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Theory of the Kitaev model in a [111] magnetic field
Shang-Shun Zhang 1,2✉, Gábor B. Halász3,4 & Cristian D. Batista 1,5

Recent numerical studies indicate that the antiferromagnetic Kitaev honeycomb lattice model

undergoes a magnetic-field-induced quantum phase transition into a new spin-liquid phase.

This intermediate-field phase has been previously characterized as a gapless spin liquid.

By implementing a recently developed variational approach based on the exact fractionalized

excitations of the zero-field model, we demonstrate that the field-induced spin liquid is gapped

and belongs to Kitaev’s 16-fold way. Specifically, the low-field non-Abelian liquid with

Chern number C= ±1 transitions into an Abelian liquid with C= ±4. The critical field and the

field-dependent behaviors of key physical quantities are in good quantitative agreement with

published numerical results. Furthermore, we derive an effective field theory for the field-

induced critical point which readily explains the ostensibly gapless nature of the intermediate-

field spin liquid.
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The exactly solvable Kitaev model on the honeycomb lattice1

has deepened our insight into quantum spin liquids and
helped us in identifying strongly spin-orbit-coupled 4d and

5d materials that may host these exotic quantum phases of
matter2,3. Indeed, recent years have seen a flurry of such “Kitaev
materials” in which the microscopic spin Hamiltonian is believed
to approximately realize the Kitaev honeycomb model4–7. The
most famous ones include the honeycomb iridates, Na2IrO3

8–13,
α-Li2IrO3

14,15, and H3LiIr2O6
16, as well as the honeycomb halide

α-RuCl317–25.
While most of these materials are magnetically ordered at the

lowest temperatures, the zigzag magnetic order in α-RuCl3 can be
suppressed with an in-plane magnetic field26–35. Also, there are
some experimental indications for an intermediate-field spin-
liquid phase between the low-field magnetically ordered phase
and the high-field spin-polarized phase. Most importantly, a
recent experimental work36 reported a half-integer-quantized
thermal Hall conductivity in the intermediate-field regime just
beyond the transition out of zigzag order. Though the exact
nature of this regime is still an open question, the ongoing
experimental efforts reveal the importance of precisely char-
acterizing field-induced spin-liquid phases.

Motivated in large part by the intriguing experimental obser-
vations, the behavior of the Kitaev model in a magnetic field
has been extensively studied37 by various approaches, including
exact diagonalization38–42, density-matrix renormalization group
(DMRG)40–43, infinite DMRG (iDMRG)44, tensor-network
methods45, continuous-time quantum Monte Carlo techniques46,
and slave-particle mean-field theories47. These approaches all give
consistent results. While the ferromagnetic Kitaev model has a
single transition into a polarized phase, the antiferromagnetic
Kitaev model includes a new intermediate-field spin liquid
between the low-field non-Abelian spin liquid1 and the high-field
polarized phase.

In this work, we implement a novel variational approach48 to
investigate the ground-state phase diagram of the antiferromagnetic
Kitaev model in a magnetic field parallel to the [111] direction.
This approach is based on the exact fractionalized Majorana-
fermion (“spinon”) and gauge-flux (“vison”) excitations of the pure
Kitaev model at zero field1. It accounts for two effects of the
magnetic field: the renormalization of the Majorana dispersion

through a hybridization with pairs of fluxes (see Fig. 1a) and the
finite dispersion acquired by the flux pairs themselves (see Fig. 1b).
Remarkably, we find a continuous quantum phase transition,
induced by a softening of a hybridized excitation, at a critical field
hc≃ 0.50, which is very close to the critical field hc≃ 0.44 reported
by a recent iDMRG study44. The critical point signals the transition
of the non-Abelian spin liquid1 with Chern number C= ± 1 into an
Abelian spin liquid with C= ± 4. The predicted field dependence of
the flux expectation value and the second derivative of the ground-
state energy is also in good quantitative agreement with the iDMRG
results. Moreover, the effective field theory of the quantum
critical point, as derived from the microscopic Hamiltonian, pre-
dicts a low-energy ring of gapped excitations in momentum space,
which is difficult to be distinguished from a gapless Fermi surface
in finite systems. We conjecture that this is the main reason why
previous works38,40–43 characterized the phase at h≳ hc as a gapless
spin liquid.

