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Abstract: Virus-related mortality and morbidity are due to cell/tissue damage caused by replicative
pressure and resource exhaustion, e.g., HBV or HIV; exaggerated immune responses, e.g., SARS-
CoV-2; and cancer, e.g., EBV or HPV. In this context, oncogenic and other types of viruses drive
genetic and epigenetic changes that expand the tumorigenic program, including modifications to the
ability of cancer cells to migrate. The best-characterized group of changes is collectively known as
the epithelial–mesenchymal transition, or EMT. This is a complex phenomenon classically described
using biochemistry, cell biology and genetics. However, these methods require enormous, often
slow, efforts to identify and validate novel therapeutic targets. Systems biology can complement
and accelerate discoveries in this field. One example of such an approach is Boolean networks,
which make complex biological problems tractable by modeling data (“nodes”) connected by logical
operators. Here, we focus on virus-induced cellular plasticity and cell reprogramming in mammals,
and how Boolean networks could provide novel insights into the ability of some viruses to trigger
uncontrolled cell proliferation and EMT, two key hallmarks of cancer.

Keywords: cellular plasticity; epithelial–mesenchymal transition; systems biology; Boolean; viral
infection

1. Introduction

In 1985, Helen Blau endowed the term “cellular plasticity” with its current meaning,
that is, the ability of specific cells, under certain conditions, to turn into other cell lin-
eages. Using cell fusion-based methods, she established the relationship between genotype
and phenotype during cellular regeneration and tissue homeostasis [1]. The gist of her
paradigm-shifting discovery was that the differentiated state of a cell is subject to contin-
uous regulation and revision, determining the identity of the cell within its surrounding
tissue [2]. In this context, plasticity refers to the activation of “dormant” genes that change
the identity of the cell in response to microenvironment stimuli, e.g., viral infection or
mechanical injury [3,4].

Cellular plasticity rapidly derived into the discovery of stem cells (SCs) and the recog-
nition of their therapeutic potential [4]. Cloning of a whole mammal (Dolly the sheep)
using cellular reprogramming was an early milestone in the field [5,6]. This achievement
was regarded as irrefutable evidence that differentiated cells could be reprogrammed
into other lineages, including progenitors capable of initiating an entire morphogenetic
program culminating in the de novo formation of an entire complex organism. Roughly
10 years after the initial description of Dolly, terminally differentiated mouse cells were
driven back to full stem potential by expression of selected transcription factors [7]. These
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reprogrammed cells were termed “inducible pluripotent stem cells”, or iPS. These mile-
stones ignited a revolution in the field of regenerative medicine, as stem cells from different
origins (hematopoietic, mesenchymal, embryonic or inducible) were used to obtain dif-
ferentiated cells from multiple lineages [8]. In parallel, stemness became an important
concept in cancer research, with the discovery of heterogeneous cancer cell populations
with stem cell-like properties. These cells were termed cancer stem cells, or CSCs [9]. CSCs
are crucial for primary tumors to develop resistance to therapy and relapse, as well as
metastasis. CSCs also provided a potential explanation for decades-old observations de-
scribing that most forms of cancer were morphologically based on the dedifferentiation of
the original tissues [10]. These observations linked cancer with the reactivation of dormant
morphogenetic pathways that become inactivated after terminal differentiation [11].

A classic categorization of plasticity includes three major forms: (1) Dedifferentiation,
in which a differentiated cell reverts to a SC of the same lineage; (2) Trans-differentiation,
in which a differentiated cell is converted into another lineage without passing through a
pluripotent cell state; (3) Trans-determination, in which a cell changes its lineage from a SC
or progenitor cell to a closely related cell type [12].

Although their numbers are low, SCs do exist in healthy adult tissues, indicating that
they play physiological roles in homeostasis [13,14]. Based on their ability to differentiate
into tissue-forming cells, their main function is to renew and regenerate tissues during
normal aging, and also in response to injury. The homeostasis of these cell populations
also involves dedifferentiation or trans-differentiation of fully, or partially, differentiated
cells [15–17]. In some of these tissues, e.g., intestinal crypts, SC adopt a quiescent phenotype,
differentiating in response to specific functional needs [18].

