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Differential regulations of 
vestibulo-ocular reflex and 
optokinetic response by β- and 
α2-adrenergic receptors in the 
cerebellar flocculus
Ryo Wakita, Soshi Tanabe, Kazunari Tabei, Asako Funaki, Takuma Inoshita & Tomoo Hirano

Norepinephrine modulates synaptic plasticity in various brain regions and is implicated in memory 
formation, consolidation and retrieval. The cerebellum is involved in motor learning, and adaptations 
of the vestibulo-ocular reflex (VOR) and optokinetic response (OKR) have been studied as models 
of cerebellum-dependent motor learning. Previous studies showed the involvement of adrenergic 
systems in the regulation of VOR, OKR and cerebellar synaptic functions. Here, we show differential 
contributions of β- and α2-adrenergic receptors in the mouse cerebellar flocculus to VOR and OKR 
control. Effects of application of β- or α2-adrenergic agonist or antagonist into the flocculus suggest 
that the β-adrenergic receptor activity maintains the VOR gain at high levels and contributes to 
adaptation of OKR, and that α2-adrenergic receptor counteracts the β-receptor activity in VOR and 
OKR control. We also examined effects of norepinephrine application, and the results suggest that 
norepinephrine regulates VOR and OKR through β-adrenergic receptor at low concentrations and 
through α2-receptor at high concentrations.

The cerebellum is involved in motor learning, and adaptations of the vestibulo-ocular reflex (VOR) and optoki-
netic response (OKR) have been studied as models of motor learning1–4. VOR and OKR are reflex eye movements 
that work to suppress the image motion on a retina during head movement. In VOR, turning the head stimu-
lates the vestibular organ, resulting in turning of the eyeball in the direction opposite to the head turn. In OKR, 
movement of the large visual field (optokinetic stimulation) induces the eyeball to turn in the same direction as 
the image motion. VOR and OKR show adaptive changes if VOR or OKR cannot suppress the retinal slip during 
head motion or optokinetic stimulation. For example, if sinusoidal rotation of an animal is continuously coupled 
with sinusoidal rotation of a screen surrounding the animal in the opposite or same direction, the gain of VOR 
gradually increases or decreases, respectively1, 2. On the other hand, when the surrounding screen is rotated at 
a relatively high speed without animal rotation, the eyeball turn cannot follow the screen movement at first. 
However, if the optokinetic stimulation continues for a certain time, the speed of the eyeball turn gets faster such 
that it can follow the screen movement better3, 4. These phenomena are adaptations of VOR and OKR, which work 
to improve stabilization of the visual image on the retina during animal movement.

Both VOR and OKR are mediated by brainstem nuclei including vestibular nuclei, and regulated by Purkinje 
cell outputs from the cerebellar flocculus. In VOR, the head movement is sensed by vestibular organs, which send 
outputs to vestibular nuclei and to the flocculus. In OKR the retinal slip information is sent to the nucleus of optic 
tract and the accessory optic system, which send outputs to the nucleus reticularis tegmenti pontis (NRTP) and 
the inferior olive nuclei (ION). The NRTP sends outputs to the vestibular nuclei and to the flocculus. In horizontal 
OKR or VOR, neurons in the vestibular nuclei send outputs to neurons in the oculomotor or the abducens nuclei, 
which directly control extraocular muscles5. The retinal slip information from the ION, vestibular information, 
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efference copy of motor command, etc., converge on Purkinje cells of the flocculus1, 2, 6, 7, and the inhibitory out-
put signals of these Purkinje cells onto neurons in vestibular nuclei control VOR and OKR1, 2.

Synaptic plasticity mechanisms dependent on climbing fiber inputs from the ION in a Purkinje neuron such 
as long-term depression (LTD) at excitatory parallel fiber – Purkinje neuron synapses and rebound potentiation 
(RP) at inhibitory interneuron – Purkinje neuron synapses, and also synaptic plasticity in the vestibular nuclei, 
seem to contribute to adaptation of VOR and OKR1–3, 8, 9. Although the roles and regulatory neuronal pathways 
are similar between VOR and OKR, differential regulations of VOR and OKR by cerebellar synaptic plasticity 
mechanisms have been reported8, 10, 11. In addition, Faulstich et al.12 reported interesting one-directional interac-
tion between them. Both gain-increase and gain-decrease VOR training increase the OKR gain similarly to OKR 
training, but OKR training does not affect VOR.