Model
We consider the antiferromagnetic Kitaev model1 in an external
magnetic field along the [111] direction,

H ¼ ∑
α
∑
r2A

σαr σ
α
rþr̂α

þ h∑
r
ðσxr þ σyr þ σzrÞ; ð1Þ

where h is the magnetic field (in units of the Kitaev energy) and
r̂α is the nearest-neighbor vector from an A site to a B site along
an α bond (see Fig. 1). For the exactly solvable Kitaev model in
the h= 0 limit, the low-energy spectrum comprises gapless
matter fermions (i.e., spinons) with a single Dirac cone and
gapped dispersionless Z2 gauge fluxes. These elementary excita-
tions are described in terms of four Majorana fermions cr and bαr
with α= x, y, z at each site r, where cr are the matter fermions,
and bαr are bond fermions associated with the Z2 gauge field
uαr;rþr̂α

� ibαr b
α
rþr̂α

¼ ± 1. The gauge fields are conserved bond
variables that commute with each other; their product around any
plaquette p (see Fig. 1a) is gauge invariant and expressible in
terms of the physical spins:

Wp ¼ uz12u
x
32u

y
34u

z
54u

x
56u

y
16 ¼ σx1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6: ð2Þ

Thus, Wp= ±1 can be identified as static Z2 gauge fluxes. In each
flux sector, {Wp= ±1}, represented with an appropriate gauge-field

Fig. 1 Effect of the magnetic field. a Hybridization between a flux pair and a fermion. b Hopping of a flux pair between two neighboring bonds. Definitions
of the plaquettes p, the lattice sites 1−6, the two sublattices A and B, and the nearest-neighbor bond vectors r̂x;y;z are also shown.
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configuration, fuαr;rþr̂α
¼ ± 1g, the zero-field model then reduces to

a quadratic matter-fermion problem.
While the model in Eq. (1) is not exactly solvable for a finite

field, we can derive a low-energy effective model by projecting H
into the low-energy sector of the pure Kitaev model (corre-
sponding to h= 0) generated by single matter-fermion and/or
flux-pair excitations48. We focus on flux pairs because, unlike
single fluxes, they are coherent fermionic quasiparticles48 and can
readily hybridize with matter fermions (see Fig. 1a). The fer-
mionic flux-pair excitations can be represented with dressed
bond-fermion operators ð~χαr2AÞy ¼ 1

2 ð~b
α

r � i~b
α

rþr̂α
Þ that have the

same projective symmetries as the bare bond-fermion operators
ðχαr2AÞy ¼ 1

2 ðbαr � ibαrþr̂α
Þ. The operator ð~χαr2AÞy turns the ground

state of the pure Kitaev model into an excited state with a single-
flux pair on the α bond connected to the site r∈ A by not only
creating a bond fermion but also distorting the matter-fermion
state: ð~χαr2AÞy ωj i � 0j i ¼ ϕαr

�� �� χαr
�� �

, where ωj i and ϕαr
�� �

are the
matter-fermion vacua of the gauge-field configurations 0j i and
χαr
�� �

that correspond to the flux-free sector and the single-flux-
pair sector, respectively. (Mathematically, χαr

�� � ¼ ðχαr Þy 0j i, while
0j i is the bare-bond-fermion vacuum with uαr;rþr̂α

¼ �1 for all
bonds.) If we project the pure Kitaev model [i.e., the first term of
Eq. (1)] to its low-energy sector containing at most one matter-
fermion or flux-pair excitation, the resulting low-energy Hamil-
tonian reads

~Hh¼0 ¼ ∑
α
∑
r2A

icrcrþr̂α
þ Δχ ∑

α
∑
r2A

ð~χαr Þyð~χαr Þ; ð3Þ
where the first term is the quadratic matter-fermion problem
within the flux-free sector1, while the second term accounts for
the finite energy (Δχ≃ 0.26) of a flux pair. The Zeeman term [i.e.,
the second term of Eq. (1)] can then either hybridize a flux pair
with a matter fermion (see Fig. 1a) or hop a flux pair to a
neighboring bond (see Fig. 1b). By summing ~Hh¼0 and the most
general symmetry-allowed Hamiltonians describing these two
processes, the effective low-energy Hamiltonian for the full model
in Eq. (1) becomes