Several families of viruses have evolved to hijack different pathways and circuits
involved in cell plasticity to ultimately serve the infectious program. As such, they may
alter the homeostatic landscape of the host’s tissues, in some cases triggering plasticity
programs that may have deleterious effects in the integrity of the tissue, for example,
driving cancer. What follows is a discussion on the different mechanisms of virus-induced
plasticity, their meaning in the context of the propagation of the infectious program, and
how Boolean networks (a form of systems biology analysis) can unravel the intrinsic
complexity generated by the intersection of apparently different cellular programs.

2. Cell Plasticity and Viral Infection: A key Role for EMT in Virus-Induced Cell
ReProgramming

Many studies have revealed how viral infection can trigger cell reprogramming, lead-
ing, in many cases, to the development of cancer. The best-characterized program of
cancer-related cell reprogramming is the epithelial–mesenchymal transition (EMT). EMT is
also the most common mode of cell reprogramming among viruses, underlying the onco-
genic capacity of many virus strains. EMT has been reviewed in multiple contexts [19–21].
Briefly, EMT promotes the dedifferentiation of epithelial cells into mesenchymal cells,
which are more primitive and motile. In many cases, this is linked to the ability of virus
proteins to deactivate tumor suppressor genes, or behave as oncogenes [22–24], driving
tumorigenesis in infected cells. Virus-induced mesenchymal cells acquire the ability to ma-
nipulate the microenvironment of the affected cells to promote proliferation and migration.
These changes are associated with modifications of the repertoire of transcription factors
expressed by infected cells. In turn, this modulates the profile of cytoskeletal, adhesive,
and metabolic cellular components, altering the shape and behavior of the cell in response
to these changes [25,26]. Here, we only discuss virus families that are able to drive EMT,
and the mechanisms involved.

Different types of viruses induce EMT through different mechanisms (shown in Figure 1).
One example is the Human Papilloma Virus (HPV; Papillomaviridae). More than 130 sub-
types have been identified [27]. HPV infects stratified basal epithelia, which normally
appears in anatomical regions (skin, cervix) that contain many more cell populations,
including undifferentiated cells, progenitors, immune cells, etc. HPV induces cancer trans-
formation. Two viral proteins, E6 and E7, target p53 and Rb, respectively [28]. E6 and
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E7 also alter the function of Rb-like protein DREAM (dimerization partner, RB-like, E2F4,
and MuyB) and c-myc [29]. E6 and E7 also trigger EMT in infected cells by activating
mesenchymal-driving transcription factors, e.g., ZEB1, SLUG and TWIST1—inducing
the expression of mesenchymal genes, e.g., N-cadherin, vimentin and fibronectin [30].
Simultaneously, E6 and E7 down-regulate E-cadherin expression [31,32].
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Epstein–Barr virus (EBV; Herpesviridae), which infects B cells [33] and epithelial
cells [34], also induces EMT. Its genome encodes two protein products termed latent
membrane protein (LMP) 1 and 2A. Although not essential for infection [35], these pro-
teins trigger EMT. LMP1 promotes EMT by inducing the expression of TWIST1 [36] and
SNAIL [37] transcription factors, inducing an E-to-N-cadherin switch [38]. LMP2A also
promotes EMT in nasopharyngeal carcinoma (NPC) cells, increasing their invasion and mi-
gration capabilities [39] in an mTOR1-dependent manner [40]. Other EBV protein products,
e.g., EBNA-1 and EBNA3C, also promote EMT [41]. The specific signaling routes involved
in EBV-induced EMT are not precisely defined, although they involve several components
typically involved in EMT, including the JAK/STAT and PI3/AKT pathways [42]. Addi-
tional mechanisms involve the regulation of specific miRNA. EBV expresses Bart9, which is
homologous to cellular microRNAs miR-200 and miR-141. These two miRNA are involved
in EBV-mediated downregulation of E-cadherin, as demonstrated by the fact that their
deletion using siRNA increases the levels of E-cadherin in gastric cancer cells [43].