A previous study showed that administration of β-adrenergic agonist to the flocculus increases the OKR gain 
but not the VOR gain13. The norepinephrine input to the cerebellum activating adrenergic receptors comes from 
the locus coeruleus14–16. Emotional arousal activates locus coeruleus neurons, and the released norepinephrine 
modulates synaptic plasticity in various brain regions and is implicated in memory formation, consolidation and 
retrieval16, 17. It has also been proposed that norepinephrine plays a role in modulation of cerebellum-dependent 
learning18, 19, and injection of β-adrenergic antagonist into the rabbit flocculus diminishes the gain-up adaptation 
of VOR20, 21. However, it is not known whether the β-adrenergic receptor contributes to the gain increase adapta-
tion of OKR induced by various training paradigms. It is also enigmatic how the α2-adrenergic receptor, which 
can counteract activity of the β-adrenergic receptor22, influences VOR and OKR. In addition, it is unclear which 
adrenergic receptor (β or α2) is predominantly activated by norepinephrine in the flocculus. We have addressed 
these questions and attempted to clarify the respective roles of β- and α2-adrenergic receptors in regulation and 
adaptations of VOR and OKR in mice.

Results
Effects of β-adrenergic agonist or antagonist on VOR and OKR.  First, we examined the effects of 
β-adrenergic agonist isoproterenol and antagonist propranolol on OKR and VOR. Administration of isopro-
terenol into the left flocculus increased the OKR gain measured in the right eye from 0.33 ± 0.02 to 0.47 ± 0.02 
(n = 6; p < 0.001, paired Student’s t-test), but did not affect the VOR gain (before, 0.66 ± 0.01; after, 0.63 ± 0.04; 
n = 6; p = 0.42) (Fig. 1a–d) in accord with a previous report13. In contrast, application of β-adrenergic antagonist 
propranolol did not affect the OKR gain (before, 0.32 ± 0.02; after, 0.28 ± 0.03; n = 6; p = 0.11), but decreased the 
VOR gain from 0.64 ± 0.03 to 0.51 ± 0.02 (n = 6; p = 0.017) (Fig. 1e–h). Administration of saline affected neither 
the OKR gain (before, 0.31 ± 0.02; after, 0.31 ± 0.03; n = 6; p = 0.81) nor the VOR gain (before, 0.61 ± 0.02; after, 
0.63 ± 0.02; n = 6; p = 0.56) (Fig. 1i,j).

In some cases, after the eye movement recording, the drug application sites were examined in the histologi-
cal preparations to detect fluorescent signals of either lucifer yellow or acriflavine hydrochloride that had been 
applied together with the drug. We detected fluorescent signals in the flocculus, and in addition the signal spread 
to the para-flocculus and/or cochlear nuclei in most cases (Fig. 1k).

We also examined the effects of another β-adrenergic agonist (salbutamol) and antagonist (timolol). 
Salbutamol increased the OKR, but did not affect the VOR gain (Fig. 2a, Supplementary Tables S1, S2), similarly 
to isoproterenol. Timolol did not affect the OKR gain, but decreased the VOR gain similarly to propranolol 
(Fig. 2b, Supplementary Tables S1, S2).

Next, we examined the effects of isoproterenol and propranolol on OKR and VOR in different optokinetic 
or vestibular stimulation conditions (1 Hz, 20°/sec peak velocity; 0.5 Hz, 10°/sec peak velocity). The effects 
on gains were qualitatively similar to those obtained with 1 Hz, 10°/sec peak velocity stimulation (Fig. 2c–h; 
Supplementary Tables S3, S4).

Ipsilateral injection to the right flocculus of isoproterenol or propranolol was also performed, and the effects 
on OKR and VOR were examined. These effects were qualitatively similar to those of contralateral injection 
(Fig. 2i,j; Supplementary Tables S1, S2). The results together indicate that β-adrenergic receptor activation 
enhances OKR but not VOR, and suggest that in the flocculus of a naive mouse that has not experienced drug 
application or training, endogenous β-adrenergic agonist, presumably norepinephrine, is present at a certain 
concentration and supports the VOR gain.

We also measured the phase of OKR or VOR in each condition (Supplementary Tables S5–S8). In general, 
β-adrenergic agonist tended to decrease the phase delay of OKR and increase the phase lead of VOR. However, 
some results were not statistically significant, and some effects, such as that of isoproterenol on the OKR phase, 
were not consistent among different conditions (Supplementary Table S7). Therefore, in this study we concen-
trated on analyses of gains of OKR and VOR.

Recently asymmetrical regulation of eye movement during constant-velocity optokinetic stimulation was 
reported23. We examined effects of administration of isoproterenol or propranolol on the eye movement during 
constant-velocity rotation of the screen at 10 °/sec for 2 sec in both directions (Fig. 3a). Before administration 
of a drug or saline, the velocity of temporal-to-nasal (TN) eye movement did not change significantly during 
2 sec constant-velocity screen movement, whereas the velocity of nasal-to-temporal (NT) movement tended to 
increase (Fig. 3b–d). Thus, the eye velocity of NT movement during the former 1 sec (0.32 ± 0.02, n = 18) was 
smaller than that during the latter 1 sec (0.45 ± 0.02, p < 0.001, paired t-test). On the other hand, they were similar 
(former, 0.35 ± 0.02; latter, 0.36 ± 0.02; n = 18, p = 0.422) in TN movement.

