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A B S T R A C T

Since the COVID-19 pandemic, several research studies have proposed Deep Learning (DL)-based automated
COVID-19 detection, reporting high cross-validation accuracy when classifying COVID-19 patients from normal
or other common Pneumonia. Although the reported outcomes are very high in most cases, these results were
obtained without an independent test set from a separate data source(s). DL models are likely to overfit training
data distribution when independent test sets are not utilized or are prone to learn dataset-specific artifacts
rather than the actual disease characteristics and underlying pathology. This study aims to assess the promise
of such DL methods and datasets by investigating the key challenges and issues by examining the compositions
of the available public image datasets and designing different experimental setups. A convolutional neural
network-based network, called CVR-Net (COVID-19 Recognition Network), has been proposed for conducting
comprehensive experiments to validate our hypothesis. The presented end-to-end CVR-Net is a multi-scale-
multi-encoder ensemble model that aggregates the outputs from two different encoders and their different
scales to convey the final prediction probability. Three different classification tasks, such as 2-, 3-, 4-classes,
are designed where the train–test datasets are from the single, multiple, and independent sources. The obtained
binary classification accuracy is 99.8% for a single train–test data source, where the accuracies fall to 98.4%
and 88.7% when multiple and independent train–test data sources are utilized. Similar outcomes are noticed in
multi-class categorization tasks for single, multiple, and independent data sources, highlighting the challenges
in developing DL models with the existing public datasets without an independent test set from a separate
dataset. Such a result concludes a requirement for a better-designed dataset for developing DL tools applicable
in actual clinical settings. The dataset should have an independent test set; for a single machine or hospital
source, have a more balanced set of images for all the prediction classes; and have a balanced dataset
from several hospitals and demography. Our source codes and model are publicly available1 for the research
community for further improvements.
1. Introduction

Pneumonia of unknown cause detected in Wuhan, China, was re-
ported to the World Health Organization (WHO) office in China on 31st
December 2019. This was subsequently named severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) on 11th February 2020, as the
virus causing the disease is genetically related to the coronavirus re-
sponsible for the SARS outbreak of 2003. The new disease was referred
to as ‘‘COVID-19’’ by WHO on 11th February 2020 [1]. As of August
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2020, the outbreak of 2019 in Wuhan (China), has extended world-
wide with 386, 548, 962 confirmed COVID-19 cases including 5, 705, 754
deaths in last 2 years (5 February 2022) [2], as presented in Fig. 1.
The clinical attributes of severe COVID-19 epidemic are bronchop-
neumonia that causes cough, fever, dyspnea, and subtle respiratory
anxiety ailment [3–5]. The clinical screening test for COVID-19 is Re-
verse Transcription Polymerase Chain Reaction (RT-PCR) using respi-
ratory specimens. However, this test is a manual, complicated, tedious,
vailable online 12 April 2022
352-9148/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
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Fig. 1. A world heat map of the corona pandemic per capita [9] [Accessed on 25 December 2021].
and time-consuming procedure with an estimated true-positive rate of
63.0% [6]. There is a significant lack of inventory of RT-PCR kits,
leading to a delay in efforts to prevent and cure coronavirus disease [7].
Furthermore, the RT-PCR kit is estimated to cost around 120 ∼ 130 USD
and requires a specially designed biosafety laboratory to house the PCR
unit, each of which can cost 15, 000 ∼ 90, 000 USD [8]. Nevertheless, the
utilization of a costly screening device with delayed test results makes
it more challenging to suppress the spread of the disease.

However, it is observed that most of the COVID-19 cases have
common characteristics on radiographic images, such as Computed
Tomography (CT) and Chest X-ray (CXR), including bilateral, multi-
focal, ground-glass opacities with a peripheral or posterior distribution,
mainly in the lower lobes and early- and late-stage pulmonary consol-
idation [10–13]. Those features can be utilized to develop a sensitive
Computer-aided Diagnosis (CAD) tool to detect COVID-19 Pneumonia
and be considered as a screening tool [14]. Currently, deep Convo-
lutional Neural Networks (CNNs) allow for building an end-to-end
model, without the need for manual feature extraction [15,16], which
have demonstrated tremendous success in many domains of medical
imaging, such as arrhythmia detection [17–19], skin lesion segmenta-
tion and classification [20–24], breast cancer detection [25–27], brain
disease classification [28], pneumonia detection from CXR images [29],
fundus image segmentation [30,31], minimally invasive surgery [32]
and lung segmentation [33]. Several deep CNN-based methods have
been published to detect COVID-19 from CXR and CT images. Though
the results obtained are promising, they exhibit limited scope as a CAD
tool. Most of the works, especially on CXR images, have been based
on data from different sources for two different classes (COVID vs.
Normal). This brings inherent bias on the algorithms as the model tends
to learn the distribution and artifacts of the data source for binary
classification problems. Therefore, these models perform very poorly
when used in practical settings where the model has to adapt to data
from different domains. To accelerate the development of DL tools that
could be utilized in realistic clinical settings, the scientific community
needs to emphasize more on making publicly systematically-designed
and documented datasets that have information, such as inclusion and
exclusion criteria, symptomatic vs. asymptomatic cases, and the disease
severity stage at which these images were taken. In this work, we design
various experiments with a proposed CNN-based COVID-19 detection
method to justify this proposition.

