRNA-binding affinity

(supplementary fig. S9, Supplementary Material online).

Alignment–integration produced >1.14-fold smaller errors in

affinity estimates, compared with all sequence-alignment

methods other than msaprobs (t-test P< 0.041). Binding

affinity errors were equivalent, on average, among

alignment-integrated, structure-guided, and msaprobs align-

ments (t-test P> 0.055).

As expected, having the correct sequence alignment im-

proved inferences of ancestral structural and functional prop-

erties in all cases (t-test P< 0.017) but did not completely

alleviate errors in structural stability or binding affinity esti-

mates. On average, stability and affinity estimates deviated

by>25% from the values inferred using the correct ancestral

sequences (supplementary table S12 and fig. S10,

Supplementary Material online). The mean structural stability

(DG) of correct ancestral DSRM1 domains was 0.087 cal/(mol

� K) per residue (i.e. the change in per-residue free energy of

the native state, compared with misfolded or unfolded states,

calculated using a contact-based energy model; see Materials

and Methods section), and structural stability estimates were

typically 29.7% away from the correct values. Similarly,

dsRNA-affinity estimates were, on average, 26.7% away

from the values inferred using the correct ancestral

sequences.

Together, these results suggest ambiguity or bias in the

ASR process can itself contribute to errors in downstream

structural and functional inferences under challenging condi-

tions (Williams et al. 2006; Arenas et al. 2017). Alignment

errors appear to exacerbate errors in estimated structural

stability and binding affinity of ancestral proteins, but

structure-guided alignment or alignment–integration signifi-

cantly reduced these errors.

There was a weak but significant positive correlation be-

tween ASR errors and errors in structural and functional esti-

mates for all alignment methods (supplementary table S13

and fig. S11, Supplementary Material online). Errors in the

inference of the ancestral sequence explained 40% of the

variation in structural stability error (r2 < 0.78) and 29% of

the variation in binding affinity error (r2 < 0.64). The mean

slope of the best-fit regression line across all alignment meth-

ods was 0.44 for structural stability and 4.25 for binding af-

finity, and all slopes were significantly greater than zero (t-test

P< 2.50e�3). There were some differences in both correlation

and slope across alignment methods. For example, ClustalW,

mafft, probalign and tcoffee showed weaker correlations be-

tween ASR error rates and structural stability errors (r2 <

0.29), while the remaining alignments had generally higher

correlations (r2 > 0.41). Similarly, the slope of the best-fit

regression line varied from a minimum of 0.17 (probalign)

to a maximum of 0.74 (for the correct alignment). Similar

results were observed for the correlation between ASR error

rate and binding affinity errors: correlation varied between r2

¼ 0.021 (ClustalW) and r2 ¼ 0.64 (correct alignment), and

slope varied from 1.07 (ClustalW) to 7.00 (probalign; supple-

mentary table S12, Supplementary Material online).

Qualitatively similar results were observed when considering

different types of ASR sequence errors (see supplementary

table S13 and fig. S11, Supplementary Material online).

These results suggest the overall rate of sequence recon-

struction errors is positively correlated with errors in estimates

of structural and functional properties of ancestral sequences.

The generally lower magnitudes of structural and functional

errors observed for the structure-guided and alignment-

integrated methods can be at least partially explained by their

generally lower sequence-error rates. However, precisely how

sequence-reconstruction errors translate into errors in struc-

tural or functional estimates is expected to be complex in

Fig. 4—Alignment-integrated and structure-guided approaches produce less error in inferred structural properties of ancestral proteins than single

sequence-alignment methods. We simulated replicate extant and ancestral sequences by evolving an RNA-binding protein domain along its empirically

determined phylogeny, using a structure-guided alignment to determine the amino-acid composition and pattern of insertions/deletions. Ancestral sequen-

ces were inferred using the correct simulated alignment, structure-guided alignment, seven different sequence-alignment methods, and alignment–inte-

gration. We modeled the structure of each ancestral sequence and estimated its structural stability (DG) using a computational approach. Errors in structural

stability were calculated by comparing values estimated from the correct ancestral sequences to those estimated using each alignment method. Error rate

distributions were calculated over 10 replicate simulations and all nodes on the phylogeny.
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realistic cases, and the specific types of sequence-

reconstruction errors made by different alignment algorithms

likely also plays a role in determining errors in structural or

functional estimates.