Administration of isoproterenol facilitated the eye movement during the former as well as the latter 1 sec 
period of constant-velocity optokinetic stimulation in both directions (former NT, 0.23 ± 0.05 increase, p = 0.004; 
TN, 0.17 ± 0.01 increase, p < 0.001; latter NT, 0.21 ± 0.04 increase, p = 0.004; TN, 0.14 ± 0.03 increase, p = 0.005; 
n = 6, paired t-test) (Fig. 3e–h, Supplementary Table S9). The velocity increase was not significantly different 
between NT and TN directions in both the former and latter periods (p = 0.185 and 0.216, Student’s t-test) 
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(Fig. 3i,j, Supplementary Table S9). Application of propranolol or saline did not significantly affect the eye veloc-
ity during constant-velocity optokinetic stimulation in either direction (Fig. 3e–h, Supplementary Table S9). 
Thus, we did not detect significant asymmetrical effects of β-adrenergic agonist or antagonist on OKR during 

Figure 1.  Effects of β-adrenergic agonist isoproterenol or antagonist propranolol on OKR and VOR. (a,b), 
Representative eye position traces during OKR or VOR before and after administration of isoproterenol (Iso). 
The command signal corresponding to the position of screen (a) or turntable (b) is also presented (top). (c) 
Averaged (10 cycles) traces of eye position before (grey) and after (black) isoproterenol administration (d) 
Gain changes of OKR and VOR by isoproterenol administration. (e,f) Eye position traces during OKR (e) and 
VOR (f) before and after administration of propranolol. (g) Averaged eye position traces. (h) Gain changes 
of OKR and VOR caused by propranolol administration. (i) Averaged traces of eye position before and after 
saline administration. (j) Gains of OKR and VOR before and after administration of saline. Error bars indicate 
SEM. *p < 0.05, ***p < 0.001, paired Student’s t-test. (k) Photographs of the flocculus injected with acriflavine 
(green). FL, flocculus; PFL, para-flocculus; CN, cochlear nucleus. Scale bar indicates 1 mm.
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the constant-velocity optokinetic stimulation, although we found directional asymmetry of eye movement time 
course before application of a drug.

Effects of β-adrenergic agonist or antagonist on VOR and OKR adaptation.  Previous studies 
showed that not only OKR training but also gain-up VOR or gain-down VOR training increased the OKR gain12. 
We confirmed that OKR training increased the OKR gain from 0.29 ± 0.02 to 0.66 ± 0.03 (0.38 ± 0.03 increase; 

Figure 2.  OKR and VOR gain changes induced by β-adrenergic agonist or antagonist in various conditions. 
(a,b) OKR and VOR gain changes induced by contralateral injection of β-adrenergic agonist salbutamol (a) or 
antagonist timolol (b). (c,d) Effects of contralateral injection of isoproterenol (c) or propranolol (d) on gains 
of OKR and VOR during sinusoidal rotation of the screen or the turntable at 1 Hz, 20°/sec peak velocity. (e,f) 
Effects of isoproterenol (e) or propranolol (f) injection on gains of OKR and VOR during sinusoidal rotation 
of the screen or the turntable at 0.5 Hz, 10°/sec peak velocity. *p < 0.05, **p < 0.01, ***p < 0.001, paired 
Student’s t-test. (g,h) Gain changes of OKR (g) and VOR (h) induced by administration of saline, isoproterenol 
or propranolol under different rotation conditions. *p < 0.05, **p < 0.01, compared with saline-injected 
control, Dunnett’s test. (i,j) OKR and VOR gain changes induced by ipsilateral injection of isoproterenol (i) or 
propranolol (j). **p < 0.01, paired Student’s t-test. Error bars indicate SEM.
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n = 6; p < 0.001), but did not affect the VOR gain (before, 0.59 ± 0.02; after, 0.60 ± 0.03; n = 6; p = 0.64), and 
that gain-up VOR training increased not only the VOR gain (before, 0.62 ± 0.02; after, 0.81 ± 0.05; 0.19 ± 0.05 
increase; n = 6; p = 0.011) but also the OKR gain (before, 0.33 ± 0.02; after, 0.69 ± 0.05; 0.36 ± 0.04 increase; n = 6; 
p < 0.001), and that gain-down VOR training decreased the VOR gain (before, 0.61 ± 0.02; after, 0.41 ± 0.02; 
0.20 ± 0.02 decrease; n = 6; p < 0.001), but increased the OKR gain (before, 0.31 ± 0.02; after, 0.52 ± 0.03; 
0.21 ± 0.03 increase; n = 6; p = 0.001) (Fig. 4; Supplementary Tables S1, S2).