~H ¼ ~Hh¼0 þ h∑
α
∑
R
pR;α ∑

r2A
i~b

α

r crþR þ ∑
r2B

i~b
α

r cr�R

� �

� ihq∑
α;β

ϵαβ ∑
r2A

ð~χαr Þy~χβr þ ∑
r2B

ð~χαr�r̂α
Þy~χβr�r̂β

� �
;

ð4Þ

where R is a lattice vector, ϵαβ=∑γϵαβγ is an antisymmetric
symbol based on the Levi-Civita symbol ϵαβγ, while pR,α and q are
dimensionless parameters to be determined. Notice that some
pR,α are identical due to the threefold rotation symmetry acting
simultaneously in real space and spin space.

Since the effective Hamiltonian ~H is quadratic, it can be
straightforwardly diagonalized in momentum space:

~H ¼∑
k

iλkC
y
k;ACk;B þH:c:

h i
þ ∑

k;α;β
Δχδαβ � ihqϵαβ 1þ eik�ðr̂α�r̂βÞ� 	n o

ð~Xα
kÞ

yð~Xβ
kÞ

þ hffiffiffi
2

p ∑
k;α

iPk;α
~X
α
�k þ ð~Xα

kÞ
yh i
Ck;A

n
þP�k;α eik�̂rα ~X

α
�k � ð~Xα

kÞ
yh i
Ck;B þH:c:

o
;

ð5Þ

where λk ¼ ∑αe
ik�̂rα and Pk,α=∑RpR,α eik⋅R, while

Ck;ν ¼
1ffiffiffiffiffiffi
2N

p ∑
r2ν

cre
�ik�r; ~X

α
k ¼

1ffiffiffiffi
N

p ∑
r2A

~χαr e
�ik�r ð6Þ

are momentum-space matter and bond fermions in terms of the
sublattice index ν= A, B and the system size N. By considering

the matrix elements of the Zeeman term∝ h in Eq. (1) within the
low-energy sector of the pure Kitaev model48, we relate the
dimensionless parameters in Eq. (5) to matter-fermion matrix
elements of this exactly solvable model (Note: see the Supple-
mentary Information for more details on the dimensionless
parameters of the effective Hamiltonian, the expectation value of
the flux operator, the coefficients of the effective field theory, and
the nonanalytic behavior of the ground-state energy):

q ¼hϕβ0jð1þ ic0cr̂α Þjϕ
γ
0i; α≠β≠γ;

Pk;α ¼hϕα0jωi þ
1
2
∑
k0
ð1� e�ik0 �̂rαþiφk0 Þhϕα0jψy

k0ψ
y
kjωi;

ð7Þ

where r= 0 is an A site, while ψk ¼ ðCk;A þ ieiφkCk;BÞ=
ffiffiffi
2

p
in

terms of eiφk ¼ λk=jλkj are the matter fermions diagonalizing the
flux-free sector of the pure Kitaev model. For a finite honeycomb
lattice with N= 121 × 121 unit cells, we numerically find
q≃ 0.0494 and P0,α≃ 0.722.

Results
We study the low-energy effective model in Eq. (4) as a function
of the magnetic field h. At zero field, the spectrum coincides with
that of the pure Kitaev model and contains one dispersive matter-
fermion band as well as the three flat bond-fermion bands (see
Fig. 2a). For a small field, h≪ Δχ, the hybridization between these
four bands gives rise to a finite energy gap, ΔK(h)∝ h3, at the K
point of the Brillouin zone (BZ). The slow field dependence of
ΔK(h), which is expected from a perturbative argument by
Kitaev1, explains why the global minimum of the band structure
remains at the K point up to a large field, h0≃ 0.46. As shown in
Fig. 3a, the global minimum switches from the K point to the Γ
point at h= h0, and the corresponding gap, ΔΓ(h), closes at a
slightly larger field, hc≃ 0.50 (see Fig. 2b). Since the little group of
the Γ point includes the threefold rotation C3, the fermion
eigenmodes at the Γ point can be classified according to their C3

eigenvalues. The natural bond-fermion modes, corresponding to
C3 eigenvalues 1 and e∓2πi/3, respectively, are then

