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Abstract

Programmed necrosis is a mechanism of cell death that has been described for neuronal excitotoxicity and ischemia/
reperfusion injury, but has not been extensively studied in the context of exposure to bacterial exotoxins. The a-toxin of
Clostridium septicum is a b-barrel pore-forming toxin and a potent cytotoxin; however, the mechanism by which it induces
cell death has not been elucidated in detail. We report that a-toxin formed Ca2+-permeable pores in murine myoblast cells,
leading to an increase in intracellular Ca2+ levels. This Ca2+ influx did not induce apoptosis, as has been described for other
small pore-forming toxins, but a cascade of events consistent with programmed necrosis. Ca2+ influx was associated with
calpain activation and release of cathepsins from lysosomes. We also observed deregulation of mitochondrial activity,
leading to increased ROS levels, and dramatically reduced levels of ATP. Finally, the immunostimulatory histone binding
protein HMGB1 was found to be released from the nuclei of a-toxin-treated cells. Collectively, these data show that a-toxin
initiates a multifaceted necrotic cell death response that is consistent with its essential role in C. septicum-mediated
myonecrosis and sepsis. We postulate that cellular intoxication with pore-forming toxins may be a major mechanism by
which programmed necrosis is induced.
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Introduction

Clostridium septicum is a Gram-positive anaerobic bacterium that

is the primary etiological agent of atraumatic clostridial myone-

crosis, a rapidly fulminating and frequently fatal necrotic disease of

the human musculature [1]. The primary virulence factor of C.

septicum is a-toxin, a pore-forming toxin belonging to the aerolysin

family of extracellular toxins [2,3]. C. septicum a-toxin is secreted as

inactive protoxin monomers that bind to GPI-anchored proteins

on the target cell [4]. The bound monomers are then cleaved and

activated by host cell proteases [5], allowing them to oligomerize

into a heptameric complex and insert to form a 1.6 nm b-barrel

pore [6]. Although pore-forming toxins are commonly considered

hemolysins due to their lytic effect on erythrocytes, there is

evidence to suggest that pore formation may also elicit a broad

range of more subtle effects on target cells by initiating signaling

pathways [7,8].

Aerolysin, a well studied ortholog of a-toxin, has been shown to

initiate Ca2+-mediated apoptosis in T-lymphocytes [9], and G-

protein activation and release of Ca2+ from intracellular stores in

granulocytes [10]. In epithelial cells Ca2+ influx was found to

inhibit protein kinase B (also known as Akt), which is a key

regulator of cell survival pathways [11]. Recently, a novel cell

response to aerolysin was reported, namely the caspase-1

dependant repair of cell membranes, which occurs in response

to K+ efflux [12]. Other small-pore forming toxins, including a-

toxin (aHL) from Staphylococcus aureus and Escherichia coli hemolysin

have been reported to elicit a broad range of cellular responses,

depending on the concentration of the toxin and the target cell. E.

coli hemolysin is cytotoxic against a wide range of cell types, with

Ca2+ influx and ATP depletion frequently observed, contributing

to additional downstream effects [13]. aHL has been shown to

induce the release of proinflammatory mediators from monocytes

and epithelial cell lines [14,15] and also to induce apoptosis of T

lymphocytes [16,17]. The nature of aHL induced cell death in T-

lymphocytes was brought into question when it was shown that

while inhibition of caspases prevented DNA laddering and caspase

activation in aHL-treated cells, it could not prevent cell death

[18]. These data raised the possibility that aHL may also induce a

programmed necrosis or oncosis response, as indicated by a rapid

depletion of ATP and release of pro-inflammatory histone binding

protein high mobility group box 1 (HMGB1) [18]. This divergence

from apoptotic cell death is consistent with a growing body of

evidence indicating that aside from the ‘classical’ programmed cell

death pathway of apoptosis, there is a second poorly characterized

‘programmed necrosis’ or ‘oncosis’ pathway [19,20], which is

‘‘programmed in the sense that it would constitute a stereotyped,

evolutionarily designed sequence of biochemical events’’ [21].
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The pathways of programmed necrosis vary considerably,

depending on how the initiating insult is recognized by the cell,

however, there are some similarities in the morphological changes

induced following a necrotic stimulus. Necrosis is characterized by

cell swelling, the induction of an inflammatory response, increased

intracellular calcium ([Ca2+]i), massive depletion of ATP and an

increase in reactive oxygen species (ROS) [21,22,23]. Pro-

grammed necrosis can be initiated by a variety of insults; in the

context of membrane permeabilization following pore formation it

is an increase in [Ca2+]i that is the likely progenitor [19,24]

(Figure 1). Increases in [Ca2+]i, best studied in the context of

neuron excitotoxicity [20], can result in the activation of Ca2+

dependant proteases, namely calpains, which are then responsible

for the degradation of cellular components including Na+/Ca2+

exchange pumps, the actin cytoskeleton and lysosomes [20,23]. In

this ‘calpain-cathepsin cascade’ lysosomal disruption causes

leakage of acidic proteases, some of which retain activity in the

neutral cytosol (eg. cathepsins B, D and L) and cause greater

proteolytic damage to the cell [25]. Ca2+ also contributes to

disruption of mitochondrial permeability, leading to a reduction

in ATP production and an increase in ROS; the latter can

then cause further perturbation of mitochondrial function,

lysosomal permeability and DNA damage [20,26]. DNA damage

causes the activation of poly(ADP-ribose) polymerase (PARP),

which acts to further deplete ATP [27] and has recently been

shown to be involved in the translocation of the immunostimu-

latory histone binding protein HMGB1 from the nucleus to the

cytosol, such that HMGB1 eventually is released following cell lysis

[28]. The release of HMGB1 is clinically relevant as it has been

shown to be a significant contributor to late sepsis and septic shock

[29].

