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Abstract

The ability to automatically detect and classify populations of cells in tissue sections is para-

mount in a wide variety of applications ranging from developmental biology to pathology.

Although deep learning algorithms are widely applied to microscopy data, they typically

focus on segmentation which requires extensive training and labor-intensive annotation.

Here, we utilized object detection networks (neural networks) to detect and classify targets

in complex microscopy images, while simplifying data annotation. To this end, we used a

RetinaNet model to classify genetically labeled neurons and glia in the brains of Mosaic

Analysis with Double Markers (MADM) mice. Our initial RetinaNet-based model achieved

an average precision of 0.90 across six classes of cells differentiated by MADM reporter

expression and their phenotype (neuron or glia). However, we found that a single RetinaNet

model often failed when encountering dense and saturated glial clusters, which show high

variability in their shape and fluorophore densities compared to neurons. To overcome this,

we introduced a second RetinaNet model dedicated to the detection of glia clusters. Merging

the predictions of the two computational models significantly improved the automated cell

counting of glial clusters. The proposed cell detection workflow will be instrumental in quanti-

tative analysis of the spatial organization of cellular populations, which is applicable not only

to preparations in neuroscience studies, but also to any tissue preparation containing

labeled populations of cells.

Introduction

The functional role of a cell is highly dependent on its gene expression, local environment, and

external cues [1,2]. The two latter factors are directly related to the spatial location of the cell

(e.g., layers in the neocortex, regions in the hippocampus and more). Therefore, in a tissue
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section, both the number of labeled cells and their spatial distribution are of paramount

importance [3–5]. To build these spatial distribution maps, two technologies have been instru-

mental: (i) Sophisticated and automated microscopes (e.g., slide scanners) that facilitate high-

throughput data acquisition of biomedical specimens. (ii) Tissue labeling methods that include

immunohistochemistry, in situ hybridization, transgenic reporter mice and more.

Here our goal is to detect and classify cells in images of brain sections obtained from Mosaic

Analysis with Double Markers (MADM) mice. MADM allows for simultaneous labeling and

genetic manipulation in developmentally derived clones of somatic cells [6]. We and others

have extensively used MADM alleles in developmental studies on the roles of various genetic

factors, which are involved with neurogenesis [7–9] and gliogenesis [10,11]. An advantage of

MADM is that neurons and glia with distinct genotypes are permanently labeled by expression

of two fluorescent proteins. Furthermore, MADM labeling occurs in sparse populations such

that the entire morphology of individual cells can be easily resolved using microscopy (Fig 1A

and 1B). However, in some MADM preparations an entire brain section can contain large

numbers of cells despite the sparsity of genetic labeling relative to the total number of cells,

which can render manual cell counting tedious and error prone. Hence, the automation of cell

detection and classification is vital to boost throughput and unbiased approaches necessary for

quantification of complex tissues such as MADM brain sections.

To address this gap, machine-learning algorithms have been utilized to automate and accel-

erate data processing. Among them, deep learning has outperformed many conventional

machine-learning algorithms in multiple tasks e.g., natural language processing, computer

vision, speech recognition and more [14]. In computer vision, various deep learning architec-

tures have been employed to address different tasks: For example, convolutional neural net-

works (CNNs) are used for image classification, Region based CNNs (R-CNNs) are used for

object detection, and fully convolutional networks (FCN) are used for semantic segmentation

[15]. These deep neural networks (DNNs) have also been applied to biomedical data and

showed great promise in, for example, classification of breast cancer histopathology images

(CNN) [16], segmentation of whole mouse brain vasculature (3D CNN) [17], and detection of

blood cells (You Only Look Once network) [18]. Compared to other network architectures,

object detection networks have yet to be extensively used for analysis of biological data. This is

surprising as the training of these networks is relatively simple, and their ability to localize and

classify targets even in real-time is excellent [19,20]. RetinaNet [21], You Only Look Once

(YOLO) [22], Single Shot Detector (SSD) [23], Faster R-CNN [24] are the state-of-art object

detection models developed in recent years [20]. Without limitation on the inference time,

which can be up to 200 milliseconds, RetinaNet shows superior or comparable results on

benchmark datasets [25]. For detection of cells in fluorescence microscopy, recent report have

shown that both YOLOv2 and RetinaNet perform well [26]. In our implementation, RetinaNet

is selected for cell detection given its slightly better performance on multiple benchmark data-

sets and its higher performance in dense object detection [21].