~X
0
0 ¼ ~X

x
0 þ ~X

y
0 þ ~X

z
0

� �
=

ffiffiffi
3

p
;

~X
±
0 ¼ ~X

x
0 þ e± 2πi=3~X

y
0 þ e�2πi=3~X

z
0


 �
=

ffiffiffi
3

p
:

ð8Þ

Fig. 2 Low-energy spectrum of the effective Hamiltonian. The fermion
dispersions correspond to h= 0.05 in (a) and h= hc≃ 0.50 in (b). The
color scale shows the matter-fermion weight, 0 < Zψ < 1, of the given
fermion eigenmode; red (blue) color indicates predominantly matter-
fermion (bond-fermion) character. The insets show the spectrum over the
full energy range. Note that a hybridization decay length, ξ= 25, is used to
regularize the K-point behavior (See the “Note” above earlier).
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Since the matter-fermion mode ψ0 is invariant under C3, it can
only hybridize with the bond-fermion mode ~X

0
0 . At the critical

field, hc ¼ 3
ffiffiffiffiffiffiffiffiffiffi
Δχ=2

q
ð∑αP0;αÞ− 1 ’ 0:50, one of the resulting

hybridized eigenmodes is gapless. In contrast, there is a higher
critical field, h0c ¼ Δχ=ð2

ffiffiffi
3

p
qÞ ’ 1:52 (not shown in Fig. 3), at

which the pure bond-fermion eigenmode ~X
þ
0 has vanishing

energy. We note that a complete diagonalization over the full BZ
reveals yet another critical point at hc″≃ 1.0 due to the softening
of a hybridized mode at the M point. We emphasize, however,
that the effective model is no longer expected to be valid when h
is significantly larger than hc.

Figure 3a shows the overall energy gap as a function of the
magnetic field h. As expected, the gap is proportional to h3 at the
smallest fields, h≪ Δχ. Just below hc, the global minimum of the
excitation spectrum switches from the K point to the Γ point, and
the gap vanishes at hc≃ 0.5038,40,44. Importantly, the zero-energy
mode at h= hc has dominant bond-fermion character with a
large bond-fermion weight 6/(6+ Δχ)≃ 0.96 (see also Fig. 2b),
which is consistent with the numerical closing of the vison gap in
the specific heat38. In contrast, the gap reopens for h≳ hc, which
appears to be in contradiction with the same numerical results
and the corresponding conjecture of a gapless U(1) spin liquid at
intermediate fields. However, our analytic approach can also

explain the numerical similarity between the gapped spin liquid at
h≳ hc and a gapless spin liquid with a circular spinon Fermi
surface. Indeed, as we explain below, the phase transition at
h= hc gives rise to a low-energy ring at h≳ hc (see the inset of
Fig. 3a) which expands from the Γ point and corresponds to a
small energy gap / ðh� hcÞ3=2. This low-energy ring naturally
explains the large low-energy density of states found by exact
diagonalization38,40. The emergence of the low-energy ring and
the nature of the h≳ hc phase are explained in the next section,
where we derive an effective field theory to describe the con-
tinuous topological phase transition at h= hc.

Figures 3b and c plot the second derivative of the ground-state
energy, E

00
G ¼ d2EG=dh

2, and the expectation value of the Z2
gauge flux, 〈Wp〉, against the magnetic field. As we explain below,
the discontinuity of E

00
G at h= hc is a generic property of the

corresponding phase transition. This discontinuity leads to a peak
in E

00
G at h= hc, which is qualitatively and quantitatively con-

sistent with the iDMRG results44. We note that our result for
〈Wp〉 (See the “Note” above earlier) (see Fig. 3c) is also consistent
with iDMRG.