Integrating PP Distributions Improves ASR Accuracy

To begin systematically investigating the factors impacting

ASR accuracy, we varied the branch lengths and indel rates

along a minimal three-taxon phylogeny with equal branch

lengths and the same indel rate on all branches (supplemen-

tary fig. S12, Supplementary Material online). Sequences

were simulated using the JTTþG evolutionary model, and

indels were placed randomly along the sequence. The ances-

tral sequence at the only node on the phylogeny was recon-

structed using the correct simulated alignment, seven

sequence-alignment methods and the alignment-integrated

approach (see Materials and Methods section).

Results from this three-taxon simulation were largely con-

sistent with those obtained using larger, more realistic phy-

logenies (fig. 5; supplementary figs. S13–S16, Supplementary

Material online). Across all simulation conditions, alignment–

integration slightly improved ASR accuracy by 1.06-fold, com-

pared with choosing a single sequence-alignment strategy at

random (t-test P¼ 4.01e�9). Even when the optimal

sequence-alignment strategy was chosen for each set of sim-

ulation conditions, alignment–integration improved ASR ac-

curacy by 1.03-fold (t-test P¼ 3.33e�4). Although the

improvement in alignment-integrated ASR accuracy was typ-

ically small in this case (�1%, on average), it was consistent

across the vast majority of simulation conditions. Only under

5/64 conditions was the best sequence-alignment method as

accurate or more accurate than alignment–integration, and

most of these conditions had short branch lengths and low

indel rates, leading to very low ASR errors across all methods.

As expected, ASR error rates increased with increasing

branch lengths for all methods (linear regression slope

>0.38, r2 > 0.85, t-test P< 1.09e�3; supplementary table

S14 and figs. S13–S16, Supplementary Material online). For

short branch lengths, ASR error rates were weakly correlated

with increasing indel rates: when branches were <0.6 sub-

stitutions/site, linear regression slope was>0.19 (r2 > 0.68, t-

test P< 0.012; supplementary table S14 and figs. S13–S16,

Supplementary Material online). However, the correlation be-

tween ASR error and indel rates was not observed for branch

lengths >0.6 (t-test P> 0.044).

Interestingly, alignment–integration appeared slightly

more accurate than using the correct sequence alignment

under some conditions, improving ASR error rates by

�0.6%, on average, compared with the correct alignment

(fig. 5); however, this difference was not statistically signifi-

cant (t-test P¼ 0.42). We did observe slightly lower insertion

error rates using alignment–integration, compared with the

correct alignment (t-test P¼ 9.56e�3). Residue errors were

more frequent for alignment–integration (t-test

P¼ 4.85e�8), and there was no overall difference in deletion

error rates between the two methods (t-test P¼ 0.25).

These results suggest alignment–integration can consis-

tently improve ASR error rates, compared with single

sequence-alignment methods, even under an extremely sim-

plified three-taxon model system with random indels. Under

some of these simplified conditions, alignment–integration
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Fig. 5—Alignment-integrated ASR produces low rates of reconstruc-

tion errors in simplified three-taxon simulations. We simulated protein

sequences along a three-taxon phylogeny with equal branch lengths (x

axis) and the same indel rate (y axis) across the phylogeny (see supplemen-

tary fig. S12, Supplementary Material online). The most likely ancestral

sequence at the single node on the phylogeny was inferred using the

correct simulated alignment, seven different sequence-alignment meth-

ods, and alignment–integration. Total- (top), residue-, insertion-, and de-

letion- (bottom) error rates were calculated by comparing inferred

ancestral sequences to the correct simulated ancestral sequence. For

each set of simulation conditions, we calculated the difference in error

rates between the correct alignment versus the least-erroneous sequence-

alignment method (left column) or versus alignment–integration (right

column). Positive values (blue) indicate that the correct alignment pro-

duced more errors than the given inference method, and negative values

(red) indicate that the correct alignment produced fewer errors.
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can produce error rates comparable with those obtained

when the correct alignment is known in advance.

