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Abstract

Post-stroke behavioural symptoms often correlate and systematically co-occur with

each other, either because they share cognitive processes, or because their neural

correlates are often damaged together. Thus, neuropsychological symptoms often

share variance. Many previous lesion-behaviour mapping studies aimed to methodo-

logically consider this shared variance between neuropsychological variables. A first

group of studies controlled the behavioural target variable for the variance explained

by one or multiple other variables to obtain a more precise mapping of the target var-

iable. A second group of studies focused on the shared variance of multiple variables

itself with the aim to map neural correlates of cognitive processes that are shared

between the original variables. In the present study, we tested the validity of these

methods by using real lesion data and both real and simulated data sets. We show

that the variance that is shared between post-stroke behavioural variables is ambigu-

ous, and that mapping procedures that consider this variance are prone to biases and

artefacts. We discuss under which conditions such procedures could still be used and

what alternative approaches exist.
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1 | INTRODUCTION

Mapping stroke patients' brain lesions is a powerful method to investi-

gate functional brain anatomy, and voxel-based lesion-behaviour map-

ping (VLBM) has become an outstandingly popular method in this

field (Bates et al., 2003; Karnath et al., 2018; Rorden & Karnath,

2004). In recent years, over a hundred studies utilised this statistical

method to map the anatomy of cognitive functions (Karnath & Rennig,

2017). Many of these studies investigated cognitive disorders that

consist not only of a single disturbed symptom, but are linked to fur-

ther cognitive or neurological (sub-)deficits. For example, several

(partly) dissociating deficits of higher order motor skills are attributed

to the term “apraxia” (e.g., Goldenberg & Randerath, 2015; Manuel

et al., 2013; Martin et al., 2016), and patients with apraxia often also

suffer from additional aphasia (Kertesz & Hooper, 1982; Papagno

et al., 1993). Likewise, besides a neurological core symptom of ego-

centred spatial inattention in spatial neglect (Karnath 2015), other

spatial and non-spatial neuropsychological deficits may exist

(Chechlacz et al., 2010; Husain & Rorden, 2003; Verdon et al., 2010;

Vossel et al., 2011). Patients with a neuropsychological disorder may

also suffer from additional primary motor deficits, such as pusher syn-

drome (Karnath, 2007), or from additional primary visual defects, as in

pure alexia (Pflugshaupt et al., 2009). The neural correlates of such

co-occurring and correlating symptoms and how they relate to each
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other have been the subject of many lesion-behaviour mapping stud-

ies. Importantly, the multifactorial character of such post-stroke defi-

cits is not limited to cognitively related symptoms. Due to proximity

of distinct neural correlates and the typical vascular topography of

stroke lesions, symptoms that do not share any common cognitive

function nevertheless can correlate and share variance. Several lesion-

behaviour mapping studies explicitly aimed to capture aspects of this

shared variance between behavioural symptoms. In the present manu-

script, we focus on two strategies that are commonly used in VLBM

studies: control for the variance of co-occurring symptoms and map-

ping only the shared variance of behavioural variables.

A plethora of VLBM studies utilised nuisance regression or similar

approaches to control the variable of interest for the variance

explained by additional behavioural variables (e.g., Almairac et al.,

2015; Baldo et al., 2013, 2018; Finkel et al., 2018; Gajardo-Vidal

et al., 2018; Jones et al., 2016; Lorca-Puls et al., 2018; Martin et al.,

2017; Moon et al., 2018; Pillay et al., 2014, 2017; Schwartz et al.,

2011; Walker et al., 2011; Wilson et al., 2015; Winder et al., 2016).

While some previous studies provide a rationale for covariate control,

others do not provide any rationale at all or simply resort to a data

driven procedure, where all known variables that correlate with the

target symptom are controlled for. Generally, we see different ratio-

nales to use such a strategy of covariate control. First, one might

expect that not only the behaviour of interest affects the measured

variable, but that other confounding factors directly influence the

measured variable as well. A second reason could be that researchers

observe a correlation between behavioural scores in their experiment,

while actually no shared neural correlates are expected. In this situa-

tion, shared variance likely occurs due to proximity of neural corre-

lates and systematic collateral damage due to stroke. A VLBM

therefore might not only map the cognitive process of interest, but—

to a smaller extent—also the confounding cognitive or neurological

function. Thus, variance explained by the confounding variable is

removed, and the resulting variable is seen as a putatively “pure” mea-

sure of the behavioural variable under interest. A third rationale is that

a researcher expects partially shared neural correlates of two vari-

ables, and that the VLBM analysis is intended to only identify brain

areas that exclusively underlie one of these behavioural variables. In

this situation, controlling for the second variable is thought to ensure

that topographical results are only related to brain areas that are

exclusive to the main target variable.