Here we present an automatic cell detection workflow using RetinaNet models to analyze

brain sections that were obtained from MADM mice (Fig 1C–1E). We put forth training consid-

erations that accelerate the training process and improve model performance. To diversify the

training data and generalize our results, images were acquired by either a confocal fluorescence

microscope (CFM) or a slide scanner, all of which contained different cellular densities (i.e.,

genetically different MADM mice). Novel data augmentation methods were also used to com-

pensate for the imbalance in MADM cell numbers due to genotypic differences in the training

dataset. To resolve issues with detection and classification of high-density clusters of MADM

labeled glia, a unique workflow was designed which incorporated two RetinaNet models, result-

ing in superior performance compared to a single RetinaNet model trained to detect clusters.

PLOS ONE Detection and classification of neurons and glial cells in the MADM mouse brain using RetinaNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0257426 September 24, 2021 2 / 16

https://doi.org/10.1371/journal.pone.0257426


Materials and methods

Data generation

MADM-11 mice (The Jackson Laboratory, Bar Harbor, USA; #013751, #013749) were crossed

to Nestin-cre mice (bred from MADM-11 mice) using the breeding scheme described previ-

ously [11] and harvested at the age of one month under the regulations and approval from the

Institutional Animal Care and Use Committee at North Carolina State University. Mice were

Fig 1. Automated cell and cluster detection in MADM brains. (A) Confocal micrograph of a sagittal section from a month-old Nestin-cre, MADM-

11 (MADM) mouse forebrain (left) and the corresponding annotated map from the Allen Brain Atlas (right; Image credit: Allen Institute). Scale bar,

1500 μm. GFP–green fluorescent protein, RFP–red fluorescent protein, DAPI– 4’,6-diamidino-2-phenylindole. (B) Three isolated neurons captured in

the MADM brain where green (enhanced GFP), red (tdTomato) and yellow (both reporters expressed) cells are derived from distinct clones of

progenitors earlier during development [8,10,12,13]. Scale bars, 40 μm. (C) A representative coronal MADM section with only a single clone of cells

labeled and later imaged by a slide scanner (left; scale bar, 1000 μm). Sections were obtained from MADM brains in which red, green, and yellow clones

were labeled in the late-stage embryo at very low densities using a Nestin-creER transgene [11]. Boxed area demarcates the zoomed image on the right.

Scale bar, 50 μm. (D) A representative confocal image of another MADM brain (left; scale bar, 1250 μm) and zoomed image to the right (right; scale

bar, 50 μm). Two main types of cells can be seen in C and D: Neurons and glia marked with arrowheads and arrows, respectively. The white dashed

frame in D indicates a glia cluster. (E) The cell detection workflow. To localize and classify each cell, an object detection network (RetinaNet) was

utilized. To detect dense and saturated glia clusters, two RetinaNet models were trained, one to detect individual cells with different colors, and the

other to detect only glia clusters. In the inference stage, predictions of individual cells and glial clusters were merged to obtain final output.

https://doi.org/10.1371/journal.pone.0257426.g001
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housed in a 12-h light:dark cycle with ad libitum access to food and water. MADM mice were

deeply anesthetized by Avertin overdose (2,2,2 tribromoethanol; 7.5 mg/g body weight), per-

fused intracardially with 4% paraformaldehyde (PFA) in phosphate buffer saline (PBS, 0.1 M,

hereafter), and brains were dissected and submerged in 4% PFA in PBS at 4˚C overnight.