The rest of the paper is structured as follows: Section 2 reviews
the earlier published literature for COVID-19 detection, and Section 3
highlights the significant contributions to this article. We explain the
proposed framework for the recognition of COVID-19 and datasets
in Section 4. The results and different experiments are reported in
2

Section 5. We interpret the obtained results from the proposed CVR-
Net in Section 6. Finally, Section 7 concludes the article with future
working directions.

2. Review of literature

Different CNN architectures have already been proposed for COVID-
19 detection as a binary (COVID vs. No-Findings) or multi-class (COVID
vs. No-Findings vs. Pneumonia) problem [34–36]. Ghoshal and Tucker
[37] investigated uncertainty of the COVID-19 classification report, us-
ing a drop-weights-based Bayesian CNN, as the availability of
uncertainty-aware DL can ensure more extensive adoption of DL in clin-
ical applications. Abbas et al. [38] proposed a framework by adopting
a deep CNN, called Decompose, Transfer, and Compose (DeTraC) [39]
for the classification of COVID-19 CXR images, where the authors
implemented the DeTraC in two phases. Firstly, using gradient descent
optimization, they trained the backbone pre-trained CNN model of
DeTraC to extract deep local features from each image. Secondly, they
used the class-composition layer of DeTraC to refine the final classi-
fication of the images. Zhao et al. [40] developed diagnosis methods
based on multi-task learning and self-supervised learning, where the
authors proposed an open-source COVID-19 dataset of CT images with
a binary class (COVID and Non-COVID). For the classification task,
they trained DenseNet-169 and ResNet-50, via a pre-trained model on
ImageNet [16] weights, with their newly proposed dataset. Afshar et al.
[41] proposed a CNN model named COVID-CAPS, which was based
on the Capsule Networks (CapsNets) for handling the small datasets of
COVID-19. CapsNets are alternative models of CNN, which are capable
of capturing spatial information using routing by agreement. Capsules
try to reach a mutual agreement on the existence of the objects. Their
proposed COVID-CAPS model had 4 convolutional layers and 3 capsule
layers, where batch normalization [42] followed the former layers.
The authors fine-tuned all the capsule layers, while the conventional
layers were frozen with pre-trained weights of ImageNet. He et al. [43]
built a COVID-19 CT dataset, called China Consortium of Chest CT
Image Investigation (CC-CCII), with three classes: novel coronavirus
Pneumonia, common Pneumonia, and healthy controls. The authors
trained 3D DenseNet3D-121 on their proposed CC-CCII dataset, and
they experimentally validated that 3D CNNs outperform 2D CNNs in
general. Singh et al. [13] implemented a CNN-based model named
multi-objective differential evolution-based CNN for the classification
of COVID-19. They fine-tuned the parameters of the CNN model using
a multi-objective fitness function. The differential evolution algorithm
was used to optimize the multi-objective fitness function. The model
was optimized iteratively using mutation, crossover, and selection oper-
ation to determine the best available solution in differential evolution.



Informatics in Medicine Unlocked 30 (2022) 100945M.K. Hasan et al.

v
p
a
o
s
d

Farooq and Hafeez [44] employed ResNet-50 using transfer learning
with progressively resizing [45] the input images to 128 × 128 × 3,
224 × 224 × 3, and 229 × 229 × 3 pixels, where the authors also
fine-tuned the network at each stage. Ozkaya et al. [46] extracted
deep features using VGG-16, GoogleNet [47], and ResNet-50 models,
which were classified by Support Vector Machine (SVM) [48] with
linear kernel function. They also applied the modified T-test [49],
a feature ranking algorithm, to select the features [50] for avoiding
overfitting. Rajaraman et al. [51] evaluated ImageNet pre-trained CNN
models such as VGG-16, VGG-19, InceptionV3, Xception, Inception-
ResNetV2, MobileNetV2, DenseNet-201, and NasNet-mobile [52]. Then,
they optimized the hyperparameters of the CNNs using a randomized
grid search method [53]. In the end, the authors proposed an ensemble
of those CNN models for the final COVID-19 recognition. Toğaçar
et al. [54] restructured the data classes using a fuzzy color technique,
where they stacked a structured image with the original images. The
authors trained MobileNetV2 and SqueezeNet to extract the deep fea-
tures, which were then processed using the social mimic optimization
method [55]. After that, selected features were combined and classified
using the SVM to recognize COVID-19. Khan et al. [56] developed
a 15-layered CNN architecture for extracting deep features from two
different layers like global average pool and fully connected layers,
which were then merged employing the max-layer detail approach.
The most discriminant features from the pool of features were selected
using a Correntropy technique, and a one-class kernel extreme learning
machine classifier was applied for the classification. CNN-based models
like ResNet50, ResNet101, ResNet152, InceptionV3, and Inception-
ResNetV2 were proposed and implemented by Narin et al. [57] for the
detection of COVID-19-infected patient using CXR radiographs. Sedik
et al. [58] classified CT and CXR images of COVID-19 vs. normal using
CNN and convolutional long short-term memory (ConvLSTM) based
models. Sanida et al. [59] employed lightweight modified MobileNetV2
to classify the COVID-19, normal, viral Pneumonia, and lung opacity
images for the real-time operations in a low-power embedded sys-
tem. Authors in [60] proposed a COVIDetectioNet using a pre-trained
AlexNet to extract the deep features. The useful features were selected
using the Relief algorithm from all layers of the architecture were
then classified using the SVM approach. An efficient Grayscale Spatial
Exploitation Net (GSEN) is designed by employing web pages crawling
across cloud computing environments in [61], utilizing the accuracy
rates improvement in a positive relationship to the cardinality of
crawled CXR dataset. Their model consists of four convolutional blocks
where each is composed of a single convolutional, batch normalization,
ReLU activation function, and max-pooling layer. Monday et al. [62]
proposed a neurowavelet capsule network. Firstly, they presented a
multi-resolution analysis of a discrete wavelet transform to filter noisy
and incompatible information from the CXR data to enhance the feature
extraction robustness of the network. Secondly, the discrete wavelet
transform of the multi-resolution analysis was also conducted a sub-
sampling procedure to minimize the loss of spatial details, thereby
improving the overall classification performance. Sakthivel et al. [63]
proposed an ensemble-based CNN model where five DL models like
ResNet, FitNet, IRCNN, MobileNet, and EfficientNet are ensembled and
fine-tuned to classify the CXR images. An application-specific hardware
architecture had been incorporated by carefully exploiting the data
flow and resource availability.