The phase changes of OKR and VOR induced by OKR or VOR training were also measured (Supplementary 
Tables S5, S6). OKR training decreased the phase delay of OKR in several conditions. The VOR phase lead tended 

Figure 3.  NT and TN eye movements during constant-velocity optokinetic stimulation. (a) The command 
velocity signal for the screen movement, screen position and a representative corresponding eye position. (b) 
Eye position traces during constant-velocity optokinetic stimulation in both NT and TN directions recorded 
from a mouse before administration of a drug. Gray lines indicate each data and black lines indicate averaged 
traces from a mouse. (c,d) Mean eye position (c) and velocity (d) traces obtained from 18 mice. Moving average 
for 0.1 sec was applied for velocity traces. (e–h) Effects of administration of isoproterenol, propranolol or 
saline on the eye velocity during the former (e,f) or the latter (g,h) 1 sec of 2 sec constant-velocity optokinetic 
stimulation in NT (e,g) or TN (f,h) direction. (i,j) Effects of administration of isoproterenol, propranolol or 
saline on the eye velocity changes during the former (i) or latter (j) 1 sec of 2 sec constant-velocity optokinetic 
stimulation. Error bars indicate SEM. **p < 0.01, ***p < 0.001, paired Student’s t-test.

http://S1
http://S2
http://S5
http://S6


www.nature.com/scientificreports/

6Scientific Reports | 7: 3944  | DOI:10.1038/s41598-017-04273-9

to be increased by OKR training or VOR gain-down training, although the effects of drugs on the VOR phase 
were unclear and difficult to interpret consistently.

Next, we examined effects of β-adrenergic agonist or antagonist on the OKR and VOR gain changes caused 
by trainings. Administration of propranolol significantly suppressed the gain increase of OKR induced by OKR 

Figure 4.  Effects of OKR, gain-up or gain-down VOR training. (a) Eye movement traces during OKR (a) before 
and after OKR training presented with the command signal corresponding to the screen position. (b) Averaged 
(10 cycles) traces of eye position during OKR before (grey) and after (black) OKR training. (c) OKR gain 
change by OKR training. (d) Eye movement traces during VOR before and after OKR training presented with 
the command signal corresponding to the turntable position. (e) Averaged traces of eye position during VOR. 
(f) VOR gain change by OKR training. (g) Eye movement traces during OKR before and after gain-up VOR 
training. (h) Averaged traces of eye position during OKR. (i) OKR gain change by gain-up VOR training. (j) Eye 
movement traces during VOR before and after gain-up VOR training. (k) Averaged traces of eye position during 
VOR. (l) VOR gain change by gain-up VOR training. (m) Eye movement traces during OKR before and after 
gain-down VOR training. (n) Averaged traces of eye position during OKR. (o) OKR gain change by gain-down 
VOR training. (p) Eye movement traces during VOR before and after gain-down VOR training. (q) Averaged 
traces of eye position during VOR. (r) VOR gain change by gain-down VOR training. Error bars indicate SEM. 
*p < 0.05, ***p < 0.001, paired Student’s t-test.
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training (0.07 ± 0.03; n = 6; p < 0.001 compared with the saline-injected control, 0.38 ± 0.03, Dunnett’s test), by 
gain-up VOR training (0.05 ± 0.02; n = 6; p < 0.001) or by gain-down VOR training (0.07 ± 0.03; n = 6; p = 0.012) 
(Fig. 5; Supplementary Table S1), whereas propranolol administration did not affect VOR gain changes induced 
by any training (Fig. 6, Supplementary Table S2). These results indicate that activation of β-adrenergic receptor is 
involved in the gain-increase change of OKR by various types of training.

In contrast, administration of β-adrenergic agonist isoproterenol did not affect changes of OKR gain or VOR 
gain caused by VOR training (Figs 5 and 6; Supplementary Tables S1, S2). However, isoproterenol increased the 
VOR gain after OKR training (before, 0.64 ± 0,04; after, 0.81 ± 0.03; 0.17 ± 0.03 increase; n = 6; p = 0.04, paired 
Student’s t-test) (Fig. 6; Supplementary Table S2). This result is surprising, as neither isoproterenol administration 
by itself nor OKR training without any drug affected the VOR gain (Supplementary Table S2). Coupling of the 
β−adrenergic receptor activation and OKR training seems to have enhanced the sensitivity of cerebellar flocculus 
neuronal pathways to the vestibular input by some unknown mechanism.