It has been shown that the C. septicum a-toxin is considerably

more active against nucleated cells than erythrocytes; for example,

the murine myoblast C2C12 cell line is 200-fold more sensitive

to a-toxin than mouse erythrocytes [30,31]. In addition, we

recently demonstrated that a C. septicum strain expressing an a-

toxin variant that was able to bind and oligomerize, but not form

pores, was avirulent [32]. Together, these data led us to postulate

that a-toxin was more active against nucleated cells because they

were responding to lower concentrations of toxin by a

programmed cell death pathway initiated in response to

permeabilization of the plasma membrane. In this paper we

demonstrate that C. septicum a-toxin induces programmed necrosis

in C2C12 myoblasts as a consequence of Ca2+ influx following

pore-formation, which results in the activation of Ca2+-dependant

proteases, disturbances to mitochondrial function and release of

HMGB1. This form of cell death is consistent with the pathology

Author Summary

Clostridium septicum is a highly virulent pathogen that
causes spontaneous gas gangrene or clostridial myone-
crosis. The essential virulence factor of C. septicum is a
b-barrel toxin, a-toxin, that forms small pores in host
cell membranes. This toxin is frequently described as a
hemolysin, because the formation of these pores causes
lysis of red blood cell cells due to membrane disruption.
However, this description does not recognize additional
effects that may be observed in nucleated host cells,
which are more sensitive to a-toxin. We investigated
how nucleated cells responded to a-toxin by treating a
physiologically relevant muscle cell line with purified
toxin and monitoring the response using various
assays. We observed a-toxin-mediated programmed
cellular necrosis that culminated in the release of
the immunostimulatory molecule, HMGB1. This mecha-
nism of cell death induction is consistent with the
extensive necrosis that is evident in C. septicum-mediated
myonecrosis and with the overwhelming sepsis that
frequently contributes to the high mortality rate. These
results represent an important advance in the understand-
ing of the toxicity of b-barrel pore-forming toxins and how
they may contribute to necrotic and systemic disease
pathology.

Figure 1. Ca2+ mediated programmed necrosis pathways. Increases in [Ca2+]i activate Ca2+-dependant proteases, which disrupt lysosomes,
releasing cathepsins, and cleave cytoskeletal proteins and Na+/Ca2+ exchange pumps, causing additional Ca2+ influx. [Ca2+]i increases also disrupt the
TCA cycle, leading to increased ROS and mitochondrial permeability transition (mPT), resulting in decreased ATP production. ROS permeabilize
lysosomes, acting to further depolarize mitochondria through the activity of cyclophilin-D (CypD) and damage DNA, which activates PARP. PARP
depletes ATP and aids the nuclear-cytosolic translocation of HMGB1.
doi:10.1371/journal.ppat.1000516.g001

C. septicum a-Toxin-Mediated Programmed Necrosis
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of C. septicum-mediated myonecrosis, which is characterized by

extensive muscle necrosis and rapid progression to fulminant

sepsis.

Results

a-toxin intoxication of mouse myoblasts induces Ca2+

influx
To investigate whether pore-formation by C. septicum a-toxin

results in intracellular calcium fluctuations, we used the intracel-

lular fluorogenic Ca2+ indicator Fluo 4-AM. The murine skeletal

myoblast cell line C2C12 was used since C. septicum-mediated

necrosis occurs predominantly in the skeletal musculature. C2C12

cells pre-loaded with 2 mM Fluo 4-AM were exposed to varying

concentrations of purified a-toxin in a buffer containing 2 mM

CaCl2 and the fluorescence measured at 2 min intervals for 1 h.

Intoxication of the cells with a-toxin caused a dose dependant

increase in the amount of [Ca2+]i compared to untreated cells

(Figure 2A). Treatment of cells with mutated toxins, which were

either unable to form a transmembrane pore (TMD) or

oligomerize (OLIGO) [33,34] caused no change in [Ca2+]i levels

(Figure 2A), indicating that pore formation was essential for the

changes in [Ca2+]i.

To confirm these results, we used BAPTA-AM and EGTA,

which are intracellular and extracellular Ca2+ chelators, respec-

tively. Pretreatment of cells with BAPTA-AM significantly

attenuated the increase in [Ca2+]i when the cells were treated

with 1 mg/ml of a-toxin (p,0.001). Replacement of CaCl2 in the

buffer with EGTA completely abrogated any changes in [Ca2+]i

(Figure 2B), confirming that changes in the levels of Ca2+ in cells

treated with a-toxin were due solely to the influx of extracellular

Ca2+.

Analysis of cell death response to a-toxin
There are reports linking the influx of calcium due to b-barrel

pore-forming toxins to the initiation of apoptosis [8,9] and necrosis

[13,35], therefore we used FACS analysis of Annexin V/7-

aminoactinomycin D (7AAD) staining to determine if a-toxin

treated cells showed markers of apoptosis or necrosis. Cells that

were positive for Annexin V staining alone, indicating the

exposure of phosphatidylserine in the absence of cell permeabi-

lization, were considered apoptotic. Cells stained with 7AAD

alone were regarded as permeable and therefore necrotic, cells

with a dual stained phenotype were considered necrotic or late

apoptotic, while unstained cells were deemed viable. Cells were

treated with different concentrations of a-toxin; H2O2 was used as

a positive control for apoptosis as C2C12 myoblasts are resistant to

more commonly used inducers of apoptosis such as staurosporine

and etoposide [36,37,38]. Freeze-thaw treatment of cells was used

as a positive control for necrotic staining. Analysis of the Annexin

V/7AAD staining profiles revealed that a-toxin did not induce

apoptosis in C2C12 cells (Figure 3A). Compared to control cells,

the proportion of apoptotic cells in the H2O2 treated sample was

significantly increased (p,0.001) however, no such increase was

observed in a-toxin treated cells. Instead, there was a significant

change in the proportion of dual stained cells at both a-toxin

concentrations tested (p,0.001) and in 7AAD-only stained cells at

25 ng/ml (p,0.001). This change was found to be dependent on

pore formation since the TMD mutant had no effect on the

staining phenotype compared to the control. The lack of induction

of apoptosis was confirmed by the absence of internucleosomal

DNA fragmentation in a-toxin-treated cells compared to H2O2-

treated cells (Figure 3B). Therefore, it appears that a-toxin induces

a necrotic response in C2C12 cells as a result of Ca2+ influx.