Another branch of VLBM studies did not remove the shared vari-

ance of behavioural symptoms, but instead focused on this shared

variance. The idea is that multiple behavioural variables exist that

share cognitive processes, and that the shared variance of these

behavioural variables represents these cognitive processes. In the

example of aphasia, one could aim to identify common factors in a

test battery that represent certain fundamental cognitive processes

such as semantic or phonological abilities. Shared factors of correlat-

ing variables can be found by dimension reduction techniques, for

example, factorial analysis or principal component analysis, and sev-

eral VLBM studies mapped such common factors (e.g., Aguilar et al.,

2018; Butler et al., 2014; Chechlacz et al., 2014; Chen et al., 2016;

Fridriksson et al., 2016; Halai et al., 2017; Lau et al., 2015; Timpert

et al., 2015; Tochadse et al., 2018; Verdon et al., 2010).

However, there are potential pitfalls in the methodological strate-

gies outlined above. First, some uncertainties about the relation of

two behavioural variables might exist—correlation between both

might originate from proximity of neural correlates, or from different

degrees of overlap. For many behavioural deficits, the scientific com-

munity offers no consensus on this question. Second, and more rele-

vant, variables obtained after control by nuisance regression or shared

factors might not necessarily represent what they are supposed

to. What covariates to include into statistical models is a discussion

with a long history. Recently, in several scientific fields such as

organisational psychology, complex problems with variable control

have been discussed critically (Becker, 2005; Breaugh, 2006, 2008;

Newcombe, 2003). These problems include, among others, that the

control of covariates is often not explained by researchers, that con-

trol strategies are often employed in a too naïve way, or, in the worst

case, that control of covariates might even remove the actual effect

instead of biases. A deeper theoretical background to covariate con-

trol can be provided by the causal inference literature (Pearl, 1996;

Pearl & Mackenzie, 2018). Using causal models, situations can be

identified either where covariate control should be implemented to

obtain valid inference, or where covariate control is in fact detrimental

to the investigation of causal relations between variables. Problems

with the control of covariates are likely more eminent in lesion map-

ping, where data are comprised of many layers of complexity. For

example, if shared variance between two symptoms exists, we might

find a common factor that is not related to shared neural correlates of

both behaviours, but instead to brain areas that might be damaged

together with the neural correlates of both functions regularly. Fur-

thermore, it is imaginable that controlling for a second variable might

misplace significant findings away from the origin of the signal

(Figure 1), if control for covariates unintentionally removes parts of

the actual effect that is investigated. Such bias might further be medi-

ated by lesion size, as larger lesions often induce stronger deficits, but

also do more collateral damage.

The present study aimed to investigate the validity of the above

described strategies to capture aspects of shared variance of behav-

ioural variables in lesion-behaviour mapping. We performed VLBM

using such strategies in lesion samples either mapping well-controlled

simulated or real behavioural data. We hypothesised that, given both

the complexity of multivariate post-stroke behaviour and the com-

plexity of brain damage patterns, such strategies might lead to arte-

facts, that is, biased results or false positive findings.

2 | METHODS

Brain imaging data of acute, first-ever right hemisphere stroke patients

admitted to the Centre of Neurology at the Tübingen University Hospi-

tal were included. The study has been performed in accordance with

the standards laid down in the revised Declaration of Helsinki and

patients or their relatives consented to the scientific use of the data.
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Structural lesion images were acquired either by CT or MRI. If

both modalities were available, MRI was preferred. For MRI, we used

either diffusion-weighted imaging in the first 48 hr after stroke, or T2

fluid attenuated inversion recovery images at later stages. Binary

lesion maps were manually delineated on transversal slices of the

image using MRIcron (https://people.cas.sc.edu/rorden/mricron/

index.html). Lesion maps were then normalised into 1 × 1 × 1 mm3

MNI space using SPM (https://www.fil.ion.ucl.ac.uk/spm) and the

Clinical Toolbox (Rorden et al., 2012).