Effects of α2-adrenergic agonist or antagonist on VOR and OKR.  We next examined the involve-
ment of α2-adrenergic receptor in the regulation of VOR and OKR. α2-adrenergic receptor is coupled to Gi 
protein and can counteract the activity of β-adrenergic receptor coupled to Gs protein22, 24, 25. Administration of 
α2-adrenergic agonist UK14304 did not affect the OKR gain, but decreased the VOR gain (before, 0.65 ± 0.04; 
after, 0.49 ± 0.04; n = 6; p = 0.004), similarly to application of β-adrenergic antagonist propranolol (Figs 5 and 6; 
Supplementary Tables S1, S2). On the other hand, α2-adrenergic antagonist yohimbine increased the OKR gain 
(before, 0.30 ± 0.02; after, 0.42 ± 0.03; n = 7; p = 0.010) without affecting the VOR gain, similarly to β-adrenergic 
agonist isoproterenol (Figs 5 and 6; Supplementary Tables S1, S2). We confirmed that DMSO, which was used 
to dissolve UK14304 affected neither OKR nor VOR (Supplementary Tables S1, S2). These results suggest that a 
certain level of cAMP concentration in some flocculus neurons might be necessary to maintain the gain of VOR 
at a high level, because β-adrenergic receptor increases intracellular cAMP concentration through Gs protein and 
α2-adrenergic receptor decreases it through Gi protein.

The effects of α2-adrenergic agonist or antagonist on the changes of OKR or VOR gain by OKR or VOR 
training were also examined (Figs 4 and 5, Supplementary Tables S1, S2). UK14304 suppressed the gain increase 
of OKR by OKR training (0.13 ± 0.03; n = 6; p = 0.001, compared with saline-injected control, Dunnett’s test) or 
by gain-up VOR training (0.22 ± 0.01; n = 6; p = 0.026) (Fig. 5; Supplementary Table S1), suggesting that activa-
tion of α2-adrenergic receptor counteracted the increased β-adrenergic receptor activity that resulted from OKR 
training or gain-up VOR training. α2-adrenergic agonist yohimbine did not significantly affect gain changes of 
OKR or VOR by any training (Figs 5 and 6, Supplementary Tables S1, S2).

Figure 5.  OKR gain changes induced by various treatments. (a) Effects of administration of propranolol (Pro), 
isoproterenol (Iso), saline, yohimbine (Yoh) or UK14304 (UK) on the OKR gain. Pro, Iso and Saline data are 
same as those shown in Fig. 2g. They are presented again for comparison. (b–d) Effects of administration of 
propranolol, isoproterenol, saline, yohimbine or UK14304 on the OKR gain increase induced by OKR training 
(b), by gain-up VOR training (c) or by gain-down VOR training (d). Numbers under each graph indicate 
numbers of mice, and error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001, compared with saline-
injected control, Dunnett’s test.
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Effects of norepinephrine on VOR and OKR.  Finally, we examined the effects of an endogenous agonist 
of adrenergic receptors norepinephrine on OKR and VOR. Application of 10 mM norepinephrine increased the 
OKR gain (before, 0.34 ± 0.02; after, 0.47 ± 0.04; n = 6; p = 0.049) but not the VOR gain (before, 0.57 ± 0.03; after, 
0.56 ± 0.02; n = 6; p = 0.57) (Fig. 7, Supplementary Tables S10, S11), similarly to application of isoproterenol 
(Figs 1, 5 and 6; Supplementary Tables S1, S2). The increase of OKR gain was suppressed by co-application of 
propranolol (before, 0.34 ± 0.02; after, 0.33 ± 0.06; n = 6; p = 0.85) (Fig. 7; Supplementary Table S10). In contrast, 
this co-application decreased the VOR gain (before, 0.62 ± 0.03; after, 0.45 ± 0.06; n = 6; p = 0.009), similarly to 
application of propranolol alone (Fig. 7; Supplementary Tables S2, S11).

Application of 30 mM norepinephrine decreased the VOR gain (before, 0.58 ± 0.03; after, 0.45 ± 0.03; 
n = 6; p = 0.024) (Fig. 7; Supplementary Table S11) similarly to application of UK14304 (Fig. 5; Supplementary 
Table S2). 30 mM Norepinephrine did not influence the OKR gain, but additional application of yohimbine 
increased the OKR gain (before, 0.35 ± 0.02; after, 0.54 ± 0.06; n = 6; p = 0.026) similarly to application of 10 mM 
norepinephrine or isoproterenol (Supplementary Tables S1, S10). These results suggest that norepinephrine pre-
dominantly activates β-adrenergic receptor at a low concentration, whereas at a high concentration norepineph-
rine additionally activates α2-adrenergic receptor. Significant effects of norepinephrine on the phases of OKR and 
VOR were not detected (Supplementary Tables S12, S13).

Discussion
Here, we showed that administration of β-adrenergic agonist into the flocculus increased the OKR gain but not 
the VOR gain, whereas administration there of β-adrenergic antagonist or α2-adrenergic agonist decreased 
the VOR gain and suppressed the gain-up adaptation of OKR. These results suggest that β-adrenergic recep-
tor contributes to adaptation of OKR and keeping the VOR gain at a high level in a naive condition, and that 
α2-adrenergic receptor counteracts the β-receptor activity.