The increase in [Ca2+]i results in the activation of
proteases involved in programmed necrosis

To assess the downstream effects of the increase in [Ca2+]i in

intoxicated C2C12 cells we initially focused on the activation of

calpains. Calpains are calcium-activated proteases that are

important in programmed necrosis because they cause the release

of cathepsins from lysosomes and rearrangement of the actin

cytoskeleton [39]. C2C12 cells were treated with a-toxin and the

detergent soluble and insoluble fractions were assayed for calpain

activation using the fluorogenic calpain substrate N-Succinyl-Leu-

Tyr-7-amido-4-methylcoumarin (N-Suc-LY-AMC). We observed

a greater than 1.5-fold increase in calpain activity in cells treated

with 25 ng/ml a-toxin for 30 and 60 min, compared to untreated

Figure 2. Ca2+ influx is dependent on a-toxin pore-formation
and extracellular Ca2+ availability. (A) C2C12 cells preloaded with
the Ca2+ reporter fluorophore Fluo 4-AM were treated with purified a-
toxin (closed symbols) or mutated derivatives unable to oligomerise
(OLIGO) or form a transmembrane pore (TMD) (open symbols) in the
presence of 2 mM CaCl2. Brackets indicate the concentration of a-toxin
in mg/ml. Changes in fluorescence were calculated relative to untreated
cells and the starting ratio, as described in Materials and Methods. (B)
Changes in [Ca2+]i were assessed as for (A) except that C2C12 cells were
pretreated with 20 mM BAPTA-AM (open symbols) and/or extracellular
CaCl2 was replaced with 0.5 mM EGTA. Note that fluorescence was
recorded every 2 min, but only data from every 4 min are plotted, for
clarity of the figure. Data points represent the mean and standard error
from three experiments and all statistical analysis was performed using
curves with data at 2 min intervals.
doi:10.1371/journal.ppat.1000516.g002
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cells. Most of the increase was observed in the detergent soluble

fraction (p,0.05), which suggests that there was an increase in the

activity of calpains in the cytosol (Figure 4A). Activity tapered off

over the following 4 h, which correlated with a decrease in

viability over the same time frame (Figure 4A, data not shown). In

agreement with our calcium influx data, neither of the inactive a-

toxins was able to induce an increase in calpain activity (data not

shown). Specificity was assessed by the addition of the calpain

inhibitor calpeptin to the reaction at 100 mM and by subjecting

the cells to a freeze-thaw cycle for non-programmed necrosis.

Since calpains are involved in lysosomal disruption [40], we

then investigated lysosomal integrity using neutral red. Neutral red

is a membrane-permeable supravital dye that becomes imperme-

able in the acidic environment of intact lysosomes; therefore the

integrity of lysosomes can be directly related to the amount of

neutral red that is retained by treated cells. A dose dependant

reduction in neutral red retention was observed in cells treated

with a-toxin in the presence of Ca2+, and to a lesser extent in cells

treated in the presence of EGTA (Figure 4B). Quantification of

this observation confirmed that there was a significant Ca2+-

dependant reduction in lysosomal integrity, although it was not

absolute since a decrease was still observed when the buffer

contained EGTA but not Ca2+ (Figure 4C).

Since we had now shown that calpains were activated following

a-toxin treatment, and that lysosomal disruption had also

occurred, potentially leading to leakage of lysosomal cathepsins,

we decided to determine the extent to which calpains and

lysosomal proteases contributed to cell death. To this end, cells

were pretreated with either a calpain inhibitor, calpeptin

(100 mM), a cathepsin B and L inhibitor [41], z-Phe-Phe-

fluoromethyl ketone (zFF-fmk) (100 mM), or 50 mM z-Val-Ala-

Asp-fluoromethyl ketone (zVAD-fmk) to inhibit caspases. Lactate

dehydrogenase (LDH) release was assayed to measure the

cytotoxicity in response to a-toxin. Both calpeptin and zFF-fmk

significantly reduced the amount of LDH released 30 min post a-

toxin treatment, compared to the no inhibitor control (p,0.05),

while zVAD-fmk had no significant effect (Figure 4D). Addition-

ally, pretreatment with calpeptin and zFF-fmk prevented cell

death from significantly increasing compared to the zero time

point, while both the no inhibitor control and zVAD-fmk treated

cells showed significantly more cytotoxicity (p,0.01) (Figure 4D).

It is important to note that at 60 min after toxin treatment there

was no difference in the cytotoxicity observed in untreated cells

compared to those treated with calpeptin, zFF-fmk or zVAD-fmk

(data not shown). Taken together, these data show that the broad

spectrum proteases, calpains and cathepsins, are activated

following a-toxin intoxication of C2C12 cells, and that they

contribute to the early stages of cell death. However, at later stages

of cell death, there appear to be additional factors contributing to

cytotoxicity.