Human cytomegalovirus (HCMV; beta-herpesvirus type 5) [44] also infects epithelial
cells, promoting EMT by a mechanism that involves TGF-β1 activation in a model of renal
tubular cells [45]. However, gene set enrichment analysis (GSEA) of breast cancer and
glioma stem cells revealed the repression of a mesenchymal phenotype correlative with
E-cadherin expression [46], which contradicts the previous study and suggests that the
plasticity effect of this virus may be cell type- or stage-dependent. On the other hand,
Kaposi sarcoma virus (KSHV) infects endothelial cells, triggering endothelial–mesenchymal
transition (EndMT) through the Notch signaling pathway [47]. Interestingly, KSHV also
infects B cells, and EMT markers are also important in the transformation of these cells,
even if they do not define a specific morphological change in these cells [48].

Hepatitis-causing viruses also trigger EMT. HBV (Orthohepadnavirus) has four over-
lapping ORFs [49]. The X ORF encodes protein X (HBx) [50], which modulates the function
of several transcription factors by favoring the formation of the transcriptional initiation
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complex. HBx also promotes EMT by stabilizing SNAIL, positively regulating TWIST and
STAT3 and activating c-Src [51–53]. HBx also represses E-cadherin expression [54].

HCV (hepacivirus) expresses several nonstructural proteins [55]. Among these, NS3,
NS4B and NS5A induce EMT by diverse mechanisms. NS3 promotes EMT through an
epigenetic mechanism that boosts TGF-β signaling [56]. NS4B increases the expression
of the transcription factor SNAIL, triggering EMT in liver cancer [57], while NS5A up-
regulates TWIST2 [58] and activates β-catenin-dependent signaling [59]. In addition to
NS proteins, other viral products also trigger EMT. The HCV core protein (HCVc) inhibits
Smad3 activation, promoting EMT. HCVc also bypasses the Ras/PI3K signaling route to
activate ERK, JNK and p38, promoting a signaling signature typical of EMT, which includes
the stabilization of HIF-1α [60].

Human immunodeficiency virus 1 (HIV-1) induces EMT through the Hedgehog
pathway in podocytes, becoming a critical feature of kidney damage in a mouse model of
HIV infection [61]. HIV-1 gp120 and tat proteins also induce EMT in polarized, squamous,
oral, cervical, and genital epithelia [62].

Human respiratory syncytial virus (RSV) belongs to the Pneumoviridae family [63]
and causes airway hyper-responsiveness in infants [64]. RSV induces EMT in a nodal-
dependent manner [65]. Human rhinoviruses (RV) also trigger EMT in vitro in bronchial
cell lines [66].

The COVID-19 pandemic makes it necessary to address whether SARS-CoV-2 also
induces EMT/EndMT. Analysis of post-mortem samples has suggested that SARS-CoV-2
may trigger EndMT in the lungs [67]. A more recent report has indicated that SARS-CoV-2
induces EMT in the lung by targeting the transcription factor ZEB1 [68]. This could be very
important for its pathogenesis, since ACE2, which is the main cellular receptor of the virus
in various cell types, is downregulated during EMT [68]. EndMT may also be critical for
the pathogenesis of COVID-19-dependent lung fibrosis [69], as crosstalk between epithelial
and endothelial cells mediates infection-driven injury to human alveolar capillaries [70]. In
addition, infected cells become p38-positive downstream of the mesenchymal transcription
factor SNAIL [71]. p38 triggers cytoskeletal rearrangement during EMT [72]. A different
study using post-mortem samples revealed increased levels of neutrophil extracellular
traps (NET), which induce EMT in neighboring cells [73]. The increased presence of NETs
positively correlates with the severity of COVID-19 and the elevated expression of EMT
markers [74]. Importantly, a recent study showed that sera obtained from COVID-19
patients induce EMT in cancer cells, although the specific mechanism and whether SARS-
CoV-2 makes patients more vulnerable to more aggressive forms of cancer remain to be
determined [75].

