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Most human tumors possess a high heterogeneity resulting from both clonal evolution and
cell differentiation program. The process of cell differentiation is initiated from a population
of cancer stem cells (CSCs), which are enriched in tumor‐regenerating and tumor‐
propagating activities and responsible for tumor maintenance and regrowth after
treatment. Intrinsic resistance to conventional therapies, as well as a high degree of
phenotypic plasticity, makes CSCs hard-to-target tumor cell population. Reprogramming
of CSC metabolic pathways plays an essential role in tumor progression and metastatic
spread. Many of these pathways confer cell adaptation to the microenvironmental
stresses, including a shortage of nutrients and anti-cancer therapies. A better
understanding of CSC metabolic dependences as well as metabolic communication
between CSCs and the tumor microenvironment are of utmost importance for efficient
cancer treatment. In this mini-review, we discuss the general characteristics of CSC
metabolism and potential metabolic targeting of CSC populations as a potent strategy to
enhance the efficacy of conventional treatment approaches.

Keywords: cancer stem cells, therapy resistance, metabolic targeting, OXPHOS, glycolysis, glutamine metabolism,
fatty acid metabolism, tumor microenvironment
INTRODUCTION

According to the world health organization (WHO), cancer is responsible for one in six deaths
worldwide, and global cancer rates continue to grow (1, 2). Although the mono-therapy such as
surgery, chemotherapy and radiotherapy is a commonly accepted treatment modality for different
types of cancers, the combination of two or more types of treatment targeting the key cancer
mechanisms in synergistic or additive manners is currently a cornerstone of anticancer therapy
especially for advanced and aggressive cancers (3, 4). Recent innovations in treatment technologies
as well as in precision of radiation and drug delivery substantially increased efficiency and quality of
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treatment. However, treatment-related toxicities and tumor
therapy resistance still constitute a fundamental clinical and
scientific challenge (5–7).

The difficulty of cancer treatment has its roots in the nature of
this disease. Tumors are highly heterogeneous, consisting of
different types of cells. Intratumoral heterogeneity is evidenced
at the multiple levels, including genetic and epigenetic
landscapes, histological and molecular specificities as well as
functional differences between tumor cells including their
abilities to propagate tumor growth and give rise to other types
of cancer cells by the process of differentiation (8).

The process of cell differentiation is initiated from a
population of cancer stem cells (CSCs) that possess unique
properties such as the unlimited capacity of self-renewal and
asymmetric division, which leads to the production of different
cell types within tumors. These properties of CSCs make them
equipped with tumor‐regenerating and tumor‐propagating
activities and, therefore, responsible for the tumor maintenance
and regrowth after treatment. The density of CSCs substantially
varies between individual tumors, and its analysis is proven to
have prognostic significance for different types of cancers (9, 10).
Several CSC-specific markers have been described, among
them the expression of CD133, CD44, CD117 (c-kit), Oct4,
high aldehyde dehydrogenase (ALDH) activity, etc. as
discussed elsewhere (11–13). However, some of these markers
can be found in normal stem cells, which make identification
and targeting of CSCs more challenging (14). A high plasticity
of CSC populations is an additional obstacle on the way of
clinical translation as tumor cells possess the ability of shifting
their state from the CSC- to non-CSC populations and vice
versa that is regulated by multiple genetic, epigenetic and
microenvironmental stimuli (15–18). Although tumor stemness
is described as a highly dynamic state, eradication of all CSC
populations during tumor treatment is of high clinical importance
as remainingCSCsmight re-initiate local tumor growth and lead to
metastatic dissemination.

Many preclinical and clinical studies suggested that some
CSC populations can be equipped with intrinsic and extrinsic
mechanisms providing them with high radioresistance and
chemoresistance compared to the bulk of tumor cells. This
relatively high therapy resistance of CSCs is attributed to the
efficient DNA repair, low proliferative rate, protective tumor
microenvironment, maintenance of cellular redox homeostasis,
and immune escape. Altered metabolism of CSCs substantially
contributes to their treatment resistance. A deep understanding
of the CSC metabolic features and their molecular background
will help to develop novel therapeutic strategies that precisely
target CSCs and improve the efficiency of cancer control.
METABOLIC CHARACTERISTICS
OF CSCS