Intoxication of cells with a-toxin causes mitochondrial
dysfunction

[Ca2+]i increases do not merely have the potential to activate

Ca2+ dependant proteases. Ca2+ overload can also have a direct

impact on the function of mitochondria, stimulating the

tricarboxylic acid (TCA) cycle, which leads to an increase in the

levels of ROS, mitochondrial depolarization and ultimately a

severe depletion of ATP [19,20]. The levels of intracellular ROS

in treated and untreated cells were assessed using the probe 29,79-

dichlorofluorescindiacetate (H2DCFDA), which fluoresces upon

oxidation. It was shown that ROS levels increased in a Ca2+-

dependant manner in cells treated with a-toxin (Figure 5A). Ca2+

dependence was confirmed by the use of the Ca2+ ionophore

A23187 and the fact that changes in ROS levels were significantly

inhibited when EGTA was used instead of extracellular CaCl2. No

change in ROS levels was observed in the first 15 min, however, a

significant increase was observed after this time point in cells

treated with 1 mg/ml of a-toxin, when incubated in the presence

of CaCl2 compared to EGTA (p,0.01).

Apoptosis is considered an energy dependant process, due to the

requirement for caspase activation [20], and as such intracellular

ATP levels do not significantly decline, at least in the early stages

[23]. We quantified the intracellular ATP levels in untreated

C2C12 cells compared to cells treated with varying concentrations

of a-toxin for 1 h, and found a significant dose-dependent

decrease in ATP in a-toxin treated cells (Figure 5B). Moreover,

ATP levels decreased to below 85% of normal levels with 0.1 mg/

ml of a-toxin, at which point cells are considered necrotic since

there is no longer sufficient ATP to maintain energy dependant

apoptotic pathways [42]. Taken together, these results suggest that

Figure 3. C2C12 cells treated with a-toxin do not exhibit hallmark features of apoptosis. (A) Cells were treated with a-toxin and the TMD
deletion derivative at the indicated concentration (ng/ml) for 1 h, apoptosis was induced by treatment with 0.5 mM H2O2 for 24 h and necrosis by
freezing the cells to 270uC and thawing to 37uC. Treated cells were then stained with Annexin V and 7AAD to identify phosphatydylserine exposure
indicative of apoptosis, or cell permeability consistent with necrosis, respectively. Dual stained cells were considered late apoptotic/necrotic. The
proportion of cells per cell death phenotype was assessed using FACS analysis and the results represent the mean and standard error from three
experiments. Note that the lower levels of toxin used here compared to other experiments reflects the low number of cells used per assay. (*)
indicates p,0.001 compared to the untreated control. (B) Cells were treated as in (A) and internucleosomal DNA was prepared and examined using
agarose gel electrophoresis for the presence of 200 bp-fragmentation. Molecular size markers are indicated on the left in bp.
doi:10.1371/journal.ppat.1000516.g003
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a-toxin-mediated Ca2+ influx leads to significant mitochondrial

dysfunction, which in turn appears to contribute to a programmed

necrosis phenotype.

HMGB1 release is associated with a-toxin treatment
We then assessed the localization of HMGB1 as additional

marker of programmed necrosis. HMGB1 is a chromatin binding

protein that in most cell types is selectively retained in the nucleus

during apoptosis, but is released into the cytoplasm, and

subsequently into the extracellular milieu, during necrosis [43].

Once released from the cell, it acts as a potent mediator of

inflammation and cell migration by binding to the Toll-like

receptors TLR-2 and TLR-4 and the receptor for advanced

glycation end products (RAGE) [19]. We examined the subcellular

location of HMGB1 and found that in comparison to untreated

cells, where HMGB1 staining co-localized with the nuclei, in cells

treated for 1 h with 1 mg/ml of a-toxin, HMGB1 was distributed

though the cytoplasm (Figure 6A). No such translocation was

identified in cells treated with 0.1 mg/ml a-toxin. These data were

Figure 4. Calpain activation, lysosomal disruption and cathepsin release following a-toxin intoxication of C2C12 cells. (A) Calpain
activation was determined in cells that were incubated with 25 ng/ml a-toxin for the indicated times. The detergent soluble and insoluble fractions
were assessed for calpain activity using a fluorogenic calpain substrate, and the level of calpain activity determined as a fold change in fluorescence
compared to the untreated control. Calpeptin (100 mM) was added prior to toxin incubation (30 min) and substrate cleavage. Bars represent the
mean and standard error from three separate experiments. (*) indicates significantly greater calpain activity compared to the respective untreated
control (p,0.05) and (#) indicates that the calpain activity is significantly less than untreated controls (p,0.05). (B) C2C12 cells were treated with
neutral red and a-toxin in the presence of either 2 mM CaCl2 or 0.5 mM EGTA and assessed for the amount of neutral red retention in the lysosomes
by microscopy. Numbers in brackets indicate the concentration of a-toxin in mg/ml. (C) Cells were treated as for (B), then solubilized using 0.5 N HCl/
50% ethanol. The amount of neutral red retained was quantified by determining the absorbance at 540 nm, expressed as a percentage of untreated
control cells. Data points represent the mean and standard error from three experiments. (D) Cells were treated with calpeptin (100 mM), zFF-fmk
(100 mM) or zVAD-fmk (50 mM) for 1 h prior to the addition of 0.1 mg/ml a-toxin. LDH release was used to assess cell death and was expressed as a
percentage of the no inhibitor control at 60 min post a-toxin treatment. Bars represent the mean and standard error from three experiments. (*)
indicates significantly more LDH release than the respective the 0 time point control (p,0.05). (#) indicates that the increase in LDH release
compared to the zero time point is not significant.
doi:10.1371/journal.ppat.1000516.g004
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confirmed by Western blotting of cytoplasmic and nuclear

fractions where most of the HMGB1 was in the nuclear fraction

of untreated cells and in the cytoplasm of cells treated with

a-toxin (1 mg/ml) (Figure 6B). Since the proinflammatory activity

of HMGB1 is dependent on its release from necrotic cells, we

also examined the supernatant of a-toxin treated cells. We

were only able to detect HMGB1 in the supernatant of

cells treated with 1 mg/ml a-toxin, but not in control or

0.1 mg/ml a-toxin-treated cells (Figure 6C). Treatment of

C2C12 cells with H2O2 also led to the release of the protein

from cells (data not shown), which is consistent with the fact that

H2O2 causes the passive release of HMGB1 from monocytes and

macrophages [44]. The observed translocation of HMGB1 from

the nucleus to the cytoplasm and its subsequent extracellular

release provides additional evidence that a-toxin causes necrosis in

C2C12 cells.