Results from three-taxon simulations suggest that simple

“majority-rule” is sufficient to explain most of the cases in

which alignment–integration improves ASR accuracy (fig. 6).

On average, when one of the alignment methods produced

an error that was not present in the alignment-integrated

ancestral sequence, 66.3% of the other sequence-

alignment methods reconstructed the correct ancestral state.

This result was consistent across all simulation conditions

(standard error 0.002; see fig. 6). Interestingly, residue-

reconstruction errors tended to have a weaker majority in

favor of the correct ancestral residue; on average only

60.0% of other alignments recovered the correct ancestral

residue when one alignment made a residue-reconstruction

error (z-test P¼ 9.17e�32). Insertion errors had the strongest

majority in favor of the correct ancestral state, with, 82.5% of

alternative alignments recovering the correct gap state when

one alignment erroneously inferred an insertion at that posi-

tion (z-test P< 1.75e�48).

When alignment–integration was able to “repair” an ASR

error made by a single sequence-alignment method, 78.4%

of these repairs were explainable by majority-rule (fig. 6).

However, in 8.1% of cases, the majority of alternative align-

ments also produced ASR errors, but the errors differed across

alignments. Interestingly, in 11.5% of cases, the majority of

sequence-alignments actually produced the same ASR error,

even though alignment–integration reconstructed the correct

ancestral state. Although the specific proportions differed

somewhat across different types of ASR errors (see fig. 6),

the pattern of ASR error repairs due to alignment–integration

was consistent: most repairable errors (70.0–97.0%, depend-

ing on error type) could be attributed to majority-rule, with

smaller proportions of errors being repaired by alignment–in-

tegration when most sequence-alignments generate different

ASR errors (0.2–11.4%) or when most alignments make the

same ASR error (2.6–16.3%).

For cases in which majority-rule could not explain align-

ment–integration repair of the ASR error, we observed an

upward shift in the PP of the correct ancestral state, compared

with similar scenarios that were not repaired by alignment–

integration (fig. 7). The proportion of cases in which the cor-

rect ancestral state had PP <0.1 fell from 0.65 when align-

ment–integration did not repair the ASR error to 0.51 when

alignment–integration repaired the ASR error, even though

the majority of sequence-alignments produced an erroneous

ancestral state (z-test P< 1.0e�20). Similarly, the proportion of

correct ancestral states with PP <0.05 fell from 0.48 when

alignment–integration did not repair the error to 0.21 when it

did (z-test P< 1.0e�20).

When alignment–integration was able to repair an ASR

error by mechanisms other than majority-rule, we observed
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Fig. 6—“Majority-rule” explains the majority of cases in which align-

ment–integration improves ASR error rates. We simulated protein sequen-

ces along a simplified three-taxon phylogeny, varying the branch length

and indel rate (see supplementary fig. S12, Supplementary Material on-

line). Ancestral sequences were inferred using seven different sequence-

alignment methods and alignment–integration. Total- (top), residue-, in-

sertion-, and deletion- (bottom) errors were calculated by comparing in-

ferred ancestral sequences to the correct simulated ancestral sequence.

Here, we consider only those cases in which a single sequence-alignment

method produces an ASR error that is “repaired” by alignment–integra-

tion. Left panel: For each branch length (x axis) and indel rate (y axis), we

plot the proportion of alternative sequence-alignment methods that in-

ferred the correct ancestral state when one sequence-alignment method

generated an ASR error that was not found in the alignment-integrated

ancestral sequence. Right panel: Across all simulation conditions, we con-

sider all cases in which a sequence-alignment method makes an error, and

that error is repaired by alignment–integration. We report the proportion

of such cases in which 1) the majority of alternative sequence-alignment

methods infer the correct ancestral state (“correct”; blue), 2) the majority

of alternative sequence-alignment methods infer an incorrect ancestral

state, but that state is different from the original error (“different”; or-

ange), 3) the majority of alternative sequence-alignment methods infer the

same incorrect ancestral state (“same”; green), and 4) other scenarios

(“other”; red).
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a large peak in frequency at the PP making the ancestral re-

