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Deformation mechanism of 
innovative 3D chiral metamaterials
Wenwang Wu1,2, Dexing Qi1,2, Haitao Liao1,2, Guian Qian3, Luchao Geng4, Yinghao Niu1,2 & 
Jun Liang1,2

Rational design of artificial microstructured metamaterials with advanced mechanical and physical 
properties that are not accessible in nature materials is very important. Making use of node rotation 
and ligament bending deformation features of chiral materials, two types of innovative 3D chiral 
metamaterials are proposed, namely chiral- chiral- antichiral and chiral- antichiral- antichiral 
metamaterials. In-situ compression and uniaxial tensile tests are performed for studying the mechanical 
properties and deformation mechanisms of these two types of 3D chiral metamaterials. Novel 
deformation mechanisms along different directions are explored and analyzed, such as: uniform spatial 
rotation deformation, tensile-shearing directed (compression-shearing directed), tensile-expansion 
directed (compression-shrinkage directed) deformation mechanisms of 3D chiral metamaterials, 
and competitions between different types of deformation mechanisms are discussed. The proposed 
3D chiral metamaterials represents a series of metamaterials with robust microstructures design 
feasibilities.

Rational design of artificial micro architected metamaterials with advanced mechanical and physical properties 
that are not accessible in nature materials is challenging and important. Artificially designed metamaterials are 
usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they 
influence. The smart properties of metamaterials origin from artificially designed structures at sub-wavelength 
scales, and can be tailored and tuned precisely with their architected shape, geometry, size, orientation and 
arrangements. The interactions between architected microstructures of metamaterials and electromagnetic, 
sound and optical waves will result in blocking, absorbing, enhancing, or bending of waves. It has been demon-
strated that rationally designed metamaterials have promising multifunctional applications, such as ultralow mass 
densities and ultrastrong metamaterials1–5, sound and vibration attenuation metamaterials6,7, electromagnetic 
cloaking metamaterials8,9, negative thermal expansion metamaterials10,11, subwave length optical metamateri-
als12–15, etc.

As a special type of mechanical metamaterials, auxetic metamaterials with negative Poisson ratio can expand 
its volume when stretched, and the concept of auxetic materials with negative Poisson ratio was firstly described 
by Love in 1944 for the first time16. Auxetic metamaterials exhibit enhanced mechanical properties over conven-
tional materials, such as higher shearing modulus, increased indentation resistance, good absorption properties 
and higher fracture toughness. Auxetic materials can be applied for designing innovative multifunctional struc-
tures, such as: body armor, packing material, knee and elbow pads, robust shock absorbing material and sponge 
mops. According to the geometrical relations of auxetic unit cell, there are mainly three types of auxetic materials: 
reentrant materials, rigid square rotation materials and chiral structures17. Chiral structures stands for a series of 
structures which cannot be mapped onto its mirror image by rotations and translations alone18, and various types 
of chiral structures exist commonly in nature, such as: DNA, RNA, chiral carbon nanotube, twisting flower petals 
and stems, plant climbing tendrils and twisted leaves, chiral cellulose19–21. Besides these chiral materials in nature, 
various types of multifunctional artificial chiral metamaterials are designed and fabricated as well. Because of 
their lack of mirror symmetry, chiral metamaterials22,23 have recently enabled several remarkable phenomena, 
such as negative refractive index24, superchiral light25, and use as broadband circular polarizers26,27 or detectors28.
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The mechanical properties of chiral structures can be investigated with different theoretical approaches, such 
as: strain energy homogenization method, internal external force equilibrium of unit cell, Cosserat (micro-polar) 
elasticity, etc29–34. In the classical theory of elasticity, the degrees of freedom are not included for describing the 
mechanical behaviors of microstructured solid where the microstructure characteristic length is comparable 
to the solid structure35. Due to the additional degrees of freedom allowed by internal microstructures, chiral 
Cosserat solids have different mechanical behaviors from solids with a center of symmetry35–37, The Cosserat (also 
called micropolar) elasticity theory of Eringen37 demonstrated robust efficiency and reliability in the modeling of 
materials with microstructures, such as: granular or fibrous materials, bone microstructure, or 3D lattice struc-
tures, etc. For example, based on the micropolar theory and tensor analysis, Liu et al.38 developed a continuum 
theory for describing the dilatation–rotation coupling and shear–rotation coupling deformation mechanism of 
2D chiral lattice structures. Chen et al.39 proposed a micropolar continuum model for describing the constitutive 
relation for tetrachiral lattice structure, where 13 independent material constants are employed. Spadoni et al.40 
proposed a micropolar continuum model for analyzing the in-plane properties of hexachiral structures, where 
deformable-ring node model are employed.