Differentiated C2C12 cells show the same response to a-
toxin

Since our results indicated that C2C12 myoblast cells responded

to a-toxin intoxication by programmed necrosis pathways, we

decided to see if these results could be translated into differentiated

C2C12 cells, which are a commonly used in vitro model of skeletal

muscle tissue. Compared to undifferentiated myocytes, C2C12

myoblasts showed a slower influx of calcium at 1 mg/ml, however,

the increase was sustained over the course of the experiment

(Figure 7A). This change in [Ca2+]i was a result of Ca2+ influx,

since when the buffer was supplemented with 0.5 mM EGTA

instead of 2 mM CaCl2, no change in intracellular calcium level

was observed (Figure 7A). This calcium influx was associated with

a necrotic rather than apoptotic phenotype, as determined by

FACS analysis of AnV/7AAD stained cells and internucleosomal

DNA degradation (Figure 7B and C). We were not able to identify

by FACS analysis a significant population of apoptotic myotubes

in response to H2O2 treatment (Figure 7C), but recently published

work indicates that oxidative stress is able to induce apoptosis in

C2C12 myotubes [45], and we were able to detect DNA laddering

(Figure 7B). Finally, differentiated cells also showed evidence of

HMGB1 release from the nucleus to the cytoplasm and into the

supernatant (Figure 7D).

Discussion

Although C. septicum a-toxin is known to be active against several

cell types [5,31], the effects of the toxin have previously only been

investigated in detail in Toxoplasma gondii tachyzoites, where it

causes membrane perturbations and vacuolization [46]. Our

studies have now shown that C. septicum a-toxin has the ability to

induce a programmed necrosis response in murine myoblast cells

and differentiated myotubes; a response that results from an

increase in [Ca2+]i. This result is in contrast to reports of cellular

responses to the orthologous toxin, aerolysin [9,10,11], however, it

must be noted that cellular responses are frequently cell type

specific [8].

Intracellular increases in Ca2+ concentration are a common

feature of many cell responses to bacterial pathogens and are

generally associated with activation of the Ca2+-dependant

protease, calpain, which causes cytoskeletal rearrangement [24],

lysosome rupture [40] and cleavage of Na+/Ca2+ exchange

pumps, further increasing [Ca2+]i [47]. Ca2+ influx is also

associated with mitochondrial dysfunction, as a result of Ca2+

stimulation of the mitochondrial TCA cycle, leading to the

production of ROS and depletion of ATP [20] (Figure 1). Since

Annexin V/7AAD staining indicated that a-toxin-mediated cell

death appeared to be predominantly late apoptotic and/or

necrotic, we focused on identifying biochemical changes that were

consistent with a Ca2+-induced programmed necrosis phenotype.

To this end, we were able to identify activation of both the

calpain-cathepsin cascade and mitochondrial dysfunction, leading

to ROS production, ATP depletion and ultimately HMGB1

release.

The dual responses of calpain activation and mitochondrial

dysfunction, and their intertwined pathways, most likely contrib-

uted to the rapid cell death response that was identified. That

calpain and cathepsin inhibition could not completely prevent cell

death indicated that mitochondrial dysfunction was a significant

contributor to cytotoxicity - indeed the drastic increase in ROS

and severe ATP depletion could be sufficient to cause cell death

Figure 5. a-toxin treatment mediates mitochondrial dysfunc-
tion as indicated by increased ROS levels and depletion of ATP.
(A) ROS levels were assessed in cells preloaded with an oxidation
sensitive fluorophore following a-toxin intoxication in the presence of
extracellular Ca2+ (closed symbols) or EGTA (open symbols). The calcium
ionophore A23187 (30 mM) was used as a control to confirm the
specificity of the Ca2+ response. Data points represent the mean and
standard error of five experiments; a-toxin concentrations are indicated
in brackets. (*) represents p,0.01 compared to EGTA control. (B) ATP
levels were assessed following a-toxin treatment for 1 h at the
indicated concentrations. Values above the bars indicate the percent-
age ATP depletion compared to the control. Bars represent the mean
and standard error of three experiments. (*) represents p,0.01 and (**)
represents p,0.001 compared to the control, respectively.
doi:10.1371/journal.ppat.1000516.g005
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[23]. ROS are not only a marker of over stimulation of the TCA

cycle, but they can also have a positive feedback effect by causing

greater permeabilization of mitochondrial membranes [48], as

well as disrupting lysosomes [26]. Using calpeptin as a calpain

inhibitor we were unable to prevent lysosomal disruption (data not

shown), suggesting that in this model ROS may have been the

primary cause of deleterious effects on the lysosomes. ROS are

also a major contributor to DNA damage, which in turn leads to

the activation of PARP [49]. In healthy cells PARP acts to repair

DNA strand breaks; excessive DNA damage and consequent

hyperactivation of PARP leads to the exhaustion of ATP stores

[27], which would compound the ATP depletion caused by the

Ca2+-induced mitochondrial dysfunction. In apoptotic cells,

significant ATP depletion is prevented by caspase-mediated

cleavage of PARP [50]. In support of a-toxin mediating a

programmed necrosis cell death response, our data showed that

ATP was significantly depleted, to below 85% within an hour of a-

toxin treatment, after which point cells are considered irretrievably

necrotic [23,42].