3. Our contributions

Many DL-based Artificial Intelligence (AI) algorithms have been
proposed in the past year to automatically classify COVID-19 cases from
normal and other Pneumonia cases. These published works reported
high COVID-19 binary classification accuracy using either CT scans or
CXRs [13,34,35,45,54,64–71]. Although the reported metrics, such as
sensitivity and/or specificity, are very high in most cases, these results
are obtained on cross-validation studies without an independent test set
3

coming from a separate dataset having biases, such as the two classes
predicted from two unique datasets. AI models are likely to overfit
training data distribution when independent test sets are not used
or are prone to learn dataset-specific artifacts rather than the actual
disease characteristics. Additionally, the publicly available datasets
for COVID-19 classification used in the recent studies have class and
dataset source biases, resulting in AI models learning dataset-specific
distributions rather than the underlying pathology. Many recent studies
proposing COVID-19 classification based on DL using imaging data
do not emphasize the importance of avoiding overfitting and having
an independent test set with images from a separate dataset than the
training and validation dataset. However, the critical contributions in
this article are pointed out as follows:

• Proposing an end-to-end and multi-scale-multi-encoder CVR-Net,
aggregating the outputs from two different encoders and their
different scales to obtain the final prediction probability.

• Designing various experiments to investigate the issues of over-
fitting and biasing; exploring the limitations of existing large
public datasets that have been widely used for developing and
evaluating COVID-19 detection algorithms in the past years.

• Validating multi-class classification models to distinguish various
Pneumonia types, including COVID-19, requires a balanced set
of images for all the prediction classes coming from a single site
and demography and having several balanced sets coming from
separate scanners or hospitals and demography.

• Comparing the proposed architecture to other state-of-the-art
methods using an independent test set for evaluation, where some
of the identified bias and overfitting issues are minimized.

4. Materials and methods

This section presents the materials and methods for conducting this
research. Section 4.1 briefly describes utilized datasets. The designing
of the proposed network (CVR-Net) is explained in Section 4.2. Finally,
Section 4.3 describes the training protocol of our network and the
evaluation metrics.

4.1. Datasets

This section illustrates the experimental setup for various classi-
fication tasks utilizing chest CT scans or CXRs from several publicly
available datasets. The classes applied for different experimentations
are taken from the following set:

• NOR: Normal; no Pneumonia and COVID-19 negative
• CVP: COVID-19 positive Pneumonia
• OVP: Other Viral Pneumonia; Viral Pneumonia but not COVID-19
• OBP: Other Bacterial Pneumonia; Bacteria induced Non-COVID

Pneumonia
• NCP: Non-COVID Pneumonia; OBP + OVP
• NCV: Non-COVID; NOR + NCP

Table 1 demonstrates the details of the experimental setup with
various tasks and how various datasets are combined for these tasks.
Three different types of classification tasks are designed: NCV vs. CVP
(2-classes, CL2); NOR vs. NCP vs. CVP (3-classes, CL3); and NOR vs. OBP
s. OVP vs. CVP (4-classes, CL4). Several different combinations of the
ublicly available datasets are utilized for chest CT scans (labeled CT)
nd for chest X-rays (labeled CXR) [40,71–79]. For each binary (CL2)
r multi-class (CL3/CL4) classification task, we design experiments to
tudy the impact of having single separate vs. multiple mixed sources of
ata for individual classes during training, labeled Single and Multiple,

respectively. The setup where the test set contains images from an
independent source whose images are never used during training and
validation is labeled as Independent. For adding diversity in each class of
CXR-Multiple-CL2, we include images from more datasets: CXR images
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Table 1
Various classification tasks utilizing CT scans or CXRs in different combinations from publicly available datasets.