Recently, Kang et al.41 exploited the buckling introduced mechanical instabilities in surface-attached cellular 
structure, and effects of cellular unit cell geometrical parameters on the formed chiral pattern during the swelling 
and shrinkage cycle are studied systematically. Shan et al.42 proposed an elastomeric porous metamaterials, where 
multiple pattern transformations can be induced by buckling. The proposed periodic porous elastic structures can 
generate mechanical instabilities, and can be used to tune the propagation of elastic waves in phononic crystals, 
enhancing the tunability of the dynamic response of the system. Ha et al.43,44 proposed an innovative isotropic 3D 
tetrachiral metastructure, and studied its mechanical properties via finite element analysis. Fu et al.45 developed 
the equivalent modulus and Poisson ratio of a novel 3D chiral structures made up of orthogonal assembled 2D 
chiral honeycomb with four ligaments. Based on the pioneering work on “missing rib” type of chiral structures 
designed by Smith et al.46, new chiral cellular solids with center cores and softer hinges are designed and fabricated 
via multi-material 3D printing techniques, and amplified chirality-induced auxetic effect via elevating internal 
rotation efficiency can be realized47. Making use of the chiral rotation induced unique sequential cell-opening 
mechanisms, hybrid auxetic chiral mechanical metamaterial are designed, which can be employed for developing 
new multi-functional smart composites, sensors and/or actuators48. In order to overcome the twist deformation 
limits of linearly elastic bar, Frenzel et al.49 proposed a microstructured 3D elastic chiral mechanical metamaterials 

Figure 1.  The x-y, y-z, z-x and stereo views of the architected 3D chiral matamaterials (a,b,c) and (d) chiral- 
chiral- antichiral metamaterials; (e,f,g) and (h) chiral- antichiral- antichiral metamaterials.

3D chiral metamaterials No. L(mm) d(mm) t(mm) Nx Ny Nz

Chiral-chiral-antichiral
A 10 5 1 6 6 6

B 10 6 1.5 5 5 5

Chiral-antichiral-antichiral
A 12 5 1 6 6 6

B 10 6 1.5 6 6 6

Table 1.  Geometrical parameters for the two types of 3D chiral metamaterials samples (ligament length L; node 
width d; ligament thickness t; Number of nodes along x direction Nx; Number of nodes along y direction Ny; 
Number of nodes along z direction Nz).
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Figure 2.  (a–d) x-y, y-z, z-x and stereo views of as-fabricated chiral- chiral- antichiral metamaterials; (e–h) x-y, 
y-z, z-x and perspective view of as-fabricated chiral- antichiral- antichiral metamaterials.

Figure 3.  Deformation of 3D chiral- chiral- antichiral metamaterials under uniaxial compression test 
condition at different compression strain level along z antichiral direction (a) εz = 2%, (b) εz = 5%, (c) εz = 10%; 
Deformation of 3D chiral- chiral- antichiral metamaterials under uniaxial compression test condition at 
different compression strain level along y chiral direction (d) εy = 2%, (e) εy = 5%, (f) εy = 10%; Deformation 
of 3D chiral- antichiral- antichiral metamaterials under uniaxial compression test condition at different 
compression strain level along z chiral direction (g) εz = 2%, (h) εz = 5%, (i) εz = 10%; Deformation of 3D chiral- 
antichiral- antichiral metamaterials under uniaxial compression test condition at different compression strain 
level along y antichiral direction (j) εy = 2%, (k) εy = 5%, (l) εy = 10%.
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which can realize twist deformation upon compression, the proposed tension/compression induced twist defor-
mation has potential applications in chiral optical metamaterials, such as: optical dynamic cloaking structures. 
Sha et al.50 proposed the design of large-scale chiral metallic glasses with extensive hardening and large ductility 
properties, the mechanical behaviors of the metallic glass chiral nanolattice (MGCN) can be significantly altered 
through changing the thickness and length of the ligaments in the nanolattices.