Reprogramming of cellular metabolism plays a crucial role in
tumor initiation, progression, resistance to conventional therapy,
Frontiers in Oncology | www.frontiersin.org 2
and immunosuppression. Unique features of tumor metabolism
were noticed almost one hundred years ago. At the beginning of
the XX century, Otto Warburg and co-workers described aerobic
glycolysis, accompanied by excessive production of lactate, as
one of the distinct characteristics of tumor cells and tissue slices
(19). Since then, many other alterations of biochemical pathways
have been described for cancer cells (11, 20, 21). Studying the
metabolism of CSCs is a challenging task due to the small size
and high plasticity of these cell populations. Nevertheless,
current experimental data shows that the metabolic features of
CSCs are highly heterogeneous, and tumor type-dependent
(Table 1).

Glycolysis is one of the major and best-studied metabolic
characteristics of cancer cells. Fast-growing tissues, such as the
most malignant tumors, demand more energy. In differentiated
cells, energy in the form of adenosine triphosphate (ATP) is
produced via oxidative phosphorylation (OXPHOS) that occurs
in mitochondria. Complete oxidation of glucose molecule leads
to the production of about 30 molecules of ATP, whereas about
26 out of these 30 ATP molecules are generated by OXPHOS
(42). Fast-proliferating cancer cells switch from OXPHOS to
glycolysis that requires the consumption of a high amount of
glucose since only two molecules of ATP per one molecule of
consumed glucose can be produced via this pathway. Lactate, a
byproduct of aerobic glycolysis, is shuttled to the extracellular
space and was shown to support stemness by upregulation of the
expression of genes related to stem cell properties, such as
transcription factor SP1, sterol regulatory element-binding
protein 1 (SREBP1) which is a transcriptional activator
required for regulation of lipid homeostasis, etc., to increase
aggressiveness and invasive properties of cancer cells as well as to
promote immunosuppression (43–48). Glycolytic CSCs were
described for several tumor entities. Song et al. showed that
CD133+ liver carcinoma cells had enhanced glycolysis (22).
Osteosarcoma-initiating cells also showed a highly glycolytic
phenotype (49). Breast CSCs demonstrated the upregulated
glycolysis and simultaneously decreased OXPHOS (24).
Heterogeneous results were showed for glioblastoma stem cells:
Zhou et al. described highly glycolytic glioblastoma cells which
were enriched for CSC populations by cell growth conditions
(50) while Janiszewska et al. showed the importance of OXPHOS
for CD133+ glioblastoma CSCs (28). OXPHOS, as the primary
energy production pathway was also shown for leukemic (29),
pancreatic (51) and ovarian (32) CSCs.

Many cancer cells demonstrate altered amino acid metabolism.
For the majority of cancer cells, glutamine—usually a non-
essential amino acid—becomes critically essential as they
consume high amounts of it to cover their biosynthetic and
energetic needs (52). The rewiring of glutamine metabolism in
tumor cells is associated with specific genetic alterations including
mitochondrial DNA (mtDNA) mutations (53), oncogenic KRAS
(54, 55) and c-Myc overexpression (56). Glutamine enters cells
via specific transporters (most of them belong to the alanine/
serine/cysteine transporter (ASCT) family) and is used in various
biochemical pathways. Bi-directional transporters of amino acids
export glutamine in exchange for other amino acids (for example,
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cysteine). In the cytoplasm, glutamine is converted into glutamate
and, subsequently, a-ketoglutarate (a-KG). Glutamate is a
building block of glutathione—one of the main scavenges of
reactive oxygen species (ROS), which protects the cells from
oxidative injury and lethal DNA damage (57, 58). In glutamine
metabolism, a-KG is an essential intermediate fueling
tricarboxylic acid (TCA) cycle in mitochondria. Metabolites of
the TCA cycle are, in turn, used for various other pathways, for
example, nucleotide and fatty acid biosynthesis. Moreover,
a-KG is a co-factor of the ten-eleven translocation (TET) family
DNA demethylases and Jumonji-C (JMJ-C) family histone
demethylases—enzymes that play a role in epigenetic regulation
of gene transcription. Some pieces of evidence suggest that
elevated a-KG to succinate ratio is a marker of stemness (59).
Frontiers in Oncology | www.frontiersin.org 3
Another critical metabolic characteristic of cancer cells is
their lipid metabolism. De novo lipid biosynthesis, enhanced
lipid oxidation, and increased storage of lipids are unique
characteristics of many cancers. For some of them, such as
prostate cancer, lipid content was proposed as a potential
biomarker, since the accumulation of lipids in prostate tissue
of mice correlated with tumor stage (60). Increased lipid droplet
content was shown for colorectal CSCs (61).