Different studiesa Class categories # of images Data source references Modality Utilization

CXR-Single-CL2 NCV 5,856 CXRI [72] X-ray [34,35,65]CVP 500 CIDC [73]

CXR-Multiple-CL2 NCV 7,864 CXRIL [72], ChestX-ray8 [74] X-ray ProposedCVP 4,015 CCXRIL [75], CIDC [73], PadChest [76]

CXR-Independent-CL2 NCV (Train∕Test) 6, 958∕1, 227 CheXpert [77]+ CXRI [72]∕ChestX-ray8 [74] X-ray ProposedCVP (Train∕Test) 3, 515∕500 CCXRI [75]+ PadChest [76] ∕CIDC [73]

CT-Single-CL2 NCV 1,227 SCoV [78] CT ProposedCVP 1,252 SCoV [78]

CT-Multiple-CL2 NCV 7,864 SCoVL [78], CCII [71], MGC [40]
CVP 4,015 SCoVL [78], CCII [71], MGC [40] CT Proposed

CT-Independent-CL2 NCV (Train∕Test) 16, 616∕1, 227 MGC [40]+ CCII [71]+ iCTCF [79]∕SCoV [78] CT ProposedCVP (Train∕Test) 6, 472∕1, 252 MGC[40]+ CCII [71]+ iCTCF [79]∕SCoV [78]

CXR-Single-CL3
NOR 1,583 CXRI [72]

X-ray [65,80]
[34,35]NCP 4,273 CXRI [72]

CVP 500 CIDC [73]

CXR-Multiple-CL3
NOR 3,591 CXRIL [72], ChestX-ray8 [74]

X-ray ProposedNCP 4,595 CXRIL [72], ChestX-ray8 [74]
CVP 4,015 CCXRIL [75], CIDC [73], PadChest [76]

CXR-Multiple-CL4

NOR 3,591 CXRIL [72], ChestX-ray8 [74]

X-ray ProposedOBP 2,780 CXRI [72]
OVP 1,493 CXRI [72]
CVP 4,015 CCXRIL [75], CIDC [73], PadChest [76]

aX-Y-CL#: X is CXR or CT; Y denotes the way images from different sources are combined for each class during training or evaluation; CL# is the number of classes.
r

e
a
p
a
a
s
b

from ChestX-ray8 [74] to NCV, and from CCXRI [75] and PadChest [76]
to CVP. To evaluate the ability to distinguish various Pneumonia types,
we design CXR-Multiple-CL3 and CXR-Multiple-CL4 having the same
number of images as CXR-Multiple-CL2, but the NCV class split into
individual Pneumonia types.

Similar to CXR, publicly available CT scan datasets are also utilized,
where most of these datasets contained manually selected 2D slices
instead of complete 3D volumes. Hence, all of the CT images referred
to in this paper are 2D slices of CT scans. CT-Single-CL2 utilizes NCV
and CVP samples from SCoV [78], while we have multiple sources
to each class in CT-Multiple-CL2 adding NCV and CVP samples from
MGC [40], SCoV [78], and CCII [71]. Due to a lack of publicly available
images, some of the designs were not possible, for example, CT-Multiple-
CL3 and CT-Multiple-CL4. To evaluate the network’s performance on an
independent test set from a separate dataset source whose images are
never used during the network’s training, we design CXR-Independent-
CL2 and CT-Independent-CL2, utilizing train data from a large study
in Spain and test data from the other sources. Table 1 details the
train/test split for these two setups. Fig. 2 shows example images from
these datasets. In the setup where an independent test dataset is not
available, 5-fold cross-validation is applied to evaluate the performance
of the proposed CVR-Net (see in Section 4.2).

4.2. Proposed CVR-Net Architecture

We propose a CNN-based end-to-end multi-tasking network, where
we apply multi-encoder and multi-scale ensembling, as depicted in
Fig. 3. The proposed CVR-Net consists of two encoders, for the same
input image, where each of the encoders has five blocks, namely 𝐸1𝑛
and 𝐸2𝑛, 𝑛 = 1, 2,… , 5, for encoder-1 and encoder-2, respectively. The
encoder-1 consists of the residual and convolutional blocks [81], as
presented in Fig. 4, well-known as ResNet [81]. The residual connec-
tions, also known as skip connections, allow gradients to flow through a
network directly, without passing through non-linear activation func-
tions and thus avoiding the problem of vanishing gradients [81]. In
residual connections, the output of a weight layer series is added to
the original input and then passed through the non-linear activation
function, as shown in Fig. 4. However, in encoder-1, 7 × 7 input
4

convolution, followed by max-pooling with the stride of 2, and pool
size of 3 × 3, is used before identity and convolutional blocks. By
stacking these blocks on top of each other (see Fig. 3), an encoder-
1 is formed to get the feature map, where the notation (𝑛×) under
the identity block denotes the number of repetitions (𝑛 times). The
different blocks of encoder-1 (𝐸1𝑛 and 𝑛 = 1, 2,… , 5) downsample
the input image resolutions in half of the input resolutions, while the
resolution inside the blocks is kept constant. The outputs of those blocks
generate the feature maps with different scales. Within the encoder-
2 (Xception), three components of information flow blocks are used,
which were initially proposed by Chollet [82], such as entry flow,
middle flow, and exit flow, as depicted in Fig. 3. The batch of input
images first passes through the input flow, then the central flow, eight
times (8×) repeated, and finally through the exit flow. All flows, as
in the proposed network (see in Fig. 3), have Depth-wise Separable
Convolution (DwSC) [82] and residual connections. As in the case of
encoder-1, the resolution after each block is downsampled by the factor
of two, and the exact resolution is maintained at each block for encoder-
2. After the two encoder blocks, the two different 2D feature maps
are concatenated channel-wise to enhance the depth information of
the feature map. We use differently scaled feature maps to build the
proposed CVR-Net, where each feature map is passed through the Fully
Connected Layer (FCL) block. A Global Average Pooling (GAP) [83]
layer and four fully connected layers are used in our FCL block, where
the GAP layer performs an extreme dimensionality reduction to avoid
overfitting. In GAP, an ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑑𝑒𝑝𝑡ℎ dimensional tensor is
educed to a 1 × 1 × 𝑑𝑒𝑝𝑡ℎ vector by transferring ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ feature