In this paper, depending on the geometrical relations between nodes and ligaments, two types of innova-
tive 3D chiral metamaterials are proposed, namely chiral- chiral- antichiral, and chiral- antichiral- antichiral 

Figure 4.  FEA simulated deformation of 3D chiral- chiral- antichiral metamaterials under uniaxial 
compression test condition at different compression strain level along z antichiral direction (a) εz = 2%, (b) 
εz = 5%, (c) εz = 10%; FEA simulated deformation of 3D chiral- chiral- antichiral metamaterials under uniaxial 
compression test condition at different compression strain level along y chiral direction (d) εy = 2%, (e) εy = 5%, 
(f) εy = 10%; FEA simulated deformation of 3D chiral- antichiral- antichiral metamaterials under uniaxial 
compression test condition at different compression strain level along z chiral direction (g) εz = 2%, (h) εz = 5%, 
(i) εz = 10%; FEA simulated deformation of 3D chiral- antichiral- antichiral metamaterials under uniaxial 
compression test condition at different compression strain level along y antichiral direction (j) εy = 2%, (k) 
εy = 5%, (l) εy = 10%.

Matematerials type Chiral-chiral-antichiral Chiral-antichiral-antichiral

Loading axis chiral antichiral chiral antichiral

Type A
Exp 0.105 0.274 0.108 0.196

FEA 0.139 0.384 0.155 0.240

Type B
Exp 0.559 1.526 0.823 0.981

FEA 0.574 1.679 0.708 0.977

Table 2.  Comparison between experimental and FEA simulated modulus (Unit: MPa).



www.nature.com/scientificreports/

5ScienTific REPOrts |  (2018) 8:12575  | DOI:10.1038/s41598-018-30737-7

metamaterials. Firstly, two series of these two types of 3D chiral metamaterials with different geometrical param-
eters are designed, and in-situ compression tests are performed for studying the mechanical properties and defor-
mation mechanisms of these two types of 3D chiral metamaterials. Novel deformation mechanisms such as: 
compression-shearing, compression-shrinking auxetic deformation of chiral unit cell, antichiral unit cell and 
chiral-antichiral hybrid unit cell along different directions are explored and analyzed. Secondly, in-situ uniaxial 
tensile tests are carried out, and competitions between different types of deformation mechanisms are discussed. 
With the progress of micro- and nano- manufacturing techniques, the proposed 3D chiral metamaterials show 
promising performances for future industrial applications, such as: sound absorption and vibration metamate-
rials, morphing structures, chiral optical metamaterials, shape memory actuators and biomechanical devices.

Mechanical Properties of 3D chiral metamaterials
Topological design of innovative 3D chiral metamaterials.  Chiral structures are architected with 
circular, polygonal, elliptical, sphere or cubic nodes and ligaments connecting neighboring nodes in 2D or 3D 
spaces, the deformation modes of chiral metamaterials are featured by node rotation and ligaments bending 
deformation under external loading conditions. Depending on the geometrical relation between ligaments and 
nodes of 3D chiral metastructures, there are chiral and antichiral topological configurations along x, y and z 
directions respectively. As shown in Fig. 1, two types of 3D chiral unit cells are proposed, namely chiral- chiral- 
antichiral and chiral- antichiral- antichiral architected metastructures, respectively. The x-y, y-z, z-x views and 
stereo views of these two types of metastructures are shown in Fig. 1(a–h), respectively. The topology layout of 
these two types of 3D chiral metamaterials can be realized in two steps: Firstly, constructing 3D chiral unit cell; 
Secondly, generating the global metamaterials through periodic distribution of 3D chiral unit cells along the x, 