construction maximally ambiguous (fig. 7), which occurs at

0.05 for residue- and deletion-errors (for which the correct

ancestral state is one of the 20 amino-acid residues) and at 0.5

for insertion-errors (for which the correct ancestral state is the

gap state). This suggests that a relatively large proportion of

ASR errors which majority-rule fails to repair—but which

alignment–integration still repairs by other mechanisms—oc-

cur at highly ambiguous positions with relatively flat PP dis-

tributions across many possible ancestral states. Interestingly,

the peak at 0.5 PP for insertion-errors was particularly pro-

nounced when alignment–integration repaired the ASR error

(fig. 7), suggesting “balance-of-probability” repairs may be

particularly efficacious in cases of insertion errors, which may

contribute to alignment–integration’s very low insertion error

rates (see fig. 2).

Overall, these results suggest majority-rule accounts for

�80% of cases in which alignment–integration is able to

“repair” an ancestral reconstruction error generated by a sin-

gle sequence-alignment method, but more subtle effects of

integrating PP distributions also contribute to improved ASR

accuracy by alignment–integration. When the correct ances-

tral state does not have very low PP across all sequence align-

ments, alignment–integration can sometimes repair ASR

errors, even when the majority of sequence alignments recon-

struct the wrong ancestral state.

Conclusions

For future ASR studies, our results add to the emerging evi-

dence that alignment errors cannot always be ignored when

evaluating the accuracy of ASR (Vialle et al. 2018), and in

practice, sequence-alignment methods cannot always be re-

lied upon to generate alignments accurate enough to ensure

reliable ASR. When multiple structures from across the protein

family are available, our results suggest that structure-guided

alignment is an efficient approach for improving ASR accu-

racy, but many protein families lack the rich empirical struc-

tural data necessary for structure-guided alignment. In these

cases, we recommend that future studies make some effort

to evaluate the impact of alignment ambiguity on ASR results.

The alignment–integration approach we present here is one

mechanism for incorporating alignment ambiguity into ASR

studies, which so-far appears to perform well across a variety

of realistic and simplified model problems.

The empirically derived simulation conditions used in this

study represent realistic but highly challenging ASR problems,
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Fig. 7—Alignment–integration can “repair” ASR errors when the

correct ancestral state is not strongly disfavored across sequence-align-

ment methods. We simulated protein sequences along a three-taxon phy-

logeny, varying the branch length and indel rate (see supplementary fig.

S12, Supplementary Material online). Ancestral sequences were inferred

using seven sequence-alignment methods and alignment–integration.

Total- (top), residue-, insertion-, and deletion- (bottom) errors were calcu-

lated by comparing inferred ancestral sequences to the correct ancestral

sequence. Here, we consider only those cases in which a single sequence-

alignment method produces an ASR error, and the majority of alternative

Fig. 7—Continued

sequence-alignment methods do not infer the correct ancestral state. We

further divide such cases into 1) errors that are “repaired” by alignment–

integration (blue) and 2) errors that are not repaired by alignment–inte-

gration (orange). Under each scenario, we estimate the frequency distri-

bution of the PP of the correct ancestral state by kernel density estimation.

Aadland and Kolaczkowski GBE

1560 Genome Biol. Evol. 12(9):1549–1565 doi:10.1093/gbe/evaa164



with generally long branches and large phylogenies (see sup-

plementary fig. S1, Supplementary Material online), which are

expected to contribute to elevated alignment and ASR error

rates (Vialle et al. 2018). Under less challenging conditions,

standard ASR methodology has been found to be highly re-

liable (Hanson-Smith et al. 2010; Randall et al. 2016; Vialle

et al. 2018), and alignment–integration is unlikely to provide

any benefits under conditions in which most sequence-

alignment methods are extremely accurate.

Alignment–integration is computationally costly, as many

different alignments need to be inferred, and phylogenetic

model parameters and ancestral sequences need to be com-

puted using each alignment before being combined.