map to a single number contributes to the lightweight design of the
proposed CVR-Net. Table 2 presents the implementational details of
the proposed CVR-Net. We utilize the feature maps 𝐸13 ∼ 𝐸15 from
ncoder-1 and 𝐸23 ∼ 𝐸25 from encoder-2, where we concatenate 𝐸15
nd 𝐸25 to increase the depth of the feature information. The final
rediction, in CVR-Net, is the average of different probabilities, such
s 𝑃1, 𝑃2, 𝑃3, 𝑃4, and 𝑃5 respectively for 𝐸13, 𝐸14, [𝐸15 ++𝐸25], 𝐸23,
nd 𝐸24, which was trained end-to-end fashion. However, designing of
uch a multi-encoder and multi-scale network, as CVR-Net, has several
enefits, especially for the small datasets, such as: if one encoder fails to
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Fig. 2. Samples of chest radiography images from the utilized datasets (a) Normal (X-ray), (b) Normal (CT), (c) Pneumonia viral (X-ray), (d) Pneumonia bacterial (X-ray), (e)
COVID-19 (X-ray), and (f) COVID-19 (CT).
Fig. 3. The proposed network, called CVR-Net, for the automatic COVID-19 recognition from radiography images, where we ensemble the multi-encoder and multi-scale of the
network, via fully connected blocks, obtain final recognition probability.
generate responsible features, another encoder can compensate it and
vice-versa; if the feature quality is reduced in the deeper blocks (lower
resolution), the prior blocks (higher resolution) can also compensate
it and vice-versa; if one or more 𝑃 predicts wrong class, other 𝑃 can
overcome it, as the final result is average of all 𝑃 ’s. Another positive
prospect of the CVR-Net is that during the training, it can be anticipated
that if the gradient of one or more branches vanishes, other branches
can recover it as the final gradient is the average of all the individual
gradients.
5

4.3. Training protocol and evaluation

Since most images in all the datasets have a 1 ∶ 1 aspect ratio, we
resize the images to 224 × 224 pixels using nearest-neighbor interpola-
tion. We apply the following stochastic augmentation on the resized
images with: rotation (with a probability of 0.45), height & width
shift (with a probability of 0.20), and vertical & horizontal flipping
around the X- and 𝑌 -axis (with a probability of 1.0), respectively. We
employ categorical cross-entropy as a loss function [84], penalizing
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Fig. 4. The convolutional (left) and residual (right) blocks [81] of the proposed CVR-Net, where the output map is the summation of the input map and the generated map from
the process (convolutions).
Table 2
Details of the proposed CVR-Net have used feature maps, shapes, and the number of
parameters, where the input resolution is 𝑀 ×𝑁 pixels.

Feature block Shape of features Prediction Parameters

𝐸13
𝑀
8
× 𝑁

8
× 512 𝑃1 = 𝐹𝐶𝐿(𝐸13) 1, 796, 867

𝐸14
𝑀
16

× 𝑁
16

× 1024 𝑃2 = 𝐹𝐶𝐿(𝐸14) 9, 181, 827

[𝐸15 ++𝐸25]
𝑀
32

× 𝑁
32

× 4096 𝑃3 = 𝐹𝐶𝐿([𝐸15 ++𝐸25]) 46, 620, 971

𝐸23
𝑀
8
× 𝑁

8
× 512 𝑃4 = 𝐹𝐶𝐿(𝐸23) 1, 371, 131

𝐸24
𝑀
16

× 𝑁
16

× 1024 𝑃5 = 𝐹𝐶𝐿(𝐸24) 15, 954, 283

Proposed CVR-Net 𝑃 = 𝐴𝑣𝑔(𝑃1 ∼ 𝑃5) 48, 596, 087
the majority class by giving higher weight in the loss function to the
samples from the minority class. Each class’s weights are computed as
𝑤𝑗 = 𝑁𝑗∕𝑁 , where 𝑤𝑗 and 𝑁𝑗 are the weights, and the total number
of samples for the 𝑗th class and 𝑁 is the total sample numbers. The
network weights are initialized using transfer learning [85] where we
use the ImageNet pre-trained weights of ResNet-50 and Xception to
initialize the weights of the two respective branches. We use Adam
optimizer to optimize the training network with initial learning rate
(𝐿𝑅), exponential decay rates (𝛽1, 𝛽2) as 𝐿𝑅 = 0.0001, 𝛽1 = 0.9, and
𝛽2 = 0.999, respectively, without AMSGrad variant [86]. The initial
learning rate is reduced after 12 epochs by 10.0% if validation loss stops
improving. The training is terminated after 25 epochs if the validation
performance stops improving.

The models were implemented using the Python programming lan-
guage and Keras framework [87] and the experiments were carried out
on a machine running Windows-10 operating system with the following
hardware configuration: Intel® CoreTM i7 − 7700 HQ CPU @ 3.60 GHz
processor with Install memory (RAM): 32.0 GB and GeForce GTX 1080
GPU with 8 GB memory. When comparing against other state-of-the-
art methods (see in Table 5), the same above-described protocol was
operated for all the networks.