At this point, the evolutive advantage that viruses obtain by inducing EMT/EndMT in
host cells is unclear. What is clear is that virus-driven EMT events correlate with the severity
of the cancer triggered by viral infection. For example, a preprint study has indicated
that Coxsackievirus B3 (CVB3)-induced EndMT is countered by bone morphogenetic
protein 7 (BMP7), suggesting that EndMT, which correlates with poor prognosis, can be
targeted to improve the patient’s odds of survival [76]. It is also important to highlight that
EMT/EndMT can affect the bioavailability of the virus receptors, indicating that cells in
different stages may have different susceptibilities to infection. As mentioned above, EMT
represses ACE2, which is the main receptor of SARS-CoV-2 [68]. Likewise, the measles
virus is not capable of infecting epithelial cells undergoing EMT, likely due to the fact that
the virus receptor is negatively regulated during EMT [77]. A key question in the field is
whether EMT is a side effect of viral infection, or if there is an evolutive purpose from the
point of view of the virus. This is a fascinating question as the field moves forward.

3. Understanding EMT from a Systems Biology Point of View

In biology, systems approaches often refer to the use of big data to study complex
biological phenomena. “Big data” includes analysis of –omics approaches, e.g., genomic,
epigenomic, and proteomic and/or simulation-based data arrays. A major advantage of



Cells 2021, 10, 2863 5 of 15

these approaches is that they are, by default, unbiased; hence, they often lead to highly
novel, “out-of-the-box” insights. Perhaps the biggest challenge of this approach is post-
discovery validation in biased systems, which are better characterized, but provide a
more boxed-in approach. Canonical systems biology can be characterized as an iterative
process in which large-scale analysis of a limited set of perturbations in a well-characterized
biological system allows development of predictive models that can be further refined by
additional experimentation.

Based on the type of data analyzed, there are two major approaches to the analysis of
large-scale data. One is bottom-up, in which input data emanate from different pre-existing
resources, including genomics, biochemical and metabolic organism-specific databases.
These data are used to rebuild a draft, which is then curated manually prior to generating
mathematical models that incorporate refining algorithms applied iteratively to improve
the predictions of the model. The other approach is top-down, which involves de novo
data generation, which is analyzed using bioinformatics tools that enable the construction
of interactive pathways based on the statistical significance of the experimental results [78].

EMT provides a fascinating example of application of systems biology approaches,
which have provided important insights. Specifically, EMT has been studied using systems
biology approaches in the context of asthma. A bottom-up approach using existing rodent
datasets revealed a high degree of heterogeneity even among genetically identical individ-
uals, and a specific signature of up-regulated genes in asthma [79]. Another study used
high-content proteomics and metabolomics data to classify asthma patients according to
protein expression in the respiratory system, opening the door to the discovery of novel
biomarkers with potential applications in diagnosis and therapy [80]. Other datasets re-
vealed that increased levels of adipokines and ROS-related protein products are predictors
of severity [81]. Along the same lines, systems approaches have revealed crucial molecular
signatures related to EMT in the context of cancer, including the existence of three separable
states: pre-EMT, metastable EMT and epigenetically fixed EMT [82]. The use of BNs to
study cancer has enabled advances in different directions. For example, a recent study
has used BNs to perform tumor staging and assess the risk of metastasis in patients with
triple-negative breast cancer. This approach identified hybrid epithelial/mesenchymal
phenotypes by mapping gene expression data into the states of a Boolean network model
of the epithelial–mesenchymal pathway [83]. This study built on a previous study from
the same group that used transcriptomic data to create a BN-based topographic map of
EMT, showing the existence of multiple intermediate, metastable states—determining
a continuum of states between stable (purely epithelial and purely mesenchymal) phe-
notypes [84]. Another study also evaluated the dynamic stability of these intermediate
states using BNs [85]. BN have also been used to validate and extend the observations
using “wet” approaches, e.g., 3-D models in decellularized matrices. In such a system,
application of TGF-beta induced cell invasion, which was predicted as well by use of
an EMT-driven BN [86]. EMT-driven BNs can also be used to interrogate the effect of
combinatorial therapies to treat cancer, as shown for hepatoma [87]. A recent review has
proposed that cancer signaling-driven BNs will be useful for investigating the prognosis of
and therapeutic responses to different interventions, contributing to the improvement of
the decision-making process in oncology practice [88].