Alignments that are very similar to one another may be at

best redundant and at worst could bias the ASR toward a

“false consensus.” Similarly, wildly inaccurate alignments

could introduce statistical noise or generate biased results

when included in the integration process. The identification

of a set of alignment algorithms that tend to produce highly

accurate but different alignments is expected to be important

for reducing the computational demands of alignment-

integrated ASR while maintaining its useful statistical proper-

ties and low error rates.

In many of our analyses, specific sequence-alignment algo-

rithms are able to generate ancestral sequences that are

nearly as accurate as those generated by alignment integra-

tion or structure-guided alignment, suggesting that using a

single sequence-alignment method may be adequate, even in

some challenging cases. However, the specific alignment al-

gorithm that will perform well for a specific ASR study may be

difficult to determine in practice and would likely require

comparisons with other alignment algorithms, which would

be nearly as computationally costly as alignment-integrated

ASR. Because there is no known alignment method that per-

forms optimally in all cases, we recommend that, at mini-

mum, future ASR studies that rely on a single sequence

alignment strongly justify the specific approach chosen as

the most appropriate for the study.

Our cursory analysis of probabilistic alignment methods

suggests Bayesian co-estimation of the alignment and phylo-

genetic tree has the potential to provide exceptionally accu-

rate ASRs, at least under some conditions. However, we

remain cautious about recommending this approach for a

number of reasons. First, our analyses were conditioned on

the correct phylogenetic tree, which is hardly ever known

with certainty, and the accuracy of ASR under the more real-

istic case of joint alignment–phylogeny co-estimation has not

been investigated. Second, the existing implementation of

this approach is extraordinarily computationally intensive,

which might necessitate trade-offs in practice that could par-

tially undermine the method’s high accuracy. Finally, a recent

study of alignment accuracy found that BAli-Phy’s

co-estimation approach was accurate only when sequence

data was simulated and not when biological benchmark

data sets were used to evaluate alignment accuracy (Nute

et al. 2019), suggesting the exceptional accuracy of this ap-

proach could be partially explained by strong similarity be-

tween the simulation model and that used to analyze the

data, which might not translate into high accuracy on biolog-

ical data. By using Bayesian Markov chain Monte Carlo to

sample alignments, phylogenies, and ancestral sequences

from the PP distribution, BAli-Phy implements an elegant ap-

proach at alignment-integrated ASR with a stronger formal

justification than the heuristic method we present here.

However, it is unknown whether integrating over the uncer-

tainty associated with a single alignment model will accrue

the same benefits as integrating many different alignment

algorithms. Future studies will be needed to address these

questions before the BAli-Phy approach or similar methods

can be recommended in general for ASR.

Materials and Methods

Software and Data Availability

All analyses presented in this study were performed using

objective, transparent, reproducible algorithms documented

in readable source code. All input data and analysis/visualiza-

tion scripts are freely available under the General Public

License as open-access documentation associated with this

publication at: https://github.com/bryankolaczkowski/airas

Empirical Sequence Simulations

Empirical structures of diverse CARD, double-stranded RNA-

binding motif (DSRM), and RDs were obtained from the pro-

tein data bank (Berman et al. 2000) and edited to remove any

ligands or structural data from outside the annotated domain

of interest. Structures from each domain family were aligned

using the iterative_structural_align function in MODELLER

v9.19 (Sali and Blundell 1993; Madhusudhan et al. 2009) to

generate a multiple sequence alignment based primarily on

structural superposition. This alignment was further edited

manually to ensure that all aligned residues overlapped in

the aligned structures.

Sequence data sets and consensus phylogenies for each

domain family were curated from previous studies of DSRM

(Dias et al. 2017), RIG-like receptor (Mukherjee et al. 2014;

Pugh et al. 2016), and CARD (Korithoski et al. 2015) families.

Sequences were aligned to the structure-based alignment us-

ing the�seed option in mafft ginsi v7.402 (Katoh et al. 2002),

and sequence regions not globally alignable to the structure-

based alignment were trimmed. To simulate sequences with

more realistic distributions of insertions and deletions (indels)

across the sequence, we used the distribution of indels in

the structure-guided alignment to determine the placement

of indels in simulated sequences. Positions in the

structure-guided alignment having at least three contiguous

nongap residues were considered impermissible to indels for
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the purposes of sequence simulation, whereas indels were

allowed at all other positions in the alignment.