De novo lipid biosynthesis and fatty acid oxidation are among
the most targetable features of CSCs (62, 63). CSCs from glioma
(34) and pancreatic cancer (37) demonstrated upregulated
lipogenesis; interesting that pancreatic CSCs fuelled their
lipogenesis via enhanced glycolysis. Fatty acid synthase (FASN)
is the critical enzyme in de novo lipid synthesis. Its expression is
TABLE 1 | Examples of the metabolic features of CSCs described for the different tumor models.

Metabolic feature
of CSCs

Tumor entity Model Potential therapeutic targets References

Glycolysis Hepatocellular
carcinoma

PLC/PRF/5 human hepatocellular cancer cell line; CD133+
subpopulation was obtained by cell sorting

n/a (22)

Osteosarcoma OS13 cell line established by authors; CSC population was obtained by
limiting dilution assay in vitro

LIN28 (23)

Breast cancer Tumor-initiating cells purified from MMTV-Wnt-1 murine breast tumors Decreased activity of pyruvate
dehydrogenase (Pdh)

(24)

Breast cancer CD44+/CD24− breast cancer stem cells Pyruvate dehydrogenase kinase
(PDK1)

(25)

Glycolysis and
OXPHOS

Lung cancer CSC-like cells enriched under sphere forming conditions Glycolysis itself (inhibition with 2-
deoxyglucose reduced CSC
features)

(26)

Esophageal cancer CSC-like cells enriched under sphere forming conditions HSP27, HK2 (27)
OXPHOS Glioblastoma CD133+ CSCs from glioma spheres IMP2 (28)

Acute myeloid
leukemia

Primary AML patient-derived cells; ROS-low CSC population was
isolated by cell sorting

BCL-2 (29)

Lung cancer CSCs derived from A549 lung cancer cell line by using single-cell
cloning culture

n/a (30)

Pancreatic cancer CD133+ cells derived from patient samples Mitochondrial complex I (targeted
with metformin)

(31)

Ovarian cancer CD44+ CD117+ cells from ascitic fluid of ovarian cancer patients Mitochondrial complex I (32)
Breast cancer MCF7 and MDA-MB-231 cells; CSC-like cells enriched under sphere

forming conditions
Mitochondrial respiration (33)

De novo fatty acid
synthesis

Glioma Patient-derived glioblastoma cell lines; CSC population was enriched by
culturing cell lines in serum-free neurobasal medium

FASN (fatty acid synthase) (34)

Breast cancer Epithelial CSCs derived from MCF10A cells; patients’ tissue samples;
CD24- CD44+ ESA+ CSC-like cells were isolated by magnetic-activated
cell sorting

SREBP1 (targeted with resveratrol) (35)

Breast cancer ERBB2-positive breast cancer cells; CSC-like cells were sorted as side
population (SP); CSC signature of ERBB2-positive cells was confirmed
by high ALDH activity

PPARg pathway (36)

Pancreatic cancer CSCs derived from Panc1 cell line and enriched under sphere-forming
conditions

FASN (targeted with cerulenin);
mevalonate pathway (targeted with
atorvastatin)

(37)

Glutamine
metabolism

Pancreatic cancer PDAC cells CD9 (38)
Non-small cell lung
cancer
Pancreatic cancer
Glioblastoma

Side population of cell lines:
A549
AsPC-1
GSC11
GSC23

n/a (39)

Neuroblastoma Cell lines BE(2)-C, SH-SY5Y and SK-N-AS MycN and c-Myc (40)
Hepatocellular
carcinoma

Publicly available data from Cancer Genome Atlas;
Cell lines HCCLM3 and HC22;
Tumor tissue samples from HCC patients