4. Boolean Networks in Systems Biology-Driven Analysis of EMT

Boolean networks (BN) are dynamic models that connect multiple variables that
behave in a binary manner. This means that the variables are assumed to be –false or –true,
and no intermediate states contribute to the stability or evolution of the model over time.
While this is a large assumption, this approximation is valid for many enzymatic reactions
and protein–protein interactions, which are governed by sigmoidal equations that define
two stable states (0 and 1) connected by a metastable, steep-sloped, state. The system
has n variables, X = [x1, x2 . . . xn] that represent the components of the system. Boolean
operators, AND, OR and NOT, connect these variables [89].



Cells 2021, 10, 2863 6 of 15

There are different models of BNs according to their static and dynamic properties
and their evolution over time. The most commonly used are: deterministic and non-
deterministic (referring to the nature of the variables), synchronous and asynchronous
(referring to the updating of the BN over time), homogeneous and non-homogeneous,
directed and undirected, regular and non-regular [90]. A brief description of the most
biologically relevant of these models follows.

Recent application of BNs to biology subdivides variables into three categories: (i) In-
put nodes (top upstream), which are not regulated by other variables. Typical input nodes
in cell biology are extracellular signals that are used to induce external perturbations in the
model; (ii) Output nodes (endpoints), which do not regulate other variables; and (iii) Inner
nodes, which connect input and output nodes forming a network. In this manner, these
variables can be represented as a connections map, in which Boolean operators determine
the value of each variable (except input nodes, which are arbitrarily defined) at a given
time, t. The possible combinations of –false or –true assignments to all the variables that
comprise the network define the evolution of the BN over time. It is important to highlight
that the processing steps of BNs are loosely related to real time. In this regard, an intrinsic
limitation of BNs is that time behaves as a discrete variable; hence, the state of the BN
is updated from t to t + 1 by applying the Boolean operators that connect the different
components. The t→ t + 1 transition is managed according to several different paradigms:
Synchronous, in which every Boolean operator is applied simultaneously to update the
BN from t to t + 1. This assumes that all the biological processes represented by Boolean
connectors take the same amount of time, which is not frequent in biological processes;
Asynchronous, which assumes that one (and only one) variable is updated in the t→ t + 1
transition. Although asynchronicity reflects real biological scenarios more faithfully than
synchronicity, several major issues remain: one is that this system poorly replicates the
actual time scale of cellular functions, in which some processes are very fast (e.g., protein–
protein interactions) and some are much slower (e.g., protein synthesis). Asynchronous
modeling also disregards the hierarchical nature of some connections over others. For
example, a protein cannot become phosphorylated before being synthesized. Finally, the
run time of asynchronous modeling can be an important practical limitation [91]. However,
software tools that implement logical modeling, e.g., GINSim, enable the operator to solve
this problem with the possibility of prioritizing the updating of classes and/or interact-
ing nodes according to convenience [92]. Another choice to overcome these issues is the
asynchronous paradigm, which has been modified into stochastic, random order update,
general and deterministic models. In stochastic models, each time step is updated using
a random permutation in the nodes, while in deterministic models, there is a preselected
time unit for each node, which is updated based on the positive multiples of the established
unit (either random or imposed) [91,93]. These strategies have been conceived to model
different time scales while preserving the deterministic nature of synchronous updating,
or to overcome the temporal distortion of asynchronous updating. Asynchronous and
stochastic updating allow the incorporation of the concept of multi-stability—that is, the
simultaneous presence of multiple space-state attractors, each one endowed with its own
level of attraction. Stochastic multi-stability produced by the asynchrony of a BN is very
well-suited to describe some biological processes [94,95]. One example is the analysis of
p53 in the DNA damage response, which displays two-face dynamics [96]. A recent study
used BNs to explain how the p53 pathway determines the fate (apoptosis, autophagy or
senescence) of cells transfected with miR-16 [97]. Likewise, a recent study explored multi-
stability in EMT using DSGRN (dynamic signatures generated by regulatory networks).
The major conclusion of this study was that whereas epithelial and mesenchymal states are
the dominant attractors, the system contemplates the existence of bi- or multi-stability [98].
A major extension was the introduction of probabilistic Boolean operators (e.g., the prob-
ability of AND is 80%; whereas the probability of OR is 20% for the same connection).
However, it is worth noting that, in general, synchronous updating is a better strategy to
evaluate the robustness of BN models [99].
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BNs were introduced in biology as they elegantly explained genetic regulation [100,101]. In
this scenario, expression is considered a binary proposition, where −false = not expressed
and −true = expressed [102]. This approximation also enables following of the evolution
of specific nodes within the BN [93]. Employing scale-free topology, certain commonalities
emerge, e.g., the fact that most nodes are poorly connected to others, whereas some nodes
are highly connected (“hubs”). This setup, general to many biological processes, ensures
robustness—providing resistance against missing, or defective, nodes. It is important to
point out that, whereas BNs work well for systems that can be binarized, as described
above, they work poorly in systems in which protein concentration is a crucial element,
e.g., the behavior of cytoskeletal components, in which small concentrations of “nucleators”
catalyze polymerization and thus control the functionality of the network.