Lesion-behaviour mapping was performed with NiiStat software

(https://www.nitrc.org/projects/niistat/). In case that a VLBM was

controlled for the effect of lesion size, this was done by regressing

out lesion size from the behavioural variable in a nuisance regression

(Karnath et al., 2004). All statistical analyses were performed using

SPSS 25, further analyses and simulations were performed using cus-

tom scripts in MATLAB 2018 and SPM12.

3 | EXPERIMENT 1: CONTROLLING FOR
CO-OCCURRING BEHAVIOURAL VARIABLES

3.1 | Methods

The first experiment aimed to evaluate different possible strategies in

VLBM in the case of systematically co-occurring symptoms. Two

options were tested: control of the target variable by a second vari-

able, and control by lesion size. This was carried out by employing a

simulation approach in which, instead of real behavioural symptoms,

simulated behavioural symptoms were used. These symptoms were

simulated using real lesion images and arbitrarily chosen ground truth

regions. These ground truth regions can be thought of as the neural

correlates of the behaviour, which we have perfect knowledge of in

the simulation setting. The quality of a VLBM method can then be

tested by mapping the neural correlates of the simulated behaviour

and comparing the results with the ground truth region (see Sperber &

Karnath, 2018, for further details). A valid VLBM method should lead

to results that highly correspond to the ground truth region;

unsystematic or even systematic deviations suggest that the VLBM

has limitations. The simulation approach in the present study is illus-

trated in Figure 2.

In detail, imaging data of 100 patients that were part of previous

studies were used (Sperber & Karnath, 2017; Sperber et al., 2019).

This sample size was chosen because it is in the typical range of real

VLBM studies, but at the upper end where results are more stable

than in small samples (see Lorca-Puls et al., 2018). Ground truth

regions were selected from a brain atlas that consisted of 403 brain

regions (Pustina et al., 2018), which included 360 diluted regions

taken from a multimodal grey matter parcellation (Glasser et al.,

2016), as well as several subcortical and white matter areas. For each

simulated symptom, we arbitrarily chose ground truth regions con-

sisting of one, two, or three adjoined regions in this atlas. The aim of

the simulation was to investigate how lesion-behaviour mapping

should be performed when two symptoms often co-occur. Therefore,

for each simulation run, two ground truth regions that had potential

to lead to co-occurring symptoms were chosen, that is, regions which

might often be damaged together were chosen; boundaries of cere-

bral main artery territories were taken into consideration. One simu-

lated behaviour was chosen to underlie the target behaviour and the

other to underlie the second behaviour. Two different conditions

were investigated: In the non-overlap condition, the ground truth

regions were lying in close proximity, but they were completely dis-

tinct without any overlap. In the overlap condition, the ground truth

regions were partially overlapping in a way that each ground truth

consisted partially of some exclusive region and partially of a region

that was a shared neural correlate of both ground truths. For each

condition, 30 target ground truth areas together with corresponding

second ground truth areas were chosen.

Behavioural variables were simulated for each patient and for

each ground truth based on a part of true signal and a part of noise to

obtain more realistic behavioural variables. The procedure followed

previous work that investigated how realistic signal in VLBM analyses

compares to the signal in simulations given different simulation

parameters (Pustina et al., 2018). Scores ranged from 0 (no symptom)

to 1 (maximum symptom severity). The amount of noise was varied to

obtain behavioural scores with correlations of different strength. For

a first analysis, a maximum of 0.5 points was calculated as a linear

function of damage of the lesion to the ground truth region, for exam-

ple, 0 when a lesion did not affect the ground truth region and, for

F IGURE 1 Illustration of a possible bias in voxel-based lesion-
behaviour mapping (VLBM) controlled for a secondary variable.
Damage to area T induces the behavioural target behaviour that we
want to map in the analysis. A secondary behavioural variable
correlates with the target variable; damage to the secondary
behaviour's neural correlate S induces this deficit. Both areas T and S
are often damaged together. Therefore, an uncontrolled VLBM
analysis might not only find area T, but also area S. An imaginable bias
when we now control the target variable for the secondary variable is
that the VLBM might find areas that are usually damaged together
with area T, but not with S. This is the ‘?’ area. The example is chosen
arbitrarily and is not intended to correspond to any real study
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example, 0.5 × 0.25 = 0.175 when a lesion affected 25% of the gro-

und truth region. A maximum of 0.5 points was drawn randomly, uni-

formly between 0 and 0.5. In the second analysis, maximally 0.7

points were given for true signal, and 0.3 points for noise, in order to

obtain a higher correlation between symptoms. Sanity checks of simu-

lated symptoms showed that symptoms were indeed systematically

co-occurring with a medium correlation in the first condition with

50% signal (average r = .38, SD = 0.12) and a high correlation in the

second condition with 70% signal (average r = .69, SD = 0.12). Over

all conditions, symptoms and lesion size correlated on average

with r = .45.