We argue that our effective model in Eq. (4) remains valid up
to a field h≳ hc just beyond the first phase transition. Indeed, the
fractionalized excitations of the pure Kitaev model remain well
defined throughout the low-field phase at h < hc; however, after
the first phase transition induced by their softening, these original
excitations are superseded by the emergent excitations of the
higher-field phase. Therefore, we focus on the first phase transi-
tion at h= hc throughout the rest of this work.

Remarkably, the critical field hc≃ 0.50 is only 10% higher than
the corresponding iDMRG result, hc≃ 0.4444. Also, the slight
overestimation of hc is not surprising because the inclusion of
higher-energy (E≃ 2Δχ) states with four fluxes and one matter
fermion would lead to a reduction of hc. Finally, at h= hc, the
dynamical spin structure factor from iDMRG indicates that the
spin excitation gap closes at the Γ point, which is in agreement
with our results. Indeed, since a spin excitation fractionalizes into
a pair of fermion excitations, and the fermions at h= hc are
gapless at the Γ point (see Fig. 2b), a pair of gapless fermions has
zero total momentum, corresponding to a vanishing spin gap at
the Γ point. These similarities between the iDMRG results and
those obtained from our effective Hamiltonian ~H indicate that
our variational low-energy manifold captures the essence of the
phase transition at h= hc and the new spin-liquid phase at h≳ hc.

Field theory of topological phase transition. In the vicinity of
the critical field, h≃ hc≃ 0.50, the low-energy fermion eigen-
modes belong to the trivial representation of C3, and the long-
wavelength limit of ~H, corresponding to the region around the Γ
point, can be written as

~Heff ¼ ∑
k
f yk½βxkτx þ βykτy þ βzkτz�f k; ð9Þ

where τx,y,z are the Pauli matrices, and f k ¼ ðf 1;k; f 2;kÞT is a two-
component fermionic operator corresponding to the two zero-
energy modes of ~H at the critical field:

f 1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
6þ Δχ

s
~X
0
k � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δχ

6þ Δχ

s
ψk; f 2;k ¼ f y1;�k: ð10Þ

The coefficients βx;y;zk in Eq. (9) must be C3 invariant real poly-
nomials. Up to cubic order in k, there are only four such poly-
nomials: the trivial polynomial 1, the quadratic polynomial
k2 ¼ k2x þ k2y , and the cubic polynomials gxk ¼ kxð3k2y � k2xÞ and
gyk ¼ kyð3k2x � k2yÞ. Moreover, the particle-hole symmetry of the

original Hamiltonian H dictates that ~Heff must remain invariant

Fig. 3 Field dependence of key physical quantities. a Overall energy gap.
The insets show the dispersion of the low-energy fermion eigenmode on
both sides of the phase transition, with the black solid hexagon marking the
Brillouin zone. The red (blue) line corresponds to the gap ΔK (ΔΓ), while the
black line corresponds to the gap at the six wave vectors Qj, the corners of
the blue hexagon in the right-hand-side inset. b Second derivative of the
ground-state energy. c Expectation value of the Z2 gauge flux.
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under f k ! τxðf y�kÞ
T
, implying that the polynomials βμk must

satisfy the following relationships:

βxk ¼ �βx�k; βyk ¼ �βy�k; βzk ¼ βz�k: ð11Þ
These symmetry considerations then lead to the general forms

βzk ¼ c0 þ czk
2;

βηk ¼ ∑
ν¼x;y

cηνg
ν
k ; η ¼ x; y; ð12Þ

where c0, cz, and cην are, in general, functions of h. Since the phase
transition at h= hc is driven by a sign change in c0, we assume
that cz and cην are constants, while we write c0 ¼ c00ðh� hcÞ with a
constant c00. Starting from Eqs. (5) and (7), and defining all
lengths in units of the lattice vector (i.e., the distance between two
neighboring A sites), the constants are derived to be c00 ’ �1:00,
cz ≃ 0.0125, cxx≃− 0.00268, cyy≃− 0.00088, and cxy= cyx= 0
(See the “Note” above earlier). Then, using Eq. (9), the fermion
dispersion is given by