Brains were embedded in 3% low melting point DNA-grade agarose in PBS and serial 50 μm

sections were collected using a vibratome (Leica VT1000S, Leica, Buffalo Grove, USA). Float-

ing serial sections were washed with PBS and blocked for 1 h at room temperature in blocking

buffer (10% normal donkey or goat serum, 1% Triton X-100, PBS). Sections were incubated

with primary anti-GFP (Green Fluorescent Protein, Abcam, Cambridge, MA; ab13970,

1:2000) and Rabbit anti-RFP (Red Fluorescent Protein, Abcam, ab62341, 1:500) antibodies

diluted in 0.1% blocking buffer overnight at 4˚C, followed by 3 5-min washes with PBS at

room temperature the next day. Alexa Fluor goat anti rabbit Cy3 (Thermo Fisher Scientific,

Waltham, USA; A10520, 1:1000), Alexa Fluor goat anti-chicken 488 (Thermo Fisher Scientific,

A11039, 1:1000) secondary antibodies were diluted in blocking buffer and incubated with the

serial sections for 1 h at room temperature, followed by 3 washes with PBS. Sections were

counterstained with the DNA marker (4’,6-diamidino-2-phenylindole; DAPI) at 1:2000 during

the secondary incubation. Sections were mounted onto glass slides and coverslipped with Fara-

mount aqueous mounting medium (Dako, Agilent Technologies, Santa Clara, USA). Images

of the MADM forebrains were acquired using an FV1000 confocal microscope (Olympus,

Waltham, USA) or a slide scanner (VS120, Olympus, Waltham, USA).

Data annotation

The training data and test data were generated separately from 16 different mouse brain

samples (52 brain sections), of which 9 mouse brains were imaged by a slide scanner and the

rest were imaged by a confocal microscope. For training, we labeled 2009 individual cells

(1219 neurons and 790 glia) and 168 glia clusters from 39 brain sections. For testing, we

labeled 551 individual cells (346 neurons and 205 glia) and 48 glia clusters from 13 brain sec-

tions. Annotations of individual cells were generated using ilastik version 1.3.3 [27], ImageJ

[28], and a customized graphical user interface (GUI) written in Python. The ilastik pixel

classification workflow was used to distinguish cells from background for preprocessing.

The interactive training process in ilastik allows users to monitor the output and adjust the

labels until satisfactory results are obtained. A representative brain section image in the slide

scanner dataset was used to train the algorithm in ilastik. After training, batch processing

was done on all brain section images. The output probability maps from ilastik were

imported into Python to extract centroids of each probable cell region. The centroids were

then manually adjusted in ImageJ to precisely locate each cell, add centroids for miss

detected cells, and remove false positives. The GUI was used to quickly add labels to each

cell. Then the coordinates of fixed size bounding boxes were generated according to centroid

locations. A Python script was used to export such annotations into formats compatible with

the requirement of RetinaNet.

Glia clusters were annotated in LabelImg (https://github.com/tzutalin/labelImg), a labeling

tool in Python. A Python script was used to transform the output format into RetinaNet-com-

patible format.

Data augmentation

Color swap was realized by swapping the RFP channel and the GFP channel of each image.

During image acquisition, the output signal intensities are proportional to the input laser

power. Therefore, to simulate the situation of saturation, the intensities in each channel were
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multiplied by a factor of 1.5, and a ceiling function was used to emulate saturation. The con-

stant factor of 1.5 was empirically selected.

Training environments

To train the models NCSU Henry2 cluster was used, as well as UNC Longleaf cluster. For test-

ing, a Lenovo ThinkStation P520 Workstation with one Quadro P1000 graphic processing

unit (GPU) was used.

Object detection model

RetinaNet repository cloned from the source (https://github.com/fizyr/keras-retinanet) was

modified for this work (https://github.com/yccc12/keras-retinanet). A pre-trained ResNet50

was used as the backbone. Zero-centering was used as a pre-processing step, as two types of

microscopes were used to acquire the data, and zero-centering showed better results in com-

parison with normalization. Classical data augmentation strategies such as geometrical trans-

forms and noise injection were applied. The initial learning rate was 0.0001 and the batch size

was four. Using an Adam optimizer, all the models were trained for 50 epochs, where loss pla-

teaus could be reached. To reduce the effect of randomness, which is inherent to the training

process, the training process was repeated three times on the same training data and resulted

in three independently trained networks. These networks were tested on the same test data,

and their average precision (AP) results were averaged for comparison.