VLBM analyses were performed using t tests with family-wise

error correction by maximum statistic permutation thresholding with

1,000 permutations at p < .05. Only voxels damaged in at least

10 patients were included in the analysis. Two experimental factors

were varied in the VLBM analyses: (a) control for the second behav-

ioural variable by nuisance regression, and (b) control for the effect of

lesion size. Both variables were either controlled for or not controlled

for, resulting in a 2 × 2 design.

Two dependent variables based on the binary VLBM maps and

the maps of ground truth regions were tested. First, the Dice-Index

was computed. This is a measure of spatial congruency for binary

maps. It ranges from 0 when no overlap between both maps

exists to 1 if both maps perfectly overlap. Second, the distance

between centres of mass (DCoM) of both maps was computed as

in previous studies (Mah et al., 2014; Sperber & Karnath, 2017).

This variable indicates how much the statistical map is spatially

misplaced from areas where the true signal originated. A good

VLBM method should yield a high Dice index and low DCoM. Sta-

tistical analyses were independently conducted for three situa-

tions: (a) non-overlapping ground truth regions, (b) overlapping

ground truth regions with a focus on the entire target region, and

(c) overlapping ground truth regions with a focus only on the area

that is exclusively underlying the target behaviour, but not the

control behaviour. Although both factors were repeated measure

factors, a standard repeated measures analysis was not feasible,

because some analyses yielded non-results. This resulted in empty

cells and thus only partially paired data. With a multifactorial

design and mixed model analyses being inadequate in this situa-

tion, we analysed the data with independent measure 2 × 2 ANO-

VAs, mirroring the analysis in a previous study (Sperber &

Karnath, 2017).

F IGURE 2 Experimental pipeline in
Experiment 1
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3.2 | Results

In both conditions, several analyses did not yield any significant posi-

tive topographical results (Table 1). Non-findings were almost exclu-

sive to analyses that involved the control of the second variable via

nuisance regression. In the condition with 50% signal and overlapping

ground truth regions, nearly all analyses yielded non-results. This con-

dition was thus removed from further analysis. Moreover, in a few of

these analyses there were not only no positive findings, but negative

findings, that is, voxels where damage was significantly related to less

severe symptoms. Visual sanity checks of these analyses revealed that

these still found (non-significant) positive signal around the ground

truth area, but areas further away demonstrated significant negative

findings. Note that these cases were counted as non-findings and thus

removed from further analysis. Results of 2 × 2 ANOVAs are vis-

ualised in Figure 3. Example results are shown in Figure 4 for non-

overlapping ground truths, and in Figure 5 for overlapping ground

truth regions.

For 70% signal and non-overlapping ground truth regions, Dice

index was affected by an interaction of lesion size control and control

for the second variable (F(1, 103) = 9.24, p < .01). A significant simple

main effect was found for lesion size control given the second variable

is not controlled for (p < .001), with a higher Dice index when lesion

size is controlled, but not if the second variable is controlled for

(p = .96). Also, it has been found that there is no effect of the control

of the second variable given lesion size is not controlled for (p = .14),

but a significant effect given lesion size is controlled for (p < .01), with

a lower Dice index if the second variable is controlled for. For DCoM,

the interaction also became significant (F(1, 103) = 7.14, p < .01). Con-

trol for lesion sizes significantly reduced DCoM given the second vari-

able is not controlled for (p < .01), but no effect was found given the

second variable is controlled for (p = .37). Given lesion size is not con-

trolled, control for the second variable also significantly reduced

DCoM (p < .05), but not given lesion size is controlled for (p = .16).