A transition from one time point to the next generates representations termed “state
graphs”, which depend on the evolution paradigm used. When applying a synchronous
model, state graphs evolve in a single manner, that is, each state has one possible successor
alone. Conversely, asynchronous and probabilistic models have complex state graphs in
which a node has several possible evolutions depending on whether the node is selected
for update, or not. An important consequence of state graphs is that their trajectory defines
the overall behavior of the BN over time, revealing states that define stable conditions, that
is, states from which the BN does not evolve unless a perturbation is introduced. These
states are termed attractors, and represent system equilibrium across different conditions.
In synchronous models, attractors are simple, formed by a sequence of states repeated over
time. In asynchronous models, complex attractors emerge, defined as overlapping loops
formed from the multiple possible successor states at specific nodes. Finally, probabilistic
models do not always contain attractors, as some possible updates are intrinsically unstable
(low probability).

Attractors generate basins of attraction, which are defined as all the states leading to a
given attractor. Thus, the larger the basin, the more likely the attractor is to correspond to a
meaningful biological condition. Due to their nature, synchronous models display non-
overlapping basins of attraction, whereas asynchronous models display less well-defined
basins due to the non-deterministic nature of the model [89].

As they become applied in biology, it is important to note that BN can be built us-
ing bottom-up or top-down approaches. The bottom-up approach involves beginning
with prior knowledge, or literature mining. Pre-existing data sets and bibliographic
information define the nature of the relationship between the variables of the system.
Bioinformatics tools are available to assist in this process [89,103,104]. On the other hand,
top-down approaches employ novel data sets to construct the BN. This requires the bina-
rization of the data sets, which is easy for genomics and transcriptomics data, as discussed
above. However, proteomics data require additional data processing, e.g., establishing
arbitrary thresholds of expression. Then, reconstruction algorithms are employed to infer
interactions or Boolean relationships between variables. There are multiple methods to
create reconstruction algorithms, which depend on the specifics of the problem and the
available amount of experimental data. In two excellent reviews, Le Novere [105] and
Abou-Jaoudé and co-workers [106] detail different methods and approaches to formalize
and validate working models that implement quantitative and logic modeling. They also
discuss methodological advances that facilitate the development of cellular networks by
assessing the dynamic impact of variations and external inputs, determining the major
attractors of large networks and reducing large models. Finally, they discuss examples of
models of published biological processes, public databases and options to upgrade BN
modelling [105,106].