Area-based counting

For each image patch, the pixels were divided into two groups, pixels that were within an

object bounding box and pixels that belonged to the background. For each channel, the mean

and standard deviation (SD) of the background (BKG) pixels were calculated. The pixels that

belonged to detected neurons within clusters were masked out. Then for each detected glia

cluster, the standard deviation of pixels was calculated within each cluster. Afterwards, thresh-

olding was used to detect pixels that belonged to cells within the cluster:

Threshold ¼
1

2
� meanBKGþmeanclusterð Þ þ

1

2
� SDBKG þ SDclusterð Þ ð1Þ

After thresholding, morphological opening and closing were conducted to extract the area

of the clustered glia above the threshold. The extracted area was then used to estimate the

number of cells in the region, simply by dividing the area by 2000 μm2 and rounding the

result.

The root-mean-square error (RMSE) was used to evaluate the area-based counting. For

each color of glia, we calculate the RMSE as below.

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

i¼1
n̂i� nið Þ

2

M

s

ð2Þ

n̂ is the estimate number of glia in the cluster. n is the ground truth number. M is the total

number of detected glia clusters.

Evaluation metrics

In object detection tasks [29], precision is defined as: the number of correct predictions, also

named as true positives (TPs), divided by the number of all predictions. Higher precision
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means fewer false positives (FPs).

Precision¼
TP

TP þ FP
ð3Þ

Recall is defined as the number of correct predictions divided by the number of all ground-

truth positives i.e., including false negatives (FNs). Recall illustrates the sensitivity of a model,

and high recall value indicates low number of false negatives.

Recall¼
TP

TP þ FN
ð4Þ

To comprehensively measure these two aspects of a model, F-score (F1) is utilized [30].

Similar to precision and recall, the F-score values are ranging from 0 to 1. Value of 1 indicates

that the predictions and ground-truth annotations are identical.

F1 ¼
2 � Precision � Recall
Precisionþ Recall

ð5Þ

To evaluate the performance of an object detection model, we followed the average preci-

sion measure [31], in terms of the relative overlap of the bounding boxes. During the inference

stage, an object detection model will output per prediction the coordinates of a bounding box,

a classification label, and a confidence score. For each class, the output predictions are first

ranked according to their corresponding confidence scores. Then a set of precision and recall

will be calculated following the confidence rank. A prediction is true if the intersection over

union (IoU) of the bounding boxes of the prediction and an undetected object is above 0.5,

where the IoU is defined as the area of intersection divided by the area of union given two

bounding boxes.

Starting from the prediction with the highest confidence score, the first pair of precision

and recall are calculated based on this prediction only. Then adding the prediction with the

second highest confidence score, the second pair of precision and recall are calculated consid-

ering top two predictions, and so on at each rank. Finally, a set of precision and recall values

are obtained, and an initial precision-recall curve is depicted in which each point is a pair of

precision and recall. For each recall value r, the precision value pr is replaced by the maximum

precision value pr’ whose corresponding recall value is no less than the original recall value

(r’� r). The AP of the class is obtained by calculating the area under the adjusted precision-

recall curve. For multiclass detection, the overall AP is an average of AP values across all

classes.

Statistical analysis

Unpaired t-tests assuming unequal variances were performed in Microsoft Excel.

Results

Training configuration experiments

A RetinaNet model was trained to detect six classes of individual cells: green glia, yellow glia,

red glia, green neuron, yellow neuron, and red neuron. In addition to the conventional param-

eters (e.g., optimization hyper parameters) our training approach was adapted to account for

the unique properties of our datasets. We designed three different training configurations and

tested their effects on the network’s performance: (i) Adding a DAPI channel, which reveals

stained cell nuclei, as an input to the network. (ii) Training the network without background
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tiles. (iii) Adopting a color-independent detection approach to classify cells. In all the compari-

sons between the models, an average precision (AP) measure was used [31].