For 70% signal and overlapping ground truth regions with a

focus on the complete target region, Dice index was affected by an

interaction of both variables (F(1, 80) = 11.19, p < .01). The simple

main effect analysis revealed that control for the second variable

decreased the Dice index both given lesion size is controlled for

(p < .001) or given it is not controlled for (p < .05). Lesion size control

increased the Dice index given the second variable was not con-

trolled for (p < .001), but not given it was controlled for (p = .60). For

DCoM, the interaction did not become significant (F(1, 80) = 2.87,

p = .09), neither did a main effect for control for lesion size

(F(1, 80) = 0.44, p = .51). However, a main effect for control of the

second variable was significant (F(1, 80) = 7.04, p < .05), with higher

DCoM with the control factor.

For 70% signal and overlapping ground truth regions with a focus

on only the areas exclusive to the target ground truth, Dice index was

again affected by an interaction of both variables (F(1, 80) = 4.75,

p < .05). The simple main effect analysis revealed that control for the

second variable decreased the Dice index given lesion size is con-

trolled for (p < .01), but not given it is not controlled for (p = .79).

Lesion size control increased the Dice index given the second variable

was not controlled for (p < .001), but not given it was controlled for

(p = .70). For DCoM, the interaction did not become significant (F

(1, 80) = 2.26, p = .61), neither did a main effect for control for lesion

size (F(1, 80) = 0.32, p = .57), nor a main effect for control of the sec-

ond variable (F(1, 80) = 1.04, p = .31).

For 50% signal and non-overlapping ground truth regions, Dice

index was neither affected by an interaction between control for the

second variable and lesion size (F(1, 71) = 0.01, p = .92), nor a main

effect for control of lesion size (F(1, 71) = 0.42, p = .52). However,

Dice Index was affected by control for the second variable (F

(1, 71) = 11.44, p < .01), with a higher Dice index when the control

was not applied. For DCoM, neither the interaction (F(1, 71) = 2.49,

p = .12), nor main effects for the control of the second variable (F

(1, 71) = 0.07, p = .79), nor control for lesion size (F(1, 71) = 0.14,

p = .71) became significant.

3.3 | Discussion

The control of the target behaviour by a second, correlating behav-

ioural variable did not generally improve the validity of VLBM. More

often, it even led to significantly less precise results than uncontrolled

analyses. The drawbacks of such control could not be overcome by

changing the focus of the analysis, that is, aiming to identify only brain

regions that are exclusive to the target behaviour. On the contrary,

most analyses improved with control for lesion size, and the condition

with only control for lesion size was numerically the best in all condi-

tions for both dependent variables.

Another finding was that analyses that were controlled for a sec-

ond behavioural variable often resulted in non-findings—or instead

even negative, anti-correlated significant findings. This almost never

happened without such control (including mere control for lesion size).

Control of the target behaviour by a second behavioural variable thus

TABLE 1 Number of analyses that yielded any positive significant
results in Experiment 1. All other analyses either yielded non-results
or only voxels that were significantly anti-correlated with behaviour,
that is, where damage in a voxel was associated with less severe
symptoms

Non-overlapping Overlapping

LSC− LSC+ LSC− LSC+

Ground truth (70% signal)

SVC− 30/30 30/30 29/30 29/30

SVC+ 23/30 24/30 11/30 15/30

Ground truth (50% signal)

SVC− 30/30 28/30 29/30 28/30

SVC+ 8/30 9/30 1/30 2/30

Abbreviations: LSC−, without control for lesion size; LSC+, with control

for lesion size; SVC−, no second variable control; SVC, with control for the

second variable.
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seems to be excessively conservative, and in some cases obscure anti-

correlated findings might appear as a statistical artefact.

4 | EXPERIMENT 2: MAPPING OF
COMMON BEHAVIOURAL FACTORS

4.1 | Methods

The second experiment investigated the mapping of common behav-

ioural factors as found by dimension reduction procedures. We hypo-

thesised that common behavioural factors in neuropsychological

behavioural data are not specific to actually shared cognitive func-

tions, and thus the mapping of such factors can lead to artefacts. We

therefore investigated the mapping of common factors in both actual

behavioural symptoms and well-controlled simulations. First, two

behavioural variables that presumably do not share common cognitive

functions and anatomical areas—primary motor function and visual

spatial attention—were investigated. Second, symptoms based on

non-overlapping ground truth regions were simulated as in Experi-

ment 1. In these simplified examples that were based on just two

measures, we aimed to identify a possible common factor of both

symptoms and to map this factor using VLBM.