To our knowledge, no studies have reported the use of BNs to model virus-induced
EMT or EndMT. The recent COVID-19 pandemic has caused an outburst of bottom-up
models to explain different aspects of the pandemic, from virus transmission [107] to
the effect of the pandemic on mental health [108], or the response to specific drugs, e.g.,
tocilizumab [109]. Examples more pertinent to the discussion here include the use of BNs
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to model the signaling involved in the infection by influenza virus [110] or the interaction
of HIV with T cell signaling [111]. An open-ended literature search and integration in a BN
model was recently described to determine some epidemiologic aspects of ZIKV [112].

Regarding the use of BN to specifically study EMT, a recent publication described a
synchronous updating BN to model the stability of transitional states during EMT [85].
In this study, the authors selected five variables (extracellular conditions that trigger
EMT and four genes critically involved in EMT: SNAIL, miR-34, ZEB, miR-200). By
establishing hierarchical and feed-forward and feedback loops among them, the authors
determined three states (note the order of variables: Trigger, SNAIL1, miR-34, ZEB1, miR-
200): epithelial (0,0,1,0,1), intermediate (1,1,0,1,1) and mesenchymal (1,1,0,1,0). Whereas the
epithelial and mesenchymal states are unique, different combinations could represent the
intermediate state, e.g., (1,0,0,1,0), (1,1,1,0,1) and others. BN validation was based on wet
biology experiments, in which miR-200 or miR-34 expression suppressed mesenchymal
states; whereas expression of SNAIL1 and ZEB1 expression suppressed epithelial states.
By calculating the size of the basins of attraction for each state, the authors showed that
the epithelial phenotype is slightly more stable than the mesenchymal (50% vs. 34% of
possible states in each basin), whereas intermediate states are much less likely (only 16% of
possible states). It is worth noting that this model works well due to the small number of
nodes (five). Larger BNs are due to run into longer computational times and the weight of
stochastic events will likely muddy the determination of basin sizes, and thus, the stability
of the intermediate states. Despite this limitation, this study articulates, among other things,
the concept of EMT reversibility, which is a key feature of this process during development
and disease [113,114].

BNs have also been used to determine novel pluripotency genes involved in the
reprogramming of SCs in germ lines [115] and to describe EndMT in cardiac cells [116].
In the latter study, the authors built a BN that connected several molecules involved in
endothelial cell activation and EndMT. EndMT is important during heart valve develop-
ment, whereas altered EndMT underlies some heart defects, atherosclerosis and pulmonary
hypertension. Using a synchronous BN model in which the authors determine the nodes
as morphological conversions (apical–basal to front–back polarization, decreased cell adhe-
sion and repression of endothelial and emergence of mesenchymal markers), the authors
determined that EndMT requires increased expression of WNT, NOTCH, FGF or TGF in
the extracellular microenvironment, the activation of transcription factors as SNAIL1/2,
TWIST1, ZEB1/2, and inhibition of VEGFR2, PECAM1, VE-Cadherin, TIE1, TIE2 and vWF.
Conversely, mesenchymal cells express increased amounts of α-SMA, N-cadherin and
collagen I/II. The authors also analyzed the robustness of the model by introducing data
describing the effect of loss- or gain-of-function mutations affecting selected nodes in the
BN. Importantly, only 24 of 58 mutations had no effect on the final outcome as determined
by the type of resulting attractors, which indicates that most nodes included in the BN are
crucial for the whole process. In the end, state transition graphs connecting the diverse
intermediate states and their molecular makeup revealed that not every transition is likely.
For example, the transition from tip ECs (which mediate angiogenesis) to mesenchymal
cells is very unlikely. It also revealed that EndMT requires loss of VEGFA and no hypoxia,
together with the inactivation of FLI1 and GATA2, whereas loss of SNAIL2, TWIST1 or
ZEB1/2 prevent EndMT. Perhaps more impressively, the analysis also revealed that me-
chanical perturbations, e.g., non-laminar shear flow, triggers EndMT, and predicted several
genetic/expression alterations that revert EndMT.