We also showed that administration of norepinephrine at 10 mM increased the OKR gain, whereas at 30 mM it 
decreased the VOR gain and had no effect on the OKR gain. These effects were suppressed by β- or α2-adrenergic 
antagonist, respectively. We think that endogenous norepinephrine binds to a substantial amount of β-receptor 
involved in VOR regulation in the basal condition, so that additional increase of β-adrenergic agonist such as nor-
epinephrine or isoproterenol does not enhance the VOR gain because of a saturation effect of binding, although 
there could be other possibilities. We also suppose that α2-adrenergic receptor activation by norepinephrine 
at a high concentration or by UK143043 counteracted effects of β-adrenergic receptor activation through sup-
pression of adenylyl cyclase. Thus, we conclude that norepinephrine predominantly activates β-receptor at a low 
concentration, and activates α2-receptor only at a high concentration in the flocculus. These results are in line 

Figure 6.  VOR gain changes induced by various treatments. (a) Effects of administration of propranolol (Pro), 
isoproterenol (Iso), saline, yohimbine (Yoh) or UK14304 (UK) on the VOR gain. Pro, Iso and Saline data are 
same as those shown in Fig. 2h. They are presented again for comparison. (b–d) Effects of administration of 
propranolol, isoproterenol, saline, yohimbine or UK14304 on the VOR gain changes induced by OKR training 
(b), by gain-up VOR training (c) or by gain-down VOR training (d). Numbers under each graph indicate 
numbers of mice, and error bars indicate SEM. *p < 0.05, **p < 0.01, compared with saline-injected control, 
Dunnett’s test.
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with a previous study on cerebellar slice preparations, in which norepinephrine increased the firing frequency 
of Purkinje cells at low concentrations through β-receptor and decreased it at high concentrations through 
α-receptor26.

Our results showing that activation of β-adrenergic receptor increased the OKR gain, that β-adrenergic 
antagonist suppressed the gain increase of OKR by OKR training, gain-up or gain-down VOR training, and 
that a low concentration of norepinephrine predominantly activated β-adrenergic receptor, together suggest 
that norepinephrine-dependent activation of β-adrenergic receptor in the flocculus is involved in the OKR gain 
increase caused by various types of training.

On the other hand, our finding that β-adrenergic antagonists did not affect the gain-up VOR adaptation is 
contradictory to a previous report that found suppression of the gain-up VOR adaptation by β-adrenergic antag-
onist sotalol in rabbits20. The effects of β-adrenergic antagonist on the basal VOR gain were also different between 
the two studies. We found that propranolol or timolol decreased the VOR gain, whereas the previous study found 
no effect of sotalol. Differences in antagonists, animal species or other experimental conditions could be the 
cause of these differences. The norepinephrine concentration or expression patterns of adrenergic receptors in 
the flocculus might be different between mice and rabbits. We also note that sotalol inhibits not only β-adrenergic 
receptors but also potassium channels27.

In this study we focused on the flocculus among the floccular complex including the paraflocculus, because 
some studies reported that the flocculus played more critical role in regulation of OKR and VOR than the para-
flocculus4, 28. We detected significant effects of drug injection to the flocculus on OKR and VOR as described 
above. However, the injected drug often diffused into the paraflocculus, and we do not deny possible contribution 
of the paraflocculus to regulation of OKR and VOR.

Asymmetrical regulation of eye movement during constant-velocity optokinetic stimulation was reported 
recently23. Thus, we examined effects of isoproterenol and propranolol on TN and NT eye movement during 2 sec 
10 °/sec constant-velocity optokinetic stimulation. TN and NT eye movements were enhanced by isoproterenol 
application and unaffected by propranolol application. We did not detect significant asymmetrical effects of iso-
proterenol between the two directions. On the other hand, we detected asymmetrical regulation of eye velocity 
during the 2 sec constant-velocity optokinetic stimulation; the NT eye movement got faster, whereas the TN 
movement kept constant velocity. These results together with previous report23 suggest that neuronal circuits reg-
ulating OKR works asymmetrically. Thorough future analyses of several OKR parameters in various stimulation 
conditions such as different stimulation velocity, duration, with turning off and on of the light, or during OKR 
training might reveal asymmetrical effects of adrenergic drugs on OKR.

We do not know what kind of neuronal activity changes induced by activation of β-adrenergic receptor medi-
ates the OKR gain increase. There are several subtypes in both β- and α2-adrenergic receptors22, and they are 
widely expressed in the cerebellar cortex15, 29, 30, although the precise sub-cellular localization of each subtype is 
unclear. β1-adrenergic receptor showing high affinity to norepinephrine is predominantly expressed in Purkinje 
neuron, whereas low affinity β2-adrenerigic receptor is expressed in other types of cerebellar cortical neurons15. 
All types of cerebellar cortical neurons express α2a- and α2b-adrenergic receptors in human30.