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxk
� �2 þ βyk

� �2 þ βzk
� �2q

ð13Þ
and becomes gapless at k= 0 for h= hc. For h < hc, the dispersion is
dominated by the function βzk and is largely quadratic:
ωk ’ jc00jðhc � hÞ þ czk

2. In contrast, for h > hc, the function βzk
vanishes for jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc00jðh� hcÞ=cz

p
. Thus, along this ring of radius

∣k∣, the energy gap is determined by the small cubic contributions
from βx;yk and has a slow field dependence: Δ / ðh� hcÞ3=2. The net
result is a ring of low-energy fermions around the Γ point (see the
inset of Fig. 3a).

The effective field theory in Eq. (9) describes a continuous
topological phase transition. The phases on both sides of the
transition belong to Kitaev’s 16-fold way1 and are characterized
by the fermion Chern number. The contribution from the low-
energy fermions to this Chern number is given by49

C ¼ 1
4π

Z
dk dk � ½∂kxdk ´ ∂kydk�; ð14Þ

where dk= βk/∣βk∣ and βk ¼ ðβxk; βyk; βzkÞ. Geometrically, C is
simply the skyrmion number of the vector field dk. Figure 4
depicts the vector field dk around the Γ point on both sides of the
phase transition at h= hc. While the field configuration is
topologically trivial for h < hc, it includes six merons (three
skyrmions) for h > hc. The corresponding change in the Chern
number, ΔC= 3, is then a generic property of the phase transition
described by ~Heff . To understand the emergence of the six
merons around the Γ point, we first note that βηk / Im ðk3þe�iϕη Þ
with k+= kx+ iky and ϕη ¼ arctanðcηx=cηyÞ. Each function βηk
(with η= x, y) possesses three nodal lines corresponding to

ky=kx ¼ tanðϕη=3þ φÞ with φ= 0, π/3, 2π/3. Ignoring the βyk
function, the low-energy spectrum then contains six Dirac nodes
Qj (with j= 1, 2, . . . , 6) at the intersections of the nodal lines of βxk
and the ring of radius jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc00jðh� hcÞ=cz

p
. The vorticity of the

vector field dk around each Dirac node Qj is (−1)j. Assuming
ϕx ≠ ϕy (which is true in our case), the finite value of βyQj

/ ð�1Þj
generates a mass term for each Dirac node in such a way that the
Dirac nodes all give identical contributions (+1/2 each or −1/2
each) to the change in the Chern number. The net change in the
Chern number is then

ΔC ¼ 3 sgn det Ĉ
h i

; Ĉ ¼
cxx cxy 0

cyx cyy 0

0 0 cz

0
B@

1
CA: ð15Þ

Using the constants cz and cην given above, we obtain ΔC= 3 at
the critical field h= hc. Since the low-field phase at h < hc is well
known1 to have Chern number 1, we conclude that the higher-
field phase at h≳ hc has Chern number 4.

We next consider the second derivative of the ground-state
energy E

00
G with respect to the magnetic field h. The universal

critical behavior at h= hc is determined by the low-energy modes
∣k∣≤Λ, where the cutoff Λ can be made arbitrarily small
(corresponding to an infrared singularity). While the contribution
of these modes to E

00
G is∝Λ2 for h ! h�c , it is an Oð1Þ constant

for h ! hþc . In particular, there is a contribution from the
neighborhood of the low-energy ring at h≳ hc which is
independent of the cutoff Λ. Therefore, we obtain a discontinuity
in E

00
G at the critical field (See the “Note” above earlier):

ΔE
00
G ¼ lim

h!h�c
E

00
G � lim

h!hþc
E

00
G ¼

ffiffiffi
3

p ðc00Þ2
8πcz

: ð16Þ

Remarkably, this discontinuity in E
00
G, as shown in Fig. 3b, is

entirely determined by two coefficients of the effective field
theory. From the constants c00 and cz given above, it is found to be
ΔE

00
G ’ 5:5, which is consistent with the corresponding result for

a finite lattice (see Fig. 3b). The quantitative agreement between
this value and the one obtained from iDMRG44 indicates that the
effective field theory at h= hc is both qualitatively correct and
quantitatively accurate.