We use different metrics, such as recall, precision, F1-score, and
accuracy, to evaluate our multi-tasking CVR-Net for COVID-19 recog-
nition, which is mathematically defined [88] as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑇𝑃
2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

where the TP, FN, FP, and TN respectively denote true positive (pa-
tient with coronavirus symptoms recognized as the positive patient),
false negative (patient with coronavirus symptoms recognized as the
negative patient), false positive (patient without coronavirus symptoms
6

recognized as the positive patient), and true negative (patient without
coronavirus symptoms recognized as the negative patient). The recall
quantifies the type-II error (the patient, with the positive syndromes,
inappropriately fails to be nullified), and precision quantifies the posi-
tive predictive values (percentage of truly positive recognition among
all the positive recognition). The F1-score indicates the harmonic mean
of recall and precision, which shows the tradeoff between them. Ac-
curacy quantifies the fraction of correct predictions (both positive and
negative).

5. Experimental results

This section initially presents the results of binary and multi-class
classification tasks for various setups described in Section 4.1 using the
architecture proposed in Section 4.2. Finally, we compare the proposed
network’s performance with state-of-the-art classification networks by
training them on the same training set and evaluating an independent
test set whose images are not used during training.

5.1. Binary classification: COVID vs. Non-COVID

Table 3 presents the quantitative results of the proposed CVR-Net
on the binary task: COVID-19 (CVP) vs. Non-COVID (NCV). The 5-
fold cross-validation results are conveyed with average and standard
deviation. In contrast, a single value is reported when a separate test
set from an independent data source is used to evaluate the results.
Table 3 demonstrates very high precision and recall in both the cases of
CXR-Single-CL2 and CXR-Multiple-CL2. A slight reduction in accuracy
for CXR-Multiple-CL2 compared to CXR-Single-CL2 may be because
of relatively more minor overfitting to the distribution of the single
particular dataset from which the individual classes were coming from
in CXR-Single-CL2. As expected, the results for CXR-Independent-CL2
show reduced precision and recall, with accuracy dropping from 98 −
99% in the cross-validation results to around 88%, when using an
independent test set. The observations in the experiments with CXR
are consistent in CT as well. Table 3 shows the same pattern with CT-
Single-CL2 and CT-Multiple-CL2 having very high accuracy compared
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Table 3
COVID-19 recognition results from different studies of binary classification applying the proposed network on two different modalities of chest radiography
images, wherein for single and multiple sources, we employ 5-fold cross-validation.

Different studiesa Dataset distribution Metrics

(Train∕Val∕Test) Recall Precision Accuracy

NCV: 3, 514∕1, 171∕1, 171CXR-Single-CL2 CVP: 300∕100∕100 0.997 ± 0.001 0.997 ± 0.001 0.998 ± 0.001

NCV: 4, 719∕1, 573∕1, 572CXR-Multiple-CL2 CVP: 2, 409∕803∕803 0.984 ± 0.001 0.984 ± 0.002 0.984 ± 0.001

NCV: 5, 567∕1, 391∕1, 227CXR-Independent-CL2 CVP: 2, 812∕703∕500 0.887 0.885 0.887

NCV: 737∕245∕245CT-Single-CL2 CVP: 752∕250∕250 0.976 ± 0.003 0.976 ± 0.003 0.976 ± 0.003

NCV: 4, 719∕1, 573∕1, 572CT-Multiple-CL2 CVP: 2, 409∕803∕803 0.969 ± 0.003 0.970 ± 0.003 0.969 ± 0.003

NCV: 13, 293∕3, 323∕1, 227CT-Independent-CL2 CVP: 5, 178∕1, 294∕1, 252 0.799 0.821 0.799

aX-Y-CL#: X is CXR or CT; Y denotes the way images from different sources are combined for each class during training or evaluation; CL# is the
number of classes. Details in Table 1.
Table 4
COVID-19 recognition results from different experiments of multi-class classification (see in Table 1) applying the proposed
network on CXR images employing 5-fold cross-validation.

Different studiesa Dataset distribution Metrics

(Train∕Val∕Test) Recall Precision Accuracy

NOR: 951∕316∕316 0.925 ± 0.011 0.940 ± 0.009 0.925 ± 0.012
NCP: 2, 565∕854∕854 0.978 ± 0.003 0.969 ± 0.006 0.977 ± 0.003
CVP: 300∕100∕100 0.944 ± 0.041 0.976 ± 0.010 0.946 ± 0.041CXR-Single-CL3

Weighted Average 0.964 ± 0.005 0.963 ± 0.004 0.964 ± 0.005

NOR: 2, 155∕718∕718 0.970 ± 0.018 0.844 ± 0.029 0.970 ± 0.018
NCP: 2, 757∕919∕919 0.863 ± 0.029 0.990 ± 0.004 0.863 ± 0.029
CVP: 2, 409∕803∕803 0.980 ± 0.008 0.968 ± 0.019 0.980 ± 0.008CXR-Multiple-CL3

Weighted Average 0.933 ± 0.013 0.940 ± 0.011 0.933 ± 0.013

NOR: 2, 155∕718∕718 0.962 ± 0.023 0.902 ± 0.026 0.962 ± 0.023
OBP: 1, 668∕556∕556 0.741 ± 0.021 0.874 ± 0.023 0.741 ± 0.021
OVP: 897∕298∕298 0.705 ± 0.050 0.646 ± 0.032 0.705 ± 0.051
CVP: 2, 409∕803∕803 0.975 ± 0.007 0.968 ± 0.011 0.975 ± 0.007

CXR-Multiple-CL4

Weighted Average 0.882 ± 0.003 0.886 ± 0.004 0.882 ± 0.003

aX-Y-CL#: X is CXR or CT; Y denotes the way images from different sources are combined for each class during training or
evaluation; CL# is the number of classes. Details in Table 1.
o CT-Independent-CL2. The cross-validation results reflect the large DL
odels’ overfitting nature on a relatively small dataset with limited

ariability of the real-world scenarios. The accuracy in CT-Independent-
L2 drops from 87 − 96% in the cross-validation results to around 79%
hen using the independent test set. We also notice that the accuracy
ith CT is lower than CXR.