Pore-forming toxins have been reported to initiate apoptosis at

low concentrations and necrosis/oncosis at higher concentrations

[18,35]. We were not able to demonstrate a-toxin-mediated

apoptosis by either FACS analysis of Annexin V/7AAD

differential staining, or by DNA laddering at the toxin concen-

trations tested, however, a-toxin has been reported to induce DNA

laddering in Chinese hamster ovary cells at subnanomolar

concentrations [51]; the same concentration required for aero-

lysin-mediated DNA laddering [9] and much lower than the

concentration of a-toxin used in this study. The induction of DNA

laddering was only used as a measure of cytotoxicity, and was not

characterized further, so it is not known whether the laddering was

the result of low level Ca2+ influx as shown for aerolysin [9], or

depletion of cytosolic K+, which a-toxin has also been shown to

cause [2], and which is important in the regulation of caspase

activation and DNA laddering [52]. An alternative cell death

pathway, pyroptosis, was recently coined to describe caspase-1

dependant necrosis [53], which is predominantly associated with

bacterial invasion and plasma membrane permeability by type III

secretion mechanisms [53], although Mannheimia haemolytica has

been shown to mediate pyroptosis via its leukotoxin [54]. The C.

septicum a-toxin-mediated cell death we observed is similar to

pyroptosis in that there is no apparent DNA laddering in cells,

however, mitochondrial integrity is maintained in pyroptosis [53],

whereas it is disturbed in our system. It is concluded that despite

similarities with other described cell death pathways a-toxin-

mediated cell death in C2C12 myoblasts follows a predominantly

necrotic pathway.

Early work published on the activity of pore-forming toxins,

before programmed necrosis was described as a biochemical

pathway, described cellular responses consistent with the induction

of programmed necrosis. aHL mediates Ca2+ influx in PMNs [55],

and Ca2+ influx and ATP depletion in T lymphocytes when

applied at high doses [16]. E. coli hemolysin, a prototype of the

RTX hemolysins, causes Ca2+ influx and ATP depletion in a wide

variety of target cells [13]. In human monocyte-derived macro-

phages, enteroaggregative and cell-detaching E. coli strains were

found to cause hemolysin A-dependent phenotypic changes in cell

morphology that are consistent with oncosis [56]. More recent

work on pore-forming toxins reveals the involvement of several

mediators of programmed necrosis. CaCo-2 cells treated with

Clostridium perfringens enterotoxin undergo apoptosis or oncosis,

depending on the concentration of toxin [35]. Calpain activation

was demonstrated and both apoptotic and oncogenic cell death

pathways could be prevented by calpain inhibition [35]. At low

Figure 6. HMGB1 is released into the cytoplasm and supernatant of a-toxin treated cells. (A–B) Intracellular translocation of HMGB1 was
visualized using fluorescence microscopy and Western blotting. (A) Cell nuclei were stained with DAPI and HMGB1 localized using anti-HMGB1
antibodies and an Alexa Fluor-488 conjugated secondary antibody. Images are representative of the results from five separate experiments. (B)
Western blot analysis of HMGB1 in cytoplasmic (Cyt) and nuclear (Nuc) fractions. (C) Extracellular translocation of HMGB1 was confirmed by Western
blot analysis of whole cell lysates (WCL) and culture supernatants (Sup) of a-toxin treated cells compared to untreated control cells. Brackets indicate
the concentration of a-toxin in mg/ml.
doi:10.1371/journal.ppat.1000516.g006
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concentrations, aHL has long been considered to induce

apoptosis, as characterized by DNA fragmentation and caspase

activation [7], however, while inhibition of caspases prevents the

hallmark features of apoptotic cell death, it does not ultimately

prevent cytotoxicity [18]. Similar effects were observed in

Streptococcus suis-infected porcine choroid plexus epithelial cells

[57]. Both studies also reported the translocation of HMGB1 from

the nucleus, even in the absence of caspase inhibition, indicating

the cell death response was predominantly necrotic, despite the

observation of apoptotic hallmarks.

The observation that a-toxin induces the release of HMGB1

from muscle cells is a highly significant finding, considering its

immunostimulatory properties. HMGB1 has been shown to be a

potent mediator of late septic shock that results from endotoxin

stimulation of macrophages [29,58] and there are indications that

it may be a valuable therapeutic target in the treatment of sepsis

[59]. C. septicum infections are frequently fatal, even with aggressive

antimicrobial and surgical interventions [60], and patients most

commonly die from overwhelming septic shock, despite the

localized nature of myonecrosis. Further research is required to

better characterize the contribution of HMGB1 to the pathogen-

esis of C. septicum infections and the potential role it plays in disease

mediated by other pathogens that produce similar pore-forming

toxins.

In summary, we have shown that C. septicum a-toxin mediates

programmed necrosis of C2C12 murine myoblast cells, necrosis

that is characterized by calpain activation, increased levels of

ROS, ATP depletion and HMGB1 translocation. The necrotic

Figure 7. a-toxin treated myotubes display hallmark features of programmed necrosis. (A) C2C12 were differentiated into myotubes and
preloaded with the Ca2+ reporter fluorophore Fluo 4-AM. Myotubes were treated with purified a-toxin in the presence of extracellular CaCl2 (closed
symbols) or with 0.5 mM EGTA (open symbols). The levels of [Ca2+]i were significantly higher in cells treated with a-toxin in the presence of CaCl2
compared to EGTA. Note that fluorescence was recorded every 2 min, but only data from every 8 min are plotted, for clarity of the figure. Data points
represent the mean and standard error from three experiments and all statistical analysis was performed using curves with data at 2 min intervals. (B)
Internucleosomal DNA was prepared from treated myotubes (25 ng/ml a-toxin, 0.5 mM H2O2) and examined using agarose gel electrophoresis for
the presence of 200 bp-fragmentation. Molecular size markers are indicated on the left in bp. (C) Treated myotubes were stained with Annexin V and
7AAD and the proportion of cells per phenotype was assessed using FACS analysis. The results represent the mean and standard error from three
experiments. Note again that the lower levels of toxin used here compared to other experiments reflects the low number of cells used per assay. (*)
indicates p,0.05 compared to the untreated control. (D) Intracellular translocation of HMGB1. Western blot analysis of HMGB1 in cytoplasmic (Cyt)
and nuclear (Nuc) fractions and whole cell lysates (WCL) and culture supernatants (Sup) of a-toxin treated cells compared to untreated control cells.
Brackets indicate the concentration of a-toxin in mg/ml.
doi:10.1371/journal.ppat.1000516.g007
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nature of the cell death response observed in these cells parallels