Simulation of 10 replicate data sets for each protein do-

main family—including correct ancestral sequences at each

node on the phylogeny—was performed using indel-Seq-Gen

v2.1.03 (Strope et al. 2006), assuming the consensus phylog-

eny, the JTT evolutionary model (Jones et al. 1992) and a four-

category discrete gamma model of among-site rate variation

with shape parameter a¼ 1.75 (Yang 1994). For each repli-

cate, the root sequence was generated randomly from the

structure-guided multiple sequence alignment by sampling

amino-acid residues at each position based on the frequency

of the amino-acid at that position. Columns in the multiple

sequence alignment with >50% gap characters were not

sampled when generating root sequences. Insertions and

deletions were generated at permissible positions using the

distributions from (Chang and Benner 2004), with a maxi-

mum indel size of 2 for CARD and DSRM3 domains, 4 for

DSRM1 and DSRM2 domains, and 5 for the RD.

Sequence Alignment

Simulated sequences were aligned using ClustalW v2.1

(Sievers et al. 2011), mafft ginsi v7.402 (Katoh et al. 2002),

msaprobs v0.9.7 (Liu et al. 2010), muscle v3.8.31 (Edgar

2004), probalign v1.4 (Roshan and Livesay 2006), probcons

v1.12 (Do et al. 2005), and tcoffee v10.00.r1613 (Notredame

et al. 2000), all with default parameters. In addition to

sequence-based alignments, structure-guided alignments

were generated by aligning each set of simulated sequences

to the structure-based alignment (see above) using the�seed

option in mafft ginsi (Katoh et al. 2002). Alignment errors

were quantified by measuring the distance of each sequence

alignment from the correct simulated alignment, using the

d_pos option in MetAl v1.1, which estimates the probability

that a randomly selected residue aligns to an incorrect posi-

tion in a randomly selected sequence (Blackburne and Whelan

2012).

Ancestral Sequence Reconstruction

Ancestral sequences were reconstructed from each alignment

using marginal reconstruction (Yang et al. 1995) implemented

in RAxML v8.2.10 (Stamatakis 2014), assuming the correct

phylogeny and evolutionary model but estimating branch

lengths and model parameters from each input data set.

Each sequence alignment was converted to a binary pres-

ence–absence alignment, and ancestral gap states were in-

ferred by marginal reconstruction using the BINCAT model in

RAxML (Lewis 2001; Stamatakis 2006), assuming the correct

tree topology with branch lengths and model parameters es-

timated from each data set. If the PP of the gap state was

>0.5 in the presence–absence reconstruction, that position

was reconstructed as a gap character; otherwise, the position

was reconstructed as whichever amino-acid residue had the

largest PP in the sequence reconstruction.

Alignment-integrated ASRs were produced by respectively

combining sequence-reconstruction PPs and presence–ab-

sence PPs across all sequence-alignment methods (excluding

data from structure-guided and correct alignments), assum-

ing equal prior weights over sequence alignments. Let Pi be

the prior weight of alignment method i, and P(j, k, m j i) be the

probability of ancestral state j at sequence position k and node

m on the phylogeny, assuming alignment method i. Then, the

heuristic “alignment-integrated posterior probability” of an-

cestral state j at position k and node m is given by:

P j; k;mð Þ ¼
X

i

P j; k;m j ið ÞPi:

Here, we set the prior weight of each alignment method Pi¼
1/n, where n is the number of alignment methods.

Alignment–integration requires mapping all sequence

alignments to one another, so that homologous columns

from different alignments can be integrated. This was done

using the �merge option in mafft ginsi.

After respective integration of sequence- and presence–

absence reconstructions, the MAP ancestral sequence was

generated as described above for single sequence-

alignments.

ASR errors were calculated by comparing the MAP recon-

structed ancestral state to the correct simulated ancestral state.