.2. Multi-class classifications: Normal, COVID, other bacterial, and viral
neumonia

Table 4 and Fig. 5 present quantitative results of the proposed CVR-
et on two different multi-class tasks: (i) 3-class problem for NOR
s. NCP vs. CVP (ii) 4-class problem for NOR vs. OBP vs. OVP vs.
VP. Similar to the binary classification, cross-validation results are
eported with average and standard deviation. Fig. 5 shows that in
XR-Single-CL3, NOR and NCP rarely get predicted as CVP while a
mall number of CVP gets predicted as NCP and NOR. Compared to
VP, a higher fraction of NOR gets predicted as NCP. This is perhaps
ecause the NOR and NCP classes come from the same dataset source,
hile CVP images are from separate sources. We see that in CXR-
ultiple-CL3, fractions of NOR and CVP getting predicted as NCP are
uch closer. It is worth noting that NOR and NCP in CXR-Multiple-
L3 have images coming from two different datasets, but these sources
till do not have the CVP images coming from separate sources. It
an also be observed that adding multiple data sources in NOR and
7

CP has substantially increased the fraction of NCP being predicted as
NOR in CXR-Multiple-CL3. From Tables 3 and 4, we see that inter-fold
variation is increasing with the decreased performance metrics when
a new class is added with the same number of total samples when
comparing CXR-Single-CL2 vs. CXR-Single-CL3 and CXR-Multiple-CL2
vs. CXR-Multiple-CL3. In CXR-Multiple-CL4, NCP is further split into
other bacterial and viral Pneumonia: OBP and OVP. As seen in Fig. 5,
the network confuses much more between OBP and OVP, both coming
from the same dataset CXRI. Following the pattern of CXR-Single-
CL3, we can also observe that nearly 14% of OBP and OVP still gets
classified as NOR. CVP has relatively high precision and recall, but it is
noteworthy that the source of the CVP images and the rest of the three
classes do not intersect. These results further reinforce the observation
in the binary classification task that seemingly high accuracy could be
due to the network learning bias in the dataset design and peculiarities
of individual data sources rather than the actual underlying pathology.
Unlike binary classification problems, we could not evaluate with an
independent test set and perform the experiments with CT scans due to
the lack of publicly available datasets for these multiple classes.

5.3. Comparison to the state-of-the-art

Several recent studies report the DL models’ performance using
datasets that are not publicly available [89–91]. However, we compare
these methods utilizing publicly available data using the experimental
setup CXR-Independent-CL2 and CT-Independent-CL2, i.e., the setup,

where test set images coming from an independent dataset whose
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Fig. 5. Confusion matrix for CXR-Single-CL3, CXR-Multiple-CL3, and CXR-Multiple-CL4 employing our CVR-Net.
Table 5
Comparison of various methods, including the proposed network (CVR-Net), where the methods are trained on the same
dataset and evaluated using an independent test set, not used during training. The top three performing metrics are denoted
by bold-font, underline, and double-underline.

Methods Parameters CXR-Independent-CL2 CT-Independent-CL2

Recall Precision Accuracy Recall Precision Accuracy

VGG-19 46M 0.833 0.846 0.833 0.785 0.816 0.785
Xception 124M 0.869 0.881 0.869 0.718 0.788 0.718
EfficientNet-b1 7M 0.832 0.850 0.832 0.716 0.803 0.716
DenseNet-169 96M 0.850 0.865 0.850 0.718 0.794 0.718
ResNet-152 84M 0.829 0.866 0.829 0.705 0.784 0.705
Inception-v3 74M 0.871 0.884 0.871 0.737 0.782 0.737
DarkNeta [34] 1.94M 0.712 0.699 0.712 0.495 0.245 0.495
CoroNeta [35] 124M 0.869 0.877 0.869 0.689 0.776 0.689
Proposed CVR-Net 48M 0.887 0.885 0.887 0.799 0.821 0.799

aWe have implemented those models in our experimental settings for ablation studies.
images are never used during training of the models. Table 5 manifests
the performance of the proposed CVR-Net along with other widely used
and state-of-the-art classification networks and COVID-19 detection
networks. The hyperparameters for all the networks used in Table 5,
such as learning rate, regularizations, number of epochs, optimization
algorithm, etc., are described in Section 4.3 at the end. The proposed
CVR-Net performs the best concerning the precision, recall, and overall
accuracy in CXR and CT images. The second best is Inception-v3 for
CXR and VGG-19 for CT scan. Fig. 6 visualizes the regions in the
8

input image where the neural network is activating most of its signal
from when predicting COVID-19 positive class. The activation maps
are shown using GradCAM with a threshold 0.6 (maximum 1) [92].
In the figure, the input images are the top three true positive images
for CXR and CT, having the highest softmax prediction output for the
COVID-19 class from CVR-Net. The activation map for CVR-Net as a
whole is smooth and focused within the lung region, while the two
branches of CVR-Net having ResNet and Xception architecture have
more dispersed activation maps outside the lung region as well. This
reveals that combining the two branches make the activation map more

focused on the lung region. However, it is remarkably noticed that the
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Fig. 6. GradCAM visualizations example, showing activation map on input query CXR and CT images of COVID-19 positive class for proposed CVR-Net, encoder-1 (ResNet),
encoder-2 (Xception), and Inception.
focused region we see in the figure in the activation maps of CVR-Net
does not always align with the pathology of COVID-19 seen in the CXR
and CT images. For Inception, the activation maps are dispersed and
smooth, but it is important to note that the images were chosen based
on the highest confidence in predicting COVID-19 for CVR-Net and not
for Inception.