Discussion
Our simple and accurate variational approach to extended
Kitaev models48 indicates that the antiferromagnetic (AFM)
Kitaev model undergoes a continuous quantum phase transition
driven by a magnetic field parallel to the [111] direction.
According to this approach, the new phase, which has been
reported in previous numerical works38–44, is a gapped chiral
spin liquid with a ring of low-energy excitations. Due to its large
low-energy density of states, it is difficult for numerical simu-
lations to distinguish this low-energy ring from a gapless Fermi
surface. In particular, while DMRG may, in principle, detect
gapless modes via a finite value of the central charge41–44, dif-
ferent studies find conflicting values43 or even unphysical non-
integer values44, thereby indicating that the currently available
system sizes cannot be used to determine whether the new phase
is gapped or gapless44.

In contrast to the non-Abelian low-field phase, the new phase
at higher fields possesses Abelian topological order with four
distinct types of anyons: 1 (vacuum), ε (fermion), as well as e and
m (vortices). The two phases can then be distinguished numeri-
cally by computing the entanglement spectrum50 or the topolo-
gical entanglement entropy for a bipartition of an infinite
cylinder51–53, readily available in iDMRG44. However, due to the

Fig. 4 Topological phase transition. Configuration of the unit-vector field
dk on the two sides of the phase transition, a h < hc and b h > hc. The color
scale shows the component dyk , while the black arrows represent the
components ðdzk ; dxkÞ. The green circle marks the low-energy ring.
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challenges mentioned above, such a numerical confirmation of
our predictions may require the addition of irrelevant Hamilto-
nian terms that increase the gap in the higher-field phase without
generating new phase transitions.

From an experimental perspective, it is important to note that
the higher-field spin liquid is known to be stable against both
Heisenberg and Gamma interactions38, making it more likely to
emerge in real materials. Also, in the presence of ferromagnetic
Heisenberg terms, a field-induced transition between the higher-
field spin liquid and a lower-field zigzag order, potentially rele-
vant for α-RuCl3, has been reported42. According to our theory,
the key experimental signature of the higher-field spin liquid is a
specific quantized value of the thermal Hall conductivity,
κxy ¼ πk2BT=ð3_Þ, which is four times larger than for the low-field
non-Abelian spin liquid.

We next remark that our variational approach is still
approximately valid in the presence of both a matter-fermion and
a flux-pair excitation and that, in the presence of non-Kitaev
interactions, it can also be used to describe bound states between
these two types of excitations48. Since such a bound state corre-
sponds to a spin excitation, its softening leads to a divergent
magnetic susceptibility for some wave vector and thus signals the
onset of magnetic ordering.

We also emphasize that our approach straightforwardly gen-
eralizes to the ferromagnetic (FM) Kitaev model. In this case, the
first term in Eq. (3) has a negative sign, and the flux-pair-hopping
parameter in Eq. (7) is found to be q≃ 1.35, i.e., about 30 times
larger than for the AFM Kitaev model. Therefore, the lowest-
field phase transition is driven by a softening of a pure flux-pair
mode and happens at a much smaller critical field,
h0 ¼ Δχ=ð2

ffiffiffi
3

p
qÞ ’ 0:056. The strong asymmetry between the FM

and AFM Kitaev models is due to opposite (constructive and
destructive) interference effects between the two processes con-
tributing to flux-pair hopping48. We note that this asymmetry is
not apparent in the simplified perturbative analysis of ref. 1

because it neglects the energy dispersions of the intermediate
states. We further remark that our results for the FM Kitaev
model are also consistent with numerical studies that report a
single first-order transition into a trivial polarized phase at a
critical field hp≃ 0.02844. At this first-order phase transition,
corresponding to hp≲h0, the fluxes suddenly proliferate and
confine all fractionalized excitations.

Finally, going back to the AFM Kitaev model, it is interesting to
note that a recent work54 has also found a field-induced chiral
spin liquid phase with Chern number C= 4 through a completely
different approach.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
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