the infectious process of C. septicum-mediated myonecrosis, where

there is extensive destruction of the skeletal muscle tissue and

septic shock [1,3]. Most data pertaining to Ca2+-activated

necrosis/oncosis pathways is derived from neuron excitotoxicity

[20] and ischemia/reperfusion models [25], and to our knowledge

this report is the first to analyze multiple aspects of Ca2+-induced

necrosis/oncosis in response to a pore-forming toxin. We postulate

that pore-forming toxins may form a major class of inducers of the

programmed necrosis pathway.

Materials and Methods

Cells, reagents and antibodies
C2C12 mouse myoblast cell lines were maintained in

DMEM media supplemented with 10 mM L-glutamine and

penicillin/streptomycin (Gibco, Invitrogen) and 10% fetal calf

serum (MultiSer, Cytosystems, Castle Hill, Australia). Cells

were differentiated by culturing to confluency, substituting

normal growth media for DMEM supplemented with 2% fetal

calf serum and then culturing for a further five days. Protease

inhibitors, calpeptin and cathepsin L inhibitor I were purchased

from Calbiochem (Merck KgaA, Darmstadt, Germany) and

zVAD-fmk from Bachem (AG, Bubendorf, Switzerland). The

calpain fluorogenic substrate N-Suc-LY-AMC, neutral red and

Bioluminescent ATP assay kit were obtained from Sigma (St

Louis, MO, USA). Fluorogenic indicators Fluo4-AM and

H2DCFDA were purchased from Molecular Probes (Invitrogen,

Carlsbad, CA, USA) as were goat anti-rabbit IgG Alexa-Fluor

488, BAPTA-AM and DAPI. LDH was assayed using the

CytoTox-ONETM Homogeneous Membrane Integrity Assay

purchased from Promega (Madison, WI, USA). Expression vectors

containing the histidine-tagged structural genes for C. septicum a-

toxin and its mutated derivatives were a gift from R. K. Tweten

and purified as before using Ni2+ affinity and cation exchange

columns [61]. The construction of the oligomerisation mutant,

S178C:C86A, and 10 amino acid TMD deletion have been

previously described [33,34].

Determination of intracellular Ca2+

For Ca2+ influx experiments, C2C12 cells were seeded into a

black 96-well tray (Nunclon) at 16104 cells per well. The medium

was removed and replaced with HEPES-buffered saline (HBS;

5 mM KCl, 125 mM NaCl, 6 mM D-glucose, 12 mM MgCl2,

25 mM HEPES) containing 2 mM Fluo-4AM with or without

20 mM BAPTA-AM and incubated for 1 h at room temperature

with shaking. The cells were then washed three times in HBS and

covered with HBS supplemented with either 2 mM CaCl2 or

0.5 mM EGTA. Toxins were diluted in supplemented HBS and

added to the plate in triplicate immediately prior to measurement.

For fluorescence measurements, a Tecan Infinite 200 plate reader

was used at an excitation wavelength of 485 nm and emission of

520 nm, and the cells were maintained at 37uC for the duration of

the measurements. Data were expressed as a ratio of the untreated

control relative to the starting ratio using the following equation:

DF=F~
(Tn=Cn){(T0=C0)

(T0=C0)

where F = the fold change in fluorescence, T = average of the

readings of the toxin treated replicate samples, C = average of the

readings of the control replicates, n is the time point post toxin

addition and 0 is the first reading.

FACS analysis
C2C12 cells were seeded in six-well tissue culture plates at a

density of 2.56104 cells per well. Cells were treated with 0.5 mM

H2O2 for 24 h or purified C. septicum a-toxin at various

concentrations for 1 h at 37uC in 5% CO2. Adherent C2C12

cells were removed by trypsin treatment, combined with floating

cells from the culture medium, washed with 16 PBS and

resuspended at 106 cells/ml in 16 Annexin V binding buffer

and stained with FITC-conjugated Annexin V and/or 7AAD as

per the manufacturer’s instructions (BD Biosciences, Heidelburg,

Germany). Samples (4000–10,000 events) were acquired and

analyzed using a BD Biosciences FACScalibur flow cytometer and

CellQuest software.

Calpain activity
Calpain activity was assessed using a protocol adapted from a

previous study [62]. Briefly, 400 ml aliquots of a 16107 cells/ml

suspension of C2C12 cells were treated with 10 ng toxin at 37uC
for varying times. Cells were then collected by centrifugation at

4006g for 3 min, resuspended in 100 ml of lysis buffer (50 mM

Tris-HCl, 0.5% Triton-X, pH 7.3) and incubated on ice for

10 min. The lysate was repeatedly pipetted though a 100 ml

protein loading tip to aid the break-up of cells and was then

centrifuged at 10,0006g at 4uC to separate the detergent soluble

and insoluble fractions. The supernatant containing the detergent

soluble fraction (crude cytosolic) was removed to a second tube

and the detergent insoluble pellet (crude membrane) was

resuspended in 100 ml of lysis buffer. The calpain substrate N-

Suc-LY-AMC was added to a concentration of 10 mM and the

fluorescence read at 340/460 nm. Fluorescence intensities corre-

sponding to calpain activity are expressed as a ratio of the treated

cells compared to the non-treated control.