Both the slide scanner (Fig 2A) and confocal (Fig 2B) datasets were acquired on three color

channels: GFP (green), RFP (red) and DAPI (blue). While GFP and RFP reporters are geneti-

cally expressed in a subset of cells permanently, the DAPI stain binds to DNA inside all the

cells in a sample. Therefore, an experiment of evaluating the network’s performance with or

without a DAPI channel was conducted. Training without the DAPI channel significantly

improved the model performance of six-class detection from 0.667 ± 0.017 to 0.735 ± 0.013

(mean ± SD, p< 0.005, unpaired t-test, n = 3; Fig 2C). It may be possible that the lack of cell-

specificity inherent to the DAPI channel obscured successful detection of the red and green

channels.

When generating the training data, a full brain section image was cropped into small image

patches. As a result, in a sparse sample, there were many pure-background image patches (i.e.,

patches without any cells), whereas the target cells were distributed sparsely across the tissue.

For instance, in a sparse section there were 70 image patches of pure background compared to

33 image patches that contained target cells (Fig 1C). Such pure-background image patches

were considered as negatives during training, but failed to improve and even slightly degraded

the performance of the model (Fig 2C). Therefore, we decided to train without pure back-

ground patches hereafter.

Next, we trained a RetinaNet model to detect only two classes, neurons and glia regardless

of their MADM colors. Given the same training data, reducing the number of classes led to

better performance, mainly for the neuron class from AP of 0.891 ± 0.007 to 0.929 ± 0.003

(mean ± SD, p< 0.05, unpaired t-test, n = 3; Fig 2C). This improvement in performance was

likely to result from the imbalance of different colors in the training data. It should be noted

that for comparison with the two class models, we averaged the AP values of three colors for

either neurons or glia in the six-class model.

Data augmentation for improved detection of individual cells

To match the performance of the six-class model to the two-class model, we aimed to eliminate

color dependent biases in the training data. Toward this end, we doubled the size of the train-

ing set by adding a color swapped version of the original (Fig 3). We used the color swap

approach since all the neurons independent on their colors looked very similar, and this was

also true for glial cells. We also found that the saturation of the input data might be color-

dependent, hence we multiplied the original image by a constant and used a ceiling function to

emulate saturation (see Methods section). After training with each type of augmentation con-

dition, we found that data augmentation improved the detection of individual cells. Utilizing

all types of data augmentation together led to the best performance of individual cell detection

with AP of 0.860 ± 0.006 (mean ± SD, p< 0.005, unpaired t-test, n = 3; Fig 3C), which

exceeded the performance of the two-class model with AP of 0.815 ± 0.005 (mean ± SD, n = 3)

while maintaining the ability to distinguish MADM colors. This result reiterated the impor-

tance of tailoring the data augmentation to the unique properties of the dataset. Moreover,

numerical experiments were performed to evaluate the model’s performance with different

amount of training data (Fig 3D). Fig 3D shows that as the amount of training data increased,

a plateau of performance was reached.

A single RetinaNet model reached an average AP of 0.90 on individual cells

After fine-tuning a RetinaNet model using the data augmentation techniques presented in Fig

3, we tested the model performance on an independent test set i.e., the test set was derived
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Fig 2. Training configurations that influence the performance of a single RetinaNet model in individual cell detection.

(A, B) Representative images from the slide scanner and the confocal fluorescence microscope (CFM) respectively, with the

corresponding ground truth (GT) annotations. The GT annotations are on grayscale images for clearer display of the

bounding boxes. Scale bars, 50 μm. (C) Average precision (mean ± SD, n = 3; �, p< 0.05; ���, p< 0.005; unpaired t-test) of

trained models with different training configurations. Configurations include training: (i) With and without the DAPI

channel. (ii) With and without pure-background (BKG) image patches (i.e., no target cells in the image patches). (iii) On six

classes (red/green/yellow neuron, and red/green/yellow glia) versus two color-independent classes (neuron, glia). Training

with the DAPI channel and BKG fail to improve the performance and degrade the average precision. Two-class detection

shows better performance on neurons without color classification. Please note that when the significance line ends with

inverted T, it shows significance between the average of the two classes.