For the analysis on real-world data, we retrospectively identified

and included 46 right hemisphere stroke patients that were tested

and graded for both severity of hemiparesis of the upper limb and

severity of spatial neglect. Primary motor skills were assessed using

the Medical Research Council Grading, scoring the severity of upper

F IGURE 3 Results of Experiment 1, showing results for the four conditions: no control (no C), lesion size control (LSC), second variable
control (SVC), and lesion size and second variable control (LS+SVC). Error bars indicate standard deviation. DCoM, distance centres of mass
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limb hemiparesis on a scale between 0 and 5, with 0 being severe

hemiplegia and 5 no hemiparesis at all. Visual spatial attention was

assessed by the bells cancellation task (Gauthier et al., 1989) and the

letter cancellation task (Weintraub & Mesulam, 1985). Both cancella-

tion tests were analysed by assessing the Centre of Cancellation

(Rorden & Karnath, 2010), a continuous score of the egocentric deficit

in spatial neglect. Centre of Cancellation scores were then averaged

for both tests and their polarity was inverted to mirror the poling of

the hemiparesis score, with lower test scores indicating lower perfor-

mance and more severe symptoms.

A principal component analysis using varimax rotation with Kaiser

normalisation in SPSS was run to identify the first common factor of

hemiparesis and spatial attention. Then, the scores for this first factor

for each individual patient were obtained and mapped by VLBM.

Mass-univariate t tests both with permutation thresholding with

4,000 permutations at p < .05, and, as an additional post hoc analysis,

F IGURE 4 Example results of Experiment 1 for non-overlapping ground truth regions in the condition with 70% signal. Statistical maps show
statistically significant voxels after maximum statistic permutation control. Colour grading indicates t-values, with warm red colours indicating
higher values. Light blue circles have been added to highlight smaller clusters of significant voxels. a) Ground truth regions for the target symptom
(red) and the secondary symptom (blue); b)-e) permutation-thresholded VLBM results for b) uncontrolled analysis; c) analysis controlled for the
secondary variable; d) analysis controlled for lesion size; e) analysis controlled both for the secondary variable and lesion size
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with false discovery rate of q = 0.05 were performed, which also mir-

rors better VLBM parameters in several previous studies (e.g., Timpert

et al., 2015; Verdon et al., 2010). Only voxels affected by at least four

subjects were included into the analysis.

For the second analysis on simulated data, we chose 10 pairs of

regions in the brain atlas used in Experiment 1 (Glasser et al., 2016;

Pustina et al., 2018) that were not overlapping and not adjacent. Thus,

no shared neural correlates of simulated scores existed. The simulation

strategy procedures were the same as in Experiment 1, and were based

on the same 100 lesions. In short, for both areas, a symptom score was

computed based on a linear relation between the amount of lesioned

voxels in the area and the symptom, and some noise was added to

obtain more realistic data. Symptoms were simulated with 70% signal

and 30% noise in order to ensure a high correlation between all pairs of

F IGURE 5 Example results of Experiment 1 for overlapping ground truth regions as in Figure 4. †The analysis in (c), middle column, did not
yield positive, but only negative significant findings. These are shown here, but have been removed from the analysis in Experiment 1. ‡The
analysis in (c), right column, did not yield significant voxels in the slices shown in the other panels, therefore the shown slices were changed to
more anterior slices with positive findings. a) Ground truth regions for the target symptom (red) and the secondary symptom (blue), as well as
overlap of both (pink); b)-e) permutation-thresholded VLBM results for b) uncontrolled analysis; c) analysis controlled for the secondary variable;
d) analysis controlled for lesion size; e) analysis controlled both for the secondary variable and lesion size
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simulated data. Doing so, we obtained correlations in the same range as

found between the data on hemiparesis and spatial attention. Simulated

scores correlated on average by r = .45 (SD = 0.12). Principal compo-

nents were identified as described for the real-world data. The VLBM

analyses were performed with permutation thresholding with 1,000

permutations at p < .05 either with or without correction for lesion size.

Only voxels affected by at least 10 lesions were analysed.

4.2 | Results

A medium Pearson correlation between hemiparesis and spatial

neglect of r = .51 (p < .001) was found. The first factor in the principal com-

ponent analysis explained 75.3% of variance and had an eigenvalue of 1.51.