Figure 7.  Effects of norepinephrine application on the OKR and VOR gains. (a,b), Effects of 10 mM 
norepinephrine (NE) without (a) or with propranolol (Pro) (b). (c,d) Effects of 30 mM norepinephrine without 
(c) or with yohimbine (Yoh) (d). Error bars indicate SEM. *p < 0.05, **p < 0.01, paired Student’s t-test.
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Previous studies showed that activation of β-adrenergic receptor enhances the Purkinje neuron activity26, par-
allel fiber synaptic or glutamate responses of Purkinje neurons31, 32, and inhibitory synaptic or GABA responses of 
Purkinje neurons33, 34, and that α2-adrenergic activity decreases the Purkinje neuron activity26, and parallel fiber 
or inhibitory synaptic responses of Purkinje neurons32, 35. It has also been reported that stimulation of the locus 
coeruleus enhances the Purkinje neuron response to climbing fiber activation14, and that α2-adrenergic receptor 
activity decreases the glutamate release from climbing fibers36. Whether any of these effects are directly related to 
the OKR gain increase or the maintenance of high basal VOR gain is unclear.

Synaptic plasticity in the cerebellum has been reported to contribute to the regulations of VOR and OKR. In 
particular, involvement of LTD at parallel fiber – Purkinje cell synapses induced by coupled activation of paral-
lel fibers and a climbing fiber has been intensively studied1, 7, 9, although normal OKR and VOR adaptations in 
mutant mice defective in LTD were also reported37. In addition, climbing fiber activity-dependent enhancement 
of inhibitory synaptic transmission onto a Purkinje cell was shown to contribute to VOR adaptation8. There are 
several synaptic or intrinsic plasticity mechanisms in the cerebellum that could support motor learning9, 38–40.

The above plasticity mechanisms might be regulated by β- or α2-adrenergic receptor activity through Gs or Gi 
protein controlling intracellular cAMP concentration. cAMP facilitates RP induction41–43, and molecular signa-
ling cascades regulating LTD could also be influenced by cAMP in a Purkinje cell, although cGMP plays a more 
important role in LTD induction44. The cAMP concentration-dependence might differ between LTD and RP. It 
was shown that the intracellular Ca2+ threshold for LTD induction is lower than that for RP induction45. Different 
contributions of LTD and RP to VOR and OKR adaptation have also been reported. In delphilin knockout mice, 
LTD is more easily induced than in wild-type mice and OKR adaptation is facilitated10, whereas VOR adaptation 
is not11. In RP-deficient transgenic mice, VOR adaptation is suppressed but OKR adaptation is not8. These results 
raise the possibility that the intra-Purkinje cell cAMP level regulated by β- and α2-adrenergic receptor controls 
LTD and RP differently, and also affects VOR and OKR differently. Other plasticity mechanisms such as intrinsic 
excitability plasticity46 could be also affected by cAMP and might affect VOR and OKR differently.

The visual, vestibular, and efference-copy or eye movement-related parallel fiber inputs to Purkinje cells in the 
flocculus are likely to show different firing patterns during OKR and VOR training, and might undergo different 
activity-dependent plasticity such as LTD and/or RP in the presence of norepinephrine. The present finding that 
OKR training in the presence of β-adrenergic agonist increased VOR gain might be explained by a neuronal 
activity-dependent plasticity mechanism facilitated by activation of β-adrenergic receptor.

There are still other possible mechanisms that could differentially modulate OKR and VOR by norepineph-
rine. For example, the visual, vestibular, and efference-copy or eye movement-related mossy fiber inputs to gran-
ule cells might have different sensitivity to norepinephrine. It has also been reported that there are several types 
of Purkinje cells showing different firing patterns during OKR and VOR37, and Purkinje cells with different out-
put patterns might have different norepinephrine sensitivity. These possibilities are not mutually exclusive, and 
detailed future studies are necessary to clarify how the noradrenergic system in the flocculus modulates OKR and 
VOR differently.

Methods
We used 8–10 weeks old male C57BL/6 mice for VOR and OKR recordings, and experimental procedures were 
carried out in accordance with the guidelines laid down by the National Institutes of Health of the USA and by 
Kyoto University, and approved by the local committee for handling experimental animals in the Graduate School 
of Science, Kyoto University.

The methods of eye movement recording and injection of drugs into the cerebellar flocculus were similar to 
those described previously8, 10, 47, 48. Briefly, a mouse was anesthetized by intraperitoneal injection of a mixture of 
0.9% ketamine and 0.2% xylazine. A head holder was fixed to the top of the skull with small screws and dental 
cement. The next day, under the same anesthesia protocol as described above, craniotomy of about 1 mm diam-
eter was made on the left periotic capsule, and a Teflon cannula was placed into the hole aiming at the flocculus 
and then affixed with dental acrylic. After this surgery, the mouse was allowed to recover for at least 48 hours.