GLS1 (41)
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upregulated in many cancers, including lung, colon, breast, and
ovarian cancer (64–67). SREBP-2, a transcription factor
associated with de novo lipid synthesis, was shown to activate
transcription of c-Myc in prostate cancer, therefore contributing
to the increase of CSC properties (68). Increased fatty acid
oxidation is critical for maintaining the stemness of breast
cancer (69, 70) and leukemic cells (71).
THE METABOLIC INTERPLAY OF CSCS
AND TUMOR MICROENVIRONMENT

Interaction of tumor microenvironment with cancer stem cells
can support the survival and phenotype of CSCs. The tumor
microenvironment consists of cancer-associated fibroblasts,
endothelial cells, immune cells, extracellular matrix. Several
factors are critically important for the sustaining of CSC
metabolism, and hypoxia is one of them. Hypoxia is one of the
major hallmarks of tumor microenvironment playing a critical
role in CSC maintenance, quiescence, and therapy resistance
(72). Hypoxia can affect CSCs in different ways, including
activation of the hypoxia-inducible factor (HIF) mediated
signaling that controls the tumorigenicity of CSCs (73). HIF-
mediated signaling can interfere with the metabolism of cancer
cells by upregulation of many glycolysis-associated genes,
including glucose transporters from GLUT family (74).
Pharmacological inhibition of GLUT-1 was shown to decrease
the self-renewal properties of CSCs in vitro (75). Acidic
microenvironment associated with hypoxic tumor areas is
Frontiers in Oncology | www.frontiersin.org 4
shown to promote CSC features by activation of the HIF-
dependent transcription program (76). Interesting that cervical
cancer cells located in hypoxic areas can produce lactate that is
scavenged by cancer cells of oxygenated regions, fueling their
proliferation (77). Cancer-associated fibroblasts (CAFs) can
support the metabolic needs of cancer cells by feeding them
via production of alanine (78), lactate, fatty acids or ketone
bodies (79). CSCs from certain cancers (e.g., hepatocellular
carcinoma and breast cancer) can promote angiogenesis and,
therefore, increase nutrient supply, by releasing pro-angiogenic
factors (such as VEGF) (80, 81). Tumor-associated immune cells
contribute to the cancer progression and survival of CSCs via
different mechanisms. Thus, cancer-associated macrophages can
secrete various cytokines (e.g., TGFb, IL-6) that induce the
conversion of cancer cells to cells with CSC phenotype and
contribute to chronic inflammation in tumor region (82, 83).
Lactate produced by cancer cells in the hypoxic environment is
known to induce conversion of tumor-associated macrophages
into their pro-tumorigenic phenotype (84, 85). To survive under
nutrient shortage conditions, CSCs may activate autophagy, the
process of recycling their own nutrients by degrading organelles
and large molecules. Enhanced autophagy as a pro-survival and
pro-tumorigenic mechanism was demonstrated for breast (86),
liver (87), osteosarcoma (88), and ovarian CSCs (89). Many of
the above-described metabolic pathways confer CSC adaptation
to the microenvironmental stresses, including a shortage of
nutrients and anti-cancer therapies. These pathways are
attractive targets for the eradication of CSC populations and
better treatment outcomes (Figure 1, Table 2).
FIGURE 1 | Main metabolic pathways of CSCs and their potential targeting in clinical trials.
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TARGETING CSC METABOLISM

Targeting Glycolysis
The most straightforward approach to inhibit glycolysis is to
starve tumors for glucose. The effect on patients can be achieved
by subjecting them to a ketogenic diet, containing low amounts
of carbohydrates and balanced amounts of proteins and fat.
Ketogenic diet-mimicking treatment in vitro effectively reduced
CSC-signature in glioma cells (109). Experimental evidence
showing the benefit of a ketogenic diet for cancer patients,
especially those with glioblastoma and pancreatic cancer,
prompted to investigate the potency of this approach as
adjuvant therapy for these types of malignancy. However,
current clinical data demonstrates mixed results (110). Although
the ketogenic diet is usually well-tolerated, compliance with its
strict regimes is generally challenging for patients; therefore, it is
not considered as monotherapy, and even its usage as adjuvant
therapy is discussable (111).