3D chiral metamaterials No. L(mm) d(mm) t(mm) Nx Ny Nz

Chiral-chiral-antichiral 2 8 2 6 6 6

Chiral-antichiral-antichiral 2 8 2 6 6 6

Table 3.  Geometrical parameters for the two types of 3D chiral metamaterials samples (ligament length L; node 
width d; ligament thickness t; Number of nodes along x direction Nx; Number of nodes along y direction Ny; 
Number of nodes along z direction Nz).

Figure 5.  Experimental and FEA simulated strain-stress curves of (a) FEA simulated deformation of chiral- 
chiral- antichiral metamaterials under uniaxial compression test condition until compression strain level 
εz = 2% along z antichiral direction; (b) FEA simulated deformation of chiral- chiral- antichiral metamaterials 
under uniaxial compression test condition until compression strain level εy = 2% along y chiral direction; (c) 
FEA simulated deformation of chiral- antichiral- antichiral metamaterials under uniaxial compression test 
condition until compression strain level εz = 2% along z chiral direction; (d) FEA simulated deformation of 
chiral- antichiral- antichiral metamaterials under uniaxial compression test condition until compression strain 
level εy = 2% along y antichiral direction.
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y, z directions. As shown in Fig. 1(a,e), the geometrical parameters for describing the 3D chiral unit cells with 
cubic nodes are: ligament perpendicular length L along x, y and z directions, cubic node side length d, ligaments 
thickness t, the numbers of unit cells along x, y and z directions are Nx, Ny and Nz respectively.

In-situ compression tests of 3D chiral metamaterials.  In this subsection, two series of 3D chiral met-
amaterials with different geometrical parameters are designed, namely Type A and Type B, respectively. The 
geometrical parameters of these designed two types of 3D chiral metamaterials are shown in Table 1. The two 
series of chiral metamaterials are fabricated with nylon powder selected laser sintering (SLS) 3D printer @ BMF 
Material Technology Inc. in Guang Dong Province of China, and the spatial resolution is 8 μm along x, y and z 
directions. Finally, Type A and Type B samples are fabricated for these two types of 3D chiral metamaterials, and 
the as-fabricated Type A samples are shown in Fig. 2.

Before performing compression tests of these two types of 3D chiral metamaterials, the mechanical prop-
erties of the SLS nylon material are tested. Totally, 5 uniaxial tensile samples are fabricated, and uniaxial tensile 
experiments are performed on an Instron®5985 machine at a displacement rate of 1 mm/min. Finally, the average 
elastic modulus of the 5 as-fabricated tensile samples is:Es = 1021.00 MPa, where the deviation of modulus is: 
±0.75 MPa, and the average ultimate strain of the material is εmax = 0.16. After finishing the material proper-
ties tests, compression tests of two series of 3D chiral metamaterials are performed, where the loading force, 
displacement and deformation images during the loading process are recorded, the samples are loaded until 
compression strain level 10%, and deformation process of these two types of 3D chiral metastructures are shown 
in Fig. 3. During compression experiments, graphite sheets with quite low friction coefficients (<=0.005) are 
attached onto the compression contacting surfaces for minimizing the friction force. Finally, relations between 
axial compression strain and compression stress are generated. Meanwhile, finite element analysis (FEA) simula-
tions of the deformation process of these two series of 3D chiral metamaterials are performed, and comparisons 
with experimental results are carried out for verification. In all the FEA simulation cases, uniaxial compression 
displacement loadings are applied on one end of the samples, while the other end of the sample is fixed, where 
the compression force and axial displacement during the simulation process are recorded until 10% compression 
strain level, the FEA simulated deformation process of these two types of chiral metamaterials are shown in Fig. 4. 
The experimental and FEA simulated modulus comparisons for Type A and Type B samples are calculated until 
2% compression strain, and the results are shown in Table 2 and Fig. 5.