https://doi.org/10.1371/journal.pone.0257426.g002
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from different mouse brain samples from those used for training. Table 1 summarizes the AP

of individual cell detection across six classes and after averaging the test results from three

independent networks, which were trained on the same dataset. Detection of neurons reached

an AP of 0.943 ± 0.005 (mean ± SD, n = 3), while the glial cells reached an AP of 0.857 ± 0.002

(mean ± SD, n = 3). The precision-recall curves of the best model are shown in S1 Fig. More-

over, the method was evaluated using 5-fold cross validation where an AP of 0.90 was obtained

(Table 2). For completeness, we also compared the results of the two-class model (neurons and

glia regardless of their MADM colors) after data augmentation with the six-class model. The

two-class detection model had an average precision of 0.952 ± 0.005 (mean ± SD, n = 3) for

neurons and 0.863 ± 0.011 (mean ± SD, n = 3) for glial cells. These are comparable results to

Fig 3. Data augmentation by color swap and saturation improve individual cell detection in a single RetinaNet model. (A, B) Slide scanner

and confocal images respectively with data augmentation including color swap and/or saturation. Scale bars, 50 μm. (C) Average precision

results (mean ± SD, n = 3; ���, p< 0.005; unpaired t-test) from the different augmentation conditions. Utilizing each type of data augmentation

provided similar results. Harnessing all three augmentations together led to the best performance in both neuron and glia detection. (D)

Average precision results with respect to proportion of training images. A plateau of performance was reached when increasing the amount of

training data.

https://doi.org/10.1371/journal.pone.0257426.g003
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the six-class detection model, but this comparison is doing a disservice to the six-class model,

since on top of detecting neurons and glia, it also had to classify the cells by color.

To further improve these results, we studied cases in which the model made correct (Fig

4A) and incorrect (Fig 4B) predictions. Based on observations, we reasoned that the larger

inherent variability in the glial cells’ morphology, and their tendency to form dense clusters

Table 1. Average precision results (mean ± SD, n = 3) across six classes in individual cell detection using a single RetinaNet model.

Neuron Glia Average

Yellow 0.950 ± 0.005 0.876 ± 0.011 0.913 ± 0.008

Green 0.955 ± 0.006 0.849 ± 0.017 0.902 ± 0.007

Red 0.925 ± 0.004 0.847 ± 0.001 0.886 ± 0.002

Average 0.943 ± 0.005 0.857 ± 0.002 0.900 ± 0.001

https://doi.org/10.1371/journal.pone.0257426.t001

Table 2. Average precision results (mean ± SD, n = 5) of 5-fold cross validation across six classes in individual cell detection using a single RetinaNet model.

Neuron Glia Average

Yellow 0.932 ± 0.028 0.857 ± 0.023 0.895 ± 0.022

Green 0.953 ± 0.030 0.850 ± 0.112 0.902 ± 0.052

Red 0.947 ± 0.013 0.880 ± 0.012 0.914 ± 0.008

Average 0.944 ± 0.018 0.863 ± 0.037 0.903 ± 0.016

https://doi.org/10.1371/journal.pone.0257426.t002

Fig 4. Representative model-detected neurons and glia. (A) Examples of correct predictions on images from both the slide scanner (first and second

images) and confocal (third and fourth images). (B) Examples of incorrect predictions from the trained model. Three main error types including miss

detection (arrow), redundant detection (arrowhead) and false detection (asterisk) are marked in the images. Glial clusters and their saturation were the

main factors that caused false predictions and miss detections. Threshold of confidence was 0.5 in all images. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0257426.g004
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underlay the better performance achieved by RetinaNet in identifying neurons versus glia.

This discrepancy is exacerbated when the glial clusters are saturated as a result of higher den-

sity of glial processes per pixel. Therefore, we hypothesized that independent detection of glial

clusters may improve the performance of the model.