Compound-mediated targeting of glycolysis demonstrated
better results in many preclinical studies. Metformin—an
antidiabetic drug—has drawn recent attention in cancer research
due to its ability to inhibit various molecular pathways leading
to the elimination of cancer cells (112). Metformin attenuates
glycolysis in a variety of tumor entities. Interesting that metformin
Frontiers in Oncology | www.frontiersin.org 5
can either downregulate glycolytic flux in hepatocellular carcinoma
cells (90) or increase glycolysis in breast cancer cells (113).
Moreover, it can also inhibit mitochondrial complex I, therefore
impairing OXPHOS (114). Altering cancer cell respiration by
metformin treatment led to a significant improvement in
radiotherapy response in tumor xenograft models of prostate and
colon cancer (91). Epigallocatechin gallate (EGCG) was tested
as an inhibitor of glycolysis together with conventional
chemotherapeutic drugs, and shown as a potent enhancer of
chemotherapy (94). A synthetic analog of glucose, 2-deoxy-D-
glucose, was tested in vitro and showed the ability to inhibit
glycolysis and decrease the CSC phenotype of triple-negative
breast cancer cells (93). Experiments on colon cancer cells
demonstrated that a combination of 2-deoxyglucose with
biguanides (such as 3-bromopyruvate) substantially reduced their
proliferation (92). Deoxyglucose is now evaluated in clinical
trials as a treatment agent for different cancers, such as
lung, breast, and pancreatic cancer (clinicaltrials.gov numbers
NCT00096707, NCT00633087).
Targeting OXPHOS
OXPHOS is another promising metabolic target for CSCs. To
date, many compounds have been designed to precisely target
OXPHOS. Each compound targets a specific protein element of
the electron transport chain blocking the transport of electrons
and production of ATP. Most compounds that have shown their
efficacy in vitro, in vivo, and in clinical trials, are directed towards
mitochondrial complex I (115). The list of these compounds
includes, but is not limited tometformin, phenofibrate, pyrvinium,
rosiglitazone, pioglitazone, etc. Molecular mechanisms and
efficacy of many OXPHOS-targeting compounds are described
in reviews by Ashton and co-authors (115) and Sica et al.
(116). Such OXPHOS-targeting compounds as atovaquone
(clinicaltrials.gov No NCT02628080, NCT03568994),
phen formin (NCT03026517) and ar sen i c t r iox ide
(NCT00128596, NCT00036842, NCT00005069) are now under
clinical trials for various solid tumors and leukemias. A
combination of OXPHOS inhibition with other treatment
modalities (particularly, radiotherapy) shows promising results
in vitro and in vivo (117).
Targeting Glutamine Metabolism
As an essential amino acid for most cancer cells, glutamine
represents an attractive anticancer target: depriving cells for
glutamine seems to be an effective therapeutic option.
However, in reality, targeting glutamine metabolism is a
challenging task. Systemic approaches to direct glutamine
deprivation may be inefficient as glutamine can be synthesized
de novo by non-cancerous tissues, such as muscles (118). Other
amino acids, such as asparagine and arginine, may also
contribute to cancer cell survival under gluatamine deprivation
conditions (119, 120). Moreover, some components of tumor
microenvironment (e.g. cancer-associated fibroblasts) are able to
supplement cancer cells with de novo synthesized glutamine,
supporting their proliferation (121).
TABLE 2 | Compounds for metabolic targeting of cancer stem cells.

Metabolic
process

Compound Cancer type References

Glycolysis Metformin Hepatocellular
carcinoma

(90)

Prostate cancer (91)
Colon cancer (92)

2-deoxy-D-glucose Triple-negative breast
cancer

(93)

Colon cancer (92)
Epigallocathechine
gallate (EGCG)

Pancreatic cancer (94)

Glutamine
metabolism

CB-839 Triple-negative breast
cancer

(95)

Metastatic colorectal
cancer

(96)

Lung cancer (97)
OXPHOS Fenofibrate Prostate cancer

Liver cancer
Glioma
Breast cancer

Reviewed in
(98)

Arsenic trioxide Acute promyelocytic
leukemia

(99)

Atovaquone Hepatocellular
carcinoma

(100)