During the linearly compression process, elastic bending deformation of the ligaments and rotation of circular 
nodes are dominant, the chiral ligaments form full-wave deformation mode, while the antichiral ligaments form 
half-wave deformation mode. As shown in Figs 3(a–c) and 4(a–c), the 3D chiral- chiral- antichiral metamateri-
als was compressed along the antichiral direction, the chiral ligaments form full-wave deformation mode, and 
the anti-tetrachiral ligaments form half-wave deformation mode, demonstrating auxetic deformation behaviors. 
As shown in Figs 3(d–f) and 4(d–f), the 3D chiral- chiral- antichiral metamaterials was compressed along the 
chiral direction, the chiral ligaments form full-wave deformation mode. As shown in Figs 3 (g–i) and 4 (g–i), the 
3D chiral- antichiral- antichiral metamaterials was compressed along the chiral direction, the chiral ligaments 
form full-wave deformation mode, and the anti-tetrachiral ligaments form half-wave deformation mode, demon-
strating auxetic deformation behaviors. As shown in Figs 3 (j–l) and 4 (j–l), the 3D chiral- antichiral- antichiral 
metamaterials was compressed along the antichiral direction, and the anti-tetrachiral ligaments form half-wave 
deformation mode, demonstrating auxetic deformation behaviors. It can be seen from Figs 3 and 4 that: when 
these two types of chiral metamaterials are compressed along different loading directions, novel unique deforma-
tion mechanisms such as: compression-shearing deformation mechanism and auxetic deformation mechanism 
can be generated.

Figure 6.  The x-y, y-z, z-x and stereo views of the architected 3D chiral matamaterials (a), (b), (c) and (d) 
chiral- chiral- antichiral metamaterials; (e), (f), (g) and (h) chiral- antichiral- antichiral metamaterials.
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Uniaxial tensile tests of 3D chiral metamaterials.  In this subsection, uniaxial tensile tests are per-
formed for exploring the deformation mechanisms of these two types of 3D chiral metamaterials. The geometri-
cal parameters of designed two types of 3D chiral metamaterials are shown in Table 3. As shown in Fig. 6, these 
two types of chiral metamaterials are fabricated with nylon powder selected laser sintering (SLS) 3D printer @ 
BMF Material Technology Inc. in GuangDong Province of China. Afterwards, in-situ tensile tests of 3D chiral 
metamaterials are performed, where the loading force, displacement and deformation images during the load-
ing process are recorded, and deformation process of these two types of 3D chiral metastructures are shown in 
Fig. 7. During the linearly straining process, elastic bending deformation of the ligaments and rotation of circular 
nodes are dominant, the chiral ligaments form full-wave deformation mode, while the antichiral ligaments form 
half-wave deformation mode. Figure 7 (a–d) show the y-z view of the 3D chiral- chiral- antichiral metamaterials 
strained along the chiral direction at 0.0%, 10.0%, 14.0% and 18.9% level, and Fig. 7 (e–h) show the x-z view of 
the 3D chiral- chiral- antichiral metamaterials strained along the chiral direction at 0.0%, 6.7%, 14.6% and 20.5% 
level. Figure 7 (i–l) show the y-z view of the 3D chiral- chiral- antichiral metamaterials strained along the chiral 

Figure 7.  Deformation of chiral- chiral- antichiral metamaterials under uniaxial tensile test condition at 
different tensile strain level along z antichiral direction (a) εz = 0.0%, (b) εz = 10%, (c) εz = 14%, (d) εz = 18.9%; 
Deformation of chiral- chiral- antichiral metamaterials under uniaxial tensile test condition at different tensile 
strain level along y chiral direction (e) εy = 0.0%, (f) εy = 6.7%, (g) εy = 14.6%, (h) εy = 20.5%; Deformation 
of chiral- antichiral- antichiral metamaterials under uniaxial tensile test condition at different tensile strain 
level along z chiral direction (i) εz = 4.8%, (j) εz = 4.6%, (k) εz = 11.5%, (l) εz = 17.2%; Deformation of chiral- 
antichiral- antichiral metamaterials under uniaxial tensile test condition at different tensile strain level along y 
antichiral direction (m) εy = 0.0%, (n) εy = 3.3%, (o) εy = 7.2%, (p) εy = 9.1%.
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direction at 0.0%, 3.3%, 7.2% and 9.1% level, and Fig. 7 (m–p) show the z-x view of the 3D chiral- chiral- antichi-
ral metamaterials strained along the antichiral direction at 0.0%, 4.6%, 11.5% and 17.2% level.