Merging results of two RetinaNet models improved detection and

classification of glia

We found that the detection of individual glial cells in a cluster was difficult for the network, as

it is for a manual annotator. To address this issue, we first made an attempt of training a single

RetinaNet model to detect seven classes: the previous six classes and an additional glia cluster

class. In the training data of seven-class detection model, glia clusters with various sizes were

annotated separately from isolated individual glia. Overall, we found that this approach failed

to perform well in detection of glial clusters.

Next, two RetinaNet models were trained (Fig 1E), one for individual cells (see Table 1 for

AP results), and one to solely detect glia clusters. The AP of glia cluster detection was 0.76 on

an independent test set. Lower AP is expected for glia clusters due to variability in the glia clus-

ters in terms of size and morphology, which hinders consistent annotation of bounding boxes

even for a manual annotator. Then the results from the two models were integrated using a

rule-based merging process. The three rules are: (i) Keep all detected clusters with a confidence

score above 0.5. (ii) Keep glia clusters with confidence above 0.3 that have overlapping individ-

ual glial cells and remove these individual cells. In such cases, the individual cells provide evi-

dence that increases our confidence that a cluster is present. (iii) Eliminate redundant

clusters–i.e., when more than half of the bounding boxes for nearby clusters overlap.

Examples of the merging process are shown (Fig 5A and S2 Fig) with the corresponding

ground truth and the seven-class detection results. To evaluate the results, we merged ground

truth annotations according to the same aforementioned rules and calculated the F-score for

each class on the independent test set. The merged results consistently showed higher F-scores

in glial classes than using the seven-class detection network, especially on the saturated images

(Fig 5B). Particularly, the F-score for detecting glia cluster was higher using the two RetinaNet

models versus the seven-class network (0.86 and 0.74, respectively).

To determine the number of glia within a detected glia cluster, we used area-based cell

counting to estimate the number of individual cells. Cell regions were extracted by threshold-

ing and morphological operations, and the number of individual cells was then estimated

according to the area of the extracted cell masks (see Methods section and S3 Fig). The root-

mean-square error (RMSE) was used to evaluate the counting results of the detected clusters.

Counting results obtained for 23 test glia clusters, show that the results of merging the two

RetinaNet models were better than six-class detection with a RMSE of 0.59 compared to 1.43

in red glia. Please note, that the red glia was the most common type of cluster in this specific

dataset. For green and yellow glia, the counting in glia clusters by merging the two RetinaNet

models had RMSEs of 0.36 and 0.69 respectively, which was comparable to the six-class detec-

tion with RMSEs of 0.21 and 0.36 respectively.

Discussion

In this study, we developed an automatic cell detection workflow that was applied to images

obtained from MADM-labeled mouse brain sections. Our workflow achieved an overall AP of

0.90 ± 0.001 (mean ± SD, n = 3) for individual cell detection, with an AP of 0.943 ± 0.005 and

0.857 ± 0.002 for individual neurons and glial cells, respectively. We also trained YOLOv3 and

SSD models instead of RetinaNet to detect individual cells, and the best AP results that we
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achieved were 0.787 and 0.793, respectively. Please note that we did not spend extensive

amount of time optimizing the models as compared to RetinaNet. To detect dense and slightly

saturated glia clusters, we incorporated an additional RetinaNet model. This approach showed

superior performance in comparison with a more traditional approach, i.e., a single RetinaNet

Fig 5. Combining predictions from two RetinaNet models enhances performance. (A) An example of merging results

compared to the ground truth (GT) annotations. As shown in Fig 1E, two RetinaNet models were trained separately: One for

individual cell detection and one for glia cluster detection. Predictions from both the trained individual cell-detection models

and the trained glia cluster-detection model were then merged to assess performance. For comparison, an additional RetinaNet

model was trained to detect seven classes simultaneously (glia cluster, red/green/yellow glia, and red/green/yellow neuron).

Predictions on the same image patch with confidence scores above 0.5 are shown. Scale bars, 100 μm. (B) F-score distributions

for merged detection and seven-class detection on the test dataset. F-score is a comprehensive measure of accuracy combining

precision and recall. F-score in the glia cluster improved significantly by merging predictions from the two RetinaNet models.

https://doi.org/10.1371/journal.pone.0257426.g005
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model with seven classes (individual cells plus glia clusters). We also presented a novel data

augmentation method that was used to compensate for color-, intensity-, and saturation-

dependent biases in the dataset due to the investigated genotype and acquisition conditions.