Neutral red retention assay
The neutral red retention assay was adapted from previous

studies [63]. Briefly, C2C12 cells were seeded in a clear 96-well

tray at 16104 cells per well. The medium was removed and

replaced with serial dilutions of a-toxin in HBS supplemented with

50 mg/ml neutral red (Sigma) and either 2 mM CaCl2 or 0.5 mM

EGTA, and incubated at 37uC for 1 h. The buffer was then

removed and the neutral red taken up by the cells extracted in

50 ml of 0.5 N HCl/50% ethanol for 15 min with shaking at room

temperature and the absorbance was read at 540 nm. Lysosomal

integrity was calculated as a percentage of the absorbance of the

untreated control.

DNA fragmentation
Internucleosomal DNA was extracted from 16106 C2C12 cells

following a-toxin treatment for 1 h or 0.5 mM H2O2 for 24 h.

Adherent and detached cells were lysed in 0.2% Triton X-100 in

TE (10 mM Tris-HCl, pH, 8.0, 1 mM EDTA) and the cell debris

and whole nuclei removed by centrifugation at 13 0006g for

15 min. The supernatant was then treated with 60 mg/ml RNAse

A for 1 h at 30uC, followed by 0.5% SDS and 150 mg/ml

proteinase K for 1 h at 50uC. The DNA was then precipitated in

0.1 volumes of 5 M NaCl and 1 volume isopropanol and the entire

preparation separated on a 2% agarose gel.

ROS activation
The levels of intracellular ROS were assayed using the

oxidation sensitive fluorogenic reagent H2DCFDA. Cells were

seeded at 16104 cells per well in a black 96 well tray. Prior to the

assay, the culture medium was removed and replaced with HBS

C. septicum a-Toxin-Mediated Programmed Necrosis
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supplemented with 10 mM H2DCFDA and the cells were

allowed to take up the dye for 30 min at room temperature,

with shaking. The cells were then washed three times in HBS to

remove unincorporated dye, and the buffer replaced with HBS

supplemented with 2 mM CaCl2 or 0.5 mM EGTA. Serial

dilutions of a-toxin or 30 mM of the Ca2+ ionophore A23187

were added immediately prior to reading at 485/520 nm.

Calculations of relative fluorescence were performed as for Ca2+

measurements.

Determination of ATP
To determine the levels of intracellular ATP, 16105 C2C12

cells were treated with varying concentrations of a-toxin for 1 h.

Buffer was removed and the cells were resuspended in 200 ml of

boiling lysis buffer (100 mM Tris-HCl, pH 7.75, 4 mM EDTA)

and boiled for an additional 2 min to inactivate ATPase. Lysates

were then centrifuged at 36006g to remove cell debris and the

supernatants kept on ice. ATP levels were assayed using an ATP

Bioluminescent Assay kit (Sigma), where 100 ml of luciferase

reagent mix was added to 100 ml of lysate by automated injection

and the luminescence read immediately with 6 sec integration,

using a Tecan Infinite 200 plate reader.

Subcellular fractionation and Western blot analysis
C2C12 cells were treated with varying concentrations of toxin

for 1 h. To separate the nuclear and cytosolic fractions, cells were

resuspended in lysate buffer (5 mM Tris, pH 7.4, 5 mM KCl,

1.5 mM MgCl2, 2 mM EGTA, 1 mM DTT), supplemented with

Complete EDTA free protease inhibitor cocktail (Roche Molec-

ular Biochemicals, Mannhein, Germany). Cells were disrupted by

repeated vortexing for 15 sec, a sample of the whole cell lysate was

collected and fractions were separated by centrifugation at

16,0006g at 4uC. The supernatant (cytosolic fraction) was

removed and the nuclear fraction was resuspended in buffer

containing 10 mM NaCl, 10 mM Tris, pH 7.4, 5 mM EDTA, 1%

Triton X-100, supplemented with protease inhibitors as above.

For the identification of proteins released into the media, cells

were cultured in a minimal volume of media (1% FCS) to

effectively concentrate the sample. Samples were standardized to

protein concentration using a BCA assay kit (Pierce) and separated

on a 12% resolving SDS-PAGE gel before being transferred to a

Hybond C+ nitrocellulose membrane. HMGB1 was detected

using an anti-HMGB1 antibody (Abcam, Cambridge, UK) at a

dilution of 1:500. The secondary antibody was an anti-rabbit

horseradish peroxidase-conjugated antibody (Chemicon Interna-

tional, Temecula, CA, USA) used at a dilution of 1:1000. Blots

were developed by enhanced chemiluminescence (ECL) using the

Western Lightning ECL kit (Perkin-Elmer, Boston, MA, USA),

according to manufacturer’s instructions.

Immunocytochemistry and microscopy
Cells (56104 in a 24 well tray) were cultured on glass cover slips

and treated as required. To assess neutral red retention, individual

cover slips were washed gently in PBS and mounted onto slides

immediately prior to observation. To visualize HMGB1 translo-

cation, cover slips were washed three times in PBS and the cells

fixed in 3.5% paraformaldehyde in PBS and permeabilized with

0.25% Triton X-100 in PBS. Cells were stained using anti-

HMGB1 antibodies (1:500) and a secondary Alexa Fluor-488

conjugated antibody (1:200). Cell nuclei were stained using DAPI

(0.5 mg/ml) and photographed with an Olympus DP70 camera

mounted on an Olympus microscope BX51 using Olysia DP70

software.

Statistical analysis
Statistical significance was identified using one-way ANOVA,

followed by Tukey’s post test for multiple comparisons.
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