As to the deformation mechanisms of these two types of 3D chiral metamaterials, rotation of the cubic chiral 
nodes and bending of ligaments are predominant. (1) As to the 3D chiral- antichiral- antichiral metamaterials, 
compression-shrinkage and tensile-expanding deformation mechanisms are dominant, where the rotation and 
bending of chiral-chiral and chiral-antichiral ligament-node pairs will results in auxetic deformation behaviors; 
(2) As to 3D chiral-chiral-antichiral metamaterials, which can be viewed as cubic solid medium cut out with 
four-pointed planar star pore systems from two perpendicular directions, where the horizontally inclined liga-
ments undergo a higher degree of flexural deformation than their vertically inclined counterparts, meaning the 
rotational symmetry of order four is not being preserved. As shown in Fig. 8, two main competing simplified 
deformation mechanisms are identified for the chiral-chiral structures of chiral-chiral-antichiral metamaterials, 
(a) the auxetic rotation deformation mechanism, where both ligaments and nodes rotate by the same amount, 
producing a negative Poisson ratio −1; (b) the shear-directed deformation mechanism results in a non-zero 
shear coefficient and a Poisson’s ratio of zero51,52. In the compression-shearing experiments shown in Fig. 3 (d–f), 
graphite sheets with quite low friction coefficients (<=0.005) are attached onto the compression contacting sur-
faces for minimizing the friction force, and side shearing deformation mechanism is predominant resulting in 
zero Poisson’s ratio. In the in-situ uniaxial tensile experimental tests shown in Fig. 7 (e–h), the auxetic rotating 
mechanism becomes more active due to the restriction of shear deformation imposed by the uniaxial loading 
boundary conditions, and thus the system has an overall negative Poisson’s ratio. As tensile strain increases, 
the Poisson’s ratio gradually becomes even more negative as the rotation of nodes becomes more predominant, 
resulting in deformation mechanism from shearing deformation dominant towards auxetic rotating deformation 
dominant.

With the progress of micro- and nano- manufacturing techniques, the proposed 3D chiral metamaterials show 
promising performances for future industrial applications, such as: nano chiral metatllic glass with extensive 
hardening and large ductility, sound absorption and vibration attenuation metamaterials, morphing structures, 
optical chiral metamaterials, shape memory actuators and biomechanical devices.

Conclusions
In this paper, two types of innovative 3D chiral metamaterials are proposed, namely chiral- chiral- antichiral 
and chiral- antichiral- antichiral metamaterials. Firstly, two series of 3D chiral metamaterials with different 
geometrical parameters are designed, and the 3D chiral metamaterials samples are fabricated with Selective Laser 
Sintering (SLS) nylon sintering techniques, and in-situ compression test are performed for studying the mechan-
ical properties and deformation mechanisms of 3D chiral metamaterials. Secondly, in-situ uniaxial tensile tests 
are performed for exploring the competitions between two main types of deformation mechanisms: shearing 
deformation and auxetic rotating deformation of chiral structures.

The proposed 3D chiral metamaterials represents a series of metamaterials with robust microstructures design 
feasibilities. With the progress of micro- and nano- manufacturing techniques, the proposed 3D chiral metama-
terials show promising performances for future industrial applications, such as: nano chiral metatllic glass with 
extensive hardening and large ductility, sound absorption and vibration attenuation metamaterials, morphing 
structures, optical chiral metamaterials, shape memory actuators and biomechanical devices.
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