Breast cancer (101)
Rosiglitazone Breast cancer (102)

Hepatocellular
carcinoma

(103)

De novo lipid
synthesis

Cerulenin Glioblastoma (34)
Colon cancer (104)

C75 Breast cancer (105)
Omeprazole Breast cancer (106)
Fatostatin Prostate cancer (107)

Breast cancer (108)
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Glutamine metabolism can be precisely targeted via blocking
critical steps of glutamine utilization. One of the most potent
targets is glutaminase 1 (GLS1)—the enzyme that converts
glutamine to glutamate. Numerous in vitro studies showed that
GLS1 was associated with cancer progression, metastasis and
CSCs for hepatocellular carcinoma (41), triple-negative breast
cancer (122) and pancreatic cancer (123). Inhibition of GLS1
disrupts redox balance in CSCs and can sensitize them to other
types of therapy (e.g., radiotherapy) (97, 123). Several inhibitors
of GLS1 have been developed, among them BPTES (124) and
CB-839. After showing high efficacy in vitro (125) and in vivo,
CB-839 entered clinical trials. Currently, CB-839 is tested in
Phase I and II clinical trials alone or in combination with other
chemotherapeutic drugs for such malignancies as leukemia, breast
cancer, colorectal cancer, and lung cancer (NCT02071862,
NCT02071888, NCT03875313).

Targeting Fatty Acid Metabolism
As discussed above, the metabolism of fatty acids is substantially
altered in many cancers. Cancer cells can be deprived of
exogenous fatty acids or precursors for de novo fatty acid
synthesis (such as glucose), which may be a promising strategy
to slow tumor growth. Indeed, de novo fatty acid synthesis, which
occurs in CSCs, but not healthy cells, seems to be one of the most
promising targetable processes to eliminate the CSC population.
Fatty acid synthase (FASN) is a target that received the most
attention among all enzymes involved in the lipid metabolism of
CSCs. Overexpression of FASN has been shown for a number of
cancers, such as lung, prostate, ovarian and colon (66, 67, 126,
127). Inhibitors of FASN have pleiotropic effects on tumor cells,
mostly because of the different pathways they can target.
Cerulenin, a classical inhibitor of FASN, demonstrated high
efficacy in reducing stem cell markers in glioblastoma and
colon cells in vitro (34, 104). Chemical modifications of
cerulenin, such as C75, were developed as the more stable
analog of this drug, and C75 showed good results in inhibiting
breast cancer cell proliferation (105). Such inhibitors of FASN as
omeprazole and TVB-2640 are now evaluated in clinical trials for
the treatment of breast cancer (NCT03179904, NCT02595372).

Not only FASN can be inhibited to target de novo lipid
synthesis in cancer cells. Sterol regulatory element-binding
proteins (SREBPs) are essential components of de novo lipid
synthesis. A few compounds have been synthesized to target
their functions. One of the most potent ones is fatostatin (128). It
had a remarkable anti-tumor activity for prostate cancer;
however, experiments with breast cancer cells showed mixed
Frontiers in Oncology | www.frontiersin.org 6
results, as fatostatin induced accumulation of both pro- and
antiapoptotic lipids (108).
CONCLUSIONS AND PERSPECTIVES

Altered tumor metabolism is of utmost clinical importance as it
mediates tumor resistance toward conventional anticancer agents,
and metabolic co-targeting emerges as a novel, highly promising
concept to enhance the efficacy of conventional treatment
approaches. Metabolic inhibition of tumor growth by targeting
CSCs is of specific interest as these cell populations are responsible
for tumor maintenance and regrowth after treatment. Limitations
of the current CSC assays and lack of the experimental models
representing complex tumor microenvironments are a severe
challenge to the development of the metabolic CSC-targeting
approaches and their clinical translation. Many pitfalls also arise
from the intratumoral heterogeneity of CSC metabolic features as
well as the high plasticity of CSC nutritional demand during tumor
progression and treatment. Future studies on heterogeneous CSC
metabolic states at the level of single-cell resolution and
employment advanced computational approaches to merge
multi-omics data might yield clues for the development of novel
metabolic targeting approaches and their implementation in
current treatment regimens.
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