For each inferred ancestral sequence, we calculated the num-

ber of errors divided by the length of the alignment generated

by mapping the inferred ancestral sequence to the correct

ancestral sequence. In addition to total ASR error rates, we

also separately calculated the three possible types of ASR

errors: 1) residue errors, in which both correct and inferred

sequences have amino-acid residues at the same alignment

position, but the inferred residue is different from the correct

residue; 2) insertion errors, in which the correct ancestral se-

quence has a gap character, but the inferred sequence has a

residue at that position, and 3) deletion errors, in which the

correct sequence has a residue, but the inferred sequence has

a gap. For each ancestral node on the phylogeny, we calcu-

lated the expected ASR error rate as the mean over 10 repli-

cate data sets. Differences in error rates among methods

across all replicates and nodes on the phylogeny were assessed

using the two-tailed independent two-sample t-test, assuming

unequal variances. Gaussian kernel density estimates were

generated using least squares cross validation to estimate

the smoothing parameter (Rudemo 1982).

Probabilistic Sequence Alignment

Probabilistic sequence alignments were inferred using PRANK

v170427 (Loytynoja 2014), with default parameters, and

BAli-Phy v3.5 (Redelings and Suchard 2005). BAli-Phy analyses
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were conducted assuming the correct phylogeny, the JTTþG

evolutionary model and the rs07 indel model (Redelings and

Suchard 2007). Following the approach described in Nute

et al. (2019), we concatenated the Markov chain Monte

Carlo samples from 32 independent BAli-Phy runs, each exe-

cuted for a minimum of 1,000 generations, after discarding

the first 25% of samples from each run. The MAP alignment

calculated over all BAli-Phy runs was used to reconstruct an-

cestral sequences, using the approach outlined above.

Structural Modeling and RNA-Affinity Estimation

Structural homology models of DSRM1 domains were gener-

ated using MODELLER v9.19 (Sali and Blundell 1993). We

used multi-template modeling (Larsson et al. 2008), assuming

the structures and structure-based alignment generated for

the DSRM1 domain simulations (see above). For each ances-

tral sequence, 50 models were generated and ranked using

the MODELLER objective function, DOPE and DOPEHR assess-

ment scores (Shen and Sali 2006). Each score was normalized

by dividing it by its SD across the 50 models, and we chose the

best structural model as that with the optimal mean of nor-

malized scores.

The structural stability of each protein structural model was

inferred using DeltaGREM 2009, which estimates the change

in free-energy/sequence-length of a given protein structure,

compared with a statistical model of misfolded or unfolded

protein ensembles, using a contact-based energy function

(Minning et al. 2013; Bastolla 2014). We calculated structural

stability errors as the absolute value of the difference in esti-

mated stabilities between the correct ancestral sequence’s

structural model and that of the inferred ancestral sequence.

The expected stability error for each node on the phylogeny

was calculated as the mean over 10 replicates.

DSRM1–dsRNA-binding affinities were inferred using a

previously developed statistical machine learning approach

(Dias and Kolazckowski 2015). For each ancestral sequence,

a structural homology model was generated as described

above, but including the dsRNA ligand from PDBID 5N8L.

The pKd ¼ �log10(Kd) was estimated using a support-

vector machine trained on a large ensemble of protein–RNA

and protein–DNA complexes with associated empirically de-

termined binding affinities. Errors in affinity predictions were

calculated as the absolute value of the difference in estimated

affinities between the correct ancestral sequence’s protein–

RNA structural model and that of the inferred ancestral se-

quence, with expected errors calculated as the mean over 10

replicates.

Three-Taxon Simulations

The JTTþG model (four-category discrete gamma approxima-

tion with shape parameter a¼ 1.75) was used to simulate

100 replicate data sets along three-taxon phylogenies with

branch lengths ranging from 0.1 to 0.8 substitutions/site

(see supplementary fig. S9, Supplementary Material online).

Starting sequences of 200 residues were generated at ran-

dom from the JTT amino-acid frequency distribution and

“evolved” along the phylogeny using indel-seq-gen v2.1.03

(Strope et al. 2006). Insertions and deletions were generated

at random, with the indel rate varying from 0.001 to 0.05

times the branch length (Pervez et al. 2014). Indel length was

capped at 20 residues, with the length distribution of inser-

tions and deletions taken from Chang and Benner (2004).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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