To the best of our knowledge, this is the first paper to integrate multiple fluorescence channels

(except the DAPI channel) and to use the RetinaNet model for color classification. We believe

that the presented approach could be used in multiple tissue preparations and in quantification

of various structures with double stain. This is especially appealing as the training of detection

networks is fast and relatively simple.

Although in the current stage of its development our workflow has shown great promise, it

still faces several limitations. First, deep learning approaches are black box methods, i.e., it is

difficult to explain the relationship between the input and the output, and therefore improve

their performance in scenarios where they fail. It will be interesting to explore and utilize

explainable artificial intelligence (XAI) methods, which can be interpreted by humans [32–

34]. However, XAI still faces many challenges to obtain explainability in deep learning models

[32]. Second, the presented approach did not explore the multiscale capability of the RetinaNet

model, i.e., detection under different magnification conditions. Please note that magnification

in this context is not related to structural hierarchies or different orders of structure [35,36],

magnification relates to the ability of a microscope to produce a larger image of the object, rel-

ative to its actual size. This multiscale capability provides flexibility to integrate datasets that

were acquired with different magnifications. Here, the multiscale capability of the RetinaNet

model was not tested, since the acquired datasets had similar magnification. Future work will

introduce more variability to our datasets, by including data with different magnifications, and

from additional imaging modalities such as light-sheet fluorescence microscopy. Third, detect-

ing individual glial cells using a 10 × magnification (~ 0.3 numerical aperture) in a cluster is

challenging, not only for a machine but also to a manual annotator. Therefore, other than

counting cells within the cluster using area-based cell counting, we will reimage the dense and

challenging regions with higher resolution e.g., 40 × magnification (~ 0.8 numerical aperture),

and high-dynamic-range acquisition. Additionally, we plan to integrate an object detection

network into a microscope in the near future. This will enable the real time detection of prob-

lematic regions, and in turn allow for local reimaging at higher magnifications whenever fur-

ther resolution of these ambiguous cases in datasets is needed. Such need-based approaches of

automatic acquisition will translate into an efficient way to utilize expensive microscopes and

to compress the raw dataset sizes.

Last, the double marker approach in our case provided the cell genotype and the markers/

colors should spatially overlap. However, in other applications such as diagnosis of non-small

cell lung cancer [37] the intracellular localization of the double markers might reveal impor-

tant information. In these cases, segmentation of the markers will be required, thus revealing a

potential limitation for object detection approaches.

Supporting information

S1 Fig. Precision-recall curves across six classes in individual cell detection.

(TIF)

S2 Fig. Examples of merging results compared to the ground truth (GT) annotations. (A,

B) Representative merging results of the images acquired from the slide scanner and the confo-

cal fluorescence microscope (CFM), respectively. Two RetinaNet models were trained sepa-

rately: One to detect individual cells and one to detect glia clusters (Fig 1E). Predictions of

individual cells and glia clusters were then merged to evaluate the performance. For compari-

son, a RetinaNet model was trained to detect seven classes simultaneously (red/green/yellow
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neuron, red/green/yellow glia, and glia cluster). Predictions on the same image patches with

confidence above 0.5 are shown. Note that based on the merging rules, cluster predictions with

confidence above 0.3 are also considered in the merging process. Scale bars, 100 μm.

(TIF)

S3 Fig. Representative area-based counting within glia clusters. (A, B) Counting results of

glia clusters from images acquired using a slide scanner and a CFM, respectively. Binary masks

of cells regions were generated for each color by thresholding and morphological operations.

Estimated cell numbers of each color are marked in the images. The glia cluster in A contains

2 red glia and the glia cluster in B contains 9 red glia, 2 green glia and 1 yellow glial cell accord-

ing to ground truth annotations. Scale bars, 25 μm.

(TIF)
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