For recording OKR or VOR, a mouse was fixed on a turntable surrounded by a cylindrical screen (diameter 
30 cm, custom made) with vertical black and white stripes (14°). Sinusoidal oscillation of the turntable in the 
dark or that of the surrounding screen in the light at 1 Hz and 10°/sec peak velocity, was applied to induce VOR 
or OKR, respectively, unless otherwise stated. The right eye movement was monitored with an infrared-sensitive 
CCD camera (XC-HR50, Sony, Japan) under illumination by an infrared LED47. The image was sampled at 
200 Hz, and the center of the pupil was calculated to estimate the eye position using the software (Geteye, Morita, 
Kyoto, Japan). A drop of pilocarpine hydrochloride (Santen, Osaka, Japan) was used to decrease and stabilize the 
pupil size during VOR recording in the dark. OKR or VOR were recorded for 30 seconds, 3 times with intervals 
of about 30 seconds in a mouse.

OKR or VOR performance was evaluated by measuring gain and phase as in previous studies8, 10. Eye position 
traces without rapid eye movement or eye blinking during each 30 second recording period was used to estimate 
the gain and phase of OKR or VOR. First, eye velocity was calculated as the difference between consecutive eye 
position values divided by the sampling interval of 5 msec. Then, at least 10 cycles of eye velocity curve were 
averaged and fitted with a sinusoidal curve by a least square method. The gain was defined as the amplitude of 
fitted sinusoidal eye velocity curve divided by that of the velocity curve of screen or turntable. The phase lag of eye 
velocity was defined as positive, and the phase zero for VOR was defined as the condition in which the head and 
eye movements were 180° out of phase. Thus, the phase zero corresponds to the ideal condition for stabilizing the 
visual image both in OKR and VOR. Estimated values from 3 trials were averaged in each mouse. N indicates the 
number of mice examined in each experiment, and the mean ± standard error of the measurement is presented.

Asymmetrical eye movement was examined by applying constant velocity optokinetic stimulation. The screen 
was rotated at 10°/sec for 2 sec in one direction. Then, the direction of screen rotation was reversed by linearly 
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changing the rotation speed for 1 sec. Alternation of the rotation direction was repeated for 30 times. More than 9 
eye position traces without rapid eye movement were averaged. The mean eye velocity at each time was calculated 
from mean eye positions.

For OKR or VOR training, a cycle consisting of 50 sec training followed by 10 sec resting period was repeated 
for 60 minutes in the light. The OKR training consisted of sinusoidal screen rotation at 1 Hz, 10°/sec peak velocity. 
The gain-up VOR training consisted of sinusoidal turntable rotation at 1 Hz, 10°/sec peak velocity coupled with 
out-of-phase rotation of the screen at 5°/sec peak velocity. The gain-down VOR training consisted of sinusoidal 
turntable rotation at 1 Hz, 10°/sec peak velocity coupled with in-phase rotation of the screen at 1 Hz, 10°/sec peak 
velocity. 0.6 μl of agonist or antagonist for adrenergic receptors dissolved in saline (76 mM isoproterenol, 100 mM 
propranolol, 10 mM yohimbine, 10 or 30 mM norepinephrine, 1 mM UK14304 containing 10% DMSO, all from 
Sigma-Aldrich, St. Louis, USA; 14 mM salbutamol, Tocris, Bristol, UK; 20 mM timolol, Wako, Osaka, Japan)29, 49–

51 was applied to the left flocculus through a teflon cannula using a micro-syringe (701 N, Hamilton, Reno, USA). 
Isoproterenol or propranolol was injected into the right flocculus in some experiments. In some cases, the loca-
tion of drug administration was examined by injecting a fluorescent dye (Lucifer yellow (0.1%, Sigma-Aldrich) or 
acriflavine hydrochloride (0.01%, Wako)) followed by observation of cerebellar slices.

The effects of agonist or antagonist on VOR or OKR were examined one day after recording VOR or OKR in 
naive untreated mice that had not experienced drug administration or training except for asymmetrical OKR 
examination, in which eye movement was recorded before and after drug administration on a same day with an 
interval of >3 hours. To study effects of agonist or antagonist on OKR or VOR adaptation, each drug was applied 
at the start of the first training cycle. The two-tailed paired Student’s t-test was used to compare mean values of 
gain and phase of OKR or VOR between before and after each treatment, after checking the normality of data with 
the Kolmogorov-Smirnov test. Dunnett’s test was used to compare mean values of gain and phase in each experi-
mental group with those obtained from a corresponding saline-injected control group. We set the α level at 0.05.
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