5. Conclusions and Perspectives

Whereas the potential of systems biology in general, and BN in particular, to unravel
the complexity of virus-induced plasticity events is clear, the studies and data discussed
here have illustrated some of the limitations of these approaches, which may underlie the
fact that the field is still underdeveloped. As a result, several key questions in the field
remain unanswered. Perhaps the most pressing question from a conceptual standpoint is to
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reveal the ultimate goal of different families of viruses to promote EMT in host or bystander
cells, particularly as, in some cases, increased plasticity negatively affects the viral cycle [77].
Another goal of the implementation of these techniques to study virus-induced EMT is to
realize the potential of determining novel therapeutic targets that counter the carcinogenic
transformation brought on by oncogenic viruses. The present review also provides a
conceptual framework that justifies the use of BNs as a first approach to understand EMT,
as they are useful tools for integrating the genetic, epigenetic and transcriptomic complexity
of this process. A major success of these approaches to date has been the determination
of the existence of a continuum of intermediate states between the purely epithelial and
purely mesenchymal end states. This concept alone suggests the existence of multiple
points of convergence and divergence, redundancies and vulnerabilities, which may reveal
“choke” points and therapeutic intervention points.

A major challenge emerges in applying these approaches in a real biological setting.
Often, data procurers are basic “wet” scientists that possess extensive, evidence-based
knowledge of different signaling pathways involved in the processes under study, but
they lack the “know-how” regarding the implementation of systems biology approaches.
Conversely, systems biology bioinformatics experts often lack basic knowledge regarding
regulation and signaling. This is a disadvantage that may lead to incorrect results or delays,
as such knowledge enables the rapid curation of the predicted data links and possible
outcomes. Ideally, BNs can be used to understand how virus-induced EMT and EndMT
occur, directing experimentation and cooperating with the interpretation of biological
experiments (Figure 2). However, widespread implementation is often marred by the
inability of these two types of experts to interact efficiently.
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Major hurdles include the day-to-day design of BNs in a “wet lab” context, and the
limited availability of curated data sets. The former is eased by the development of multiple
tools available for modelling BNs, including GINSim [92], BooleanNet (R package) [117],
PicoSAT solver [118], VisiBool [119], Boolsi [120], Boolesim [121], jSBGN [122] and others.
In addition, additional data sets including transcriptomic, genetic and epigenetic data
emerge every day, including NIH-curated databases (https://www.cancer.gov/research/
resources/search?from=0&toolTypes=datasets_databases, accessed on 17 October 2021),
the most prominent of which is TCGA (The Cancer Genome Atlas, https://portal.gdc.
cancer.gov/, accessed on 17 October 2021); COSMIC (Catalogue of Somatic Mutations

https://www.cancer.gov/research/resources/search?from=0&toolTypes=datasets_databases
https://www.cancer.gov/research/resources/search?from=0&toolTypes=datasets_databases
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


Cells 2021, 10, 2863 10 of 15

in Cancer, https://cancer.sanger.ac.uk/cosmic, accessed on 17 October 2021) and many
others. It is worth noting that many researchers now have the capacity to generate their
own datasets through diverse–omics techniques.

In conclusion, this review invites a major implementation of computational science
and the use of models like Boolean Networks to study complex events like viral infection
and cellular plasticity induced by viruses. Such widespread use of BNs could accelerate
our understanding of these complex phenomena and facilitate the search for novel and re-
purposed antiviral treatments, targeting crucial cellular targets to control virus progression
and/or virus-induced cellular transformation.
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