6. Discussion and observations

We have studied the issues and challenges of DL methods on pub-
licly available datasets for COVID-19 detection using CXRs and CT
scans in this work. The results show that many current DL-based
methods for COVID-19 classification over-estimate their performance.
In particular, we observed two significant issues leading to such high
accuracy that is likely not to translate to real-world settings: (i) the
prediction classes training data come from separate individual dataset
sources. This can result in the network learning the peculiarities of the
dataset from which the particular class comes rather than the under-
lying pathology’s characteristics or features. (ii) the cross-validation
results without an independent test set whose images are never used
during training can overestimate the network’s performance. It is im-
portant to note that both the mentioned issues are common knowledge
in machine learning but seems to have been overlooked or not em-
phasized enough in many recent works involving DL and COVID-19
detection [13,34–36,65,80,93,94].

To reduce such bias and overfitting problems to some extent, we
have designed an experiment where the training set contains images
in each class from various dataset sources, and an independent test
set is used to evaluate the deep neural networks. The results show
that, as expected, the performance of the DL model reduces in this
scenario. In this more realistic setting, CVR-Net performed the best
when compared against other state-of-the-art classification networks.
CVR-Net (architecture detailed in Section 4.2) uses multiple branches
and aggregates information from different scales, creating a form of
ensembling within a single network that seems to be more robust than
other DL models, such as VGG, Xception, ResNet, Inception, DenseNet,
and EfficientNet, as seen in Table 5. While some of the hyperparam-
eters, such as learning rate and epochs, are adapted for each model
dynamically during training, we did not exhaustively optimize the
hyperparameters, regularization methods, and training protocol for
each of the models separately (details in Section 4.2). For a more
detailed comparison, these networks require extensive experimentation
with each model to separately tune the hyperparameters and select
the best regularization methods outside the scope and objective of the
current paper.

4-class classification task showed the model’s difficulty distinguish-
ing bacterial Pneumonia from other viral Pneumonia. Although the
results in Fig. 5 for CXR-Multiple-CL4 suggest that COVID-19 Pneumo-
nia is well distinguished from other Pneumonia, the underlying reason
9

is likely that these two classes come from separate data sources. To
evaluate the model’s ability to distinguish different classes properly,
we suggest that it is essential to have images for each class coming
from the same settings, such as the same imaging protocol, machines,
demography, etc. Images from multiple settings should also be included
when the objective is to assess the algorithm’s ability to work in
diverse settings. However, it is essential to include images from all these
settings in each class in this case.

Table 5 shows higher accuracy when using CXR images compared
to CT. We utilized 2D slices rather than the whole CT volume, which
was not publicly available for most experimental setups. CT volume
may capture details of 3D spatial information, potentially missed in
these 2D slices manually selected. Thus, we cannot conclude from the
results that CXR is more sensitive than CT for COVID-19 diagnosis.
Moreover, the publicly available datasets come from many different
sources where it is challenging to track inclusion and exclusion criteria,
symptomatic vs. asymptomatic cases, and the disease severity stage at
which these images were taken. Building a dataset containing these
details may help identify the sensitivity of CXR vs. CT at different stages
and symptom severity. This might facilitate a more informed decision
for deciding between CT and CXR, which has several tradeoffs, such as
patient conditions and the availability of the resource [95,96].

7. Conclusion

This paper has explored the insights of the COVID-19 detection
using the DL framework and publicly available datasets. An end-to-
end DL-based model, called CVR-Net, recognizes the COVID-19 from
chest radiography images with fewer false negatives. The multi-scale-
multi-encoder design of the CVR-Net ensures robustness in recognition,
as the final prediction probability is the aggregation of multiple scales
and encoders. The experimental results show that many DL-based meth-
ods overestimate their interpretation as the data come from different
individual dataset references and the cross-validation results without
an independent test set. The training set from diverse sources and an
independent test set can ameliorate such bias and overfitting troubles
to some extent. It is also observed and suggested that it is necessary to
have images for each class from identical settings like imaging protocol,
machines, and demography. The results also reveal that the CXRs
exhibit higher accuracy when compared to CT. We utilized 2D slices
rather than the whole CT volume, unavailable for most experimental se-
tups. CT volume may capture 3D spatial information, potentially missed
in these manually selected 2D slices. However, the CXRs images can be
a good choice for COVID-19 recognition as it has better performance
in our experimentation, especially where CT is unavailable to collect. It
can be remarked and concluded from the experiments that to accelerate
the development of practical clinical DL tools, the scientific community
needs to emphasize more on making publicly systematically-designed
and documented datasets that have information, such as inclusion and
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exclusion criteria, symptomatic vs. asymptomatic cases, and the disease
severity stage at which these images were taken. Future work will
improve the performance by segmenting the lung and adding more
distinctive training samples to all the classes. We also intend to deploy
our trained CVR-Net to a web application for clinical utilization.
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