The VLBM corrected by permutation thresholding only identified

23 significant voxels, however the FDR-corrected analysis found 10,476

significant voxels to be the neural correlate of this factor (Figure 6(a)). Both

results, however, disappeared when a control for lesion size was applied.

For simulated data, the first factor explained on average 72.3%

(SD = 6.1) of variance. All VLBM analyses, both controlled and uncon-

trolled for lesion size, found significant results. Analyses not controlled for

lesion size yielded on average 72,170 (SD = 17,500) significant voxels, and

analyses controlled for lesion size yielded on average 19,348

(SD = 11,661) significant voxels. Example results are shown in Figure 6(b).

4.3 | Discussion

We chose the two variables primary motor function and visual spatial

attention, for which we a priori assumed that no common neural

F IGURE 6 Results of Experiment 2, showing (a) the mapping of a common factor of hemiparesis and spatial neglect, and (b) example results
of the mapping of common factors in simulated behavioural data that were based on non-overlapping, non-adjacent ground truth regions.
Analyses in (b) were either controlled for lesion size (LS) or not controlled for lesion size
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correlates should exist. Nevertheless, VLBM of the common factor of

hemiparesis and visual spatial neglect revealed several areas to be its

common ‘neural correlate’. Thus, the finding appears to be a false pos-

itive finding. Note that a possible objection against the real-world

example could be that primary motor skills actually share common

cognitive processes with visual spatial attention that are damaged in

so-called ‘motor neglect’. Motor neglect is indeed a post-stroke symp-

tom of attention in motor tasks, however it is by no means a link

between hemiparesis and visual spatial neglect, but rather a highly

specific symptom itself (e.g., Kojovi�c & Bhatia, 2019).

The finding in real-world data was further supported by simula-

tions. When symptoms were simulated based on the damage status of

non-overlapping, non-adjacent ground truth regions, VLBM still found

neural correlates to underlie a common factor in all analyses. The

mapping of common factors underlying multiple behavioural variables

thus appears to be prone to false positive findings.

5 | GENERAL DISCUSSION

We investigated two common strategies that are used to investigate

the multivariate character of neuropsychological post-stroke behav-

iour. In both cases, we observed that such approaches do not live up

to the complexities of lesion-behaviour relationships, and potentially

impair the precision of topographical results, creating false-positive

artefacts.

Nuisance control of a second variable in VLBM did not improve

the precision of topographical results. Should behavioural data in

lesion mapping therefore never be controlled for other behavioural

variables? The present study suggests that controlling for variables

that do not directly affect the mapped target variable is unfavourable

and should be avoided. However, and this is the reason why we can-

not provide a definitive answer, there are situations where a second-

ary behaviour directly affects the measurement of the target variable.

As mentioned in the Introduction, deficient cognitive processes that

are not intended to be mapped might directly influence the target var-

iable. A prime example is any language-based assessment of cognitive

abilities that are not thought to be related to language. Aphasia might

hinder task performance, and thus not only the cognitive deficit of

interest, but also some language skills which are assessed with the

task. If we look at neuropsychological deficits such as apraxia (being

affected by aphasia) or extinction (being affected by spatial neglect),

the control for a secondary variable might offer more merits than dis-

advantages. In such cases, and with a clearly formulated theoretical

background, secondary variable control might be favourable. On the

other hand, our present results demonstrate that any variable control

which is performed without such theoretical basis should be avoided.

A better understanding of why covariate control in lesion-behaviour

mapping can be disadvantageous can be obtained by causally model-

ling the relations between variables (Pearl, 1996; Pearl & Mackenzie,

2018). If, and only if, causal relations between variables fulfil the so-

called ‘back-door-criterion’, covariate control is appropriate (Pearl

et al., 2016; Pearl & Mackenzie, 2018). This is fulfilled if there is an

indirect causal path from the dependent variable leading into the inde-

pendent variable (Pearl & Mackenzie, 2018, p. 158). If we look at an

individual statistical test that investigates the relation between dam-

age to an area X and a target symptom, and if we assume that a covar-

iate symptom is co-occurring with the target symptom due to shared

vasculature, then causal relations could be graphically modelled as in

Figure 7. In that situation, there is no back-door path from the target

symptom to the damage in area X, and thus by definition, there is no

confounding present. If we control for the covariate symptom in this

situation, we would end up controlling for the variance that we actu-

ally want to measure. However, when we add a causal link from the

covariate symptom to the target symptom (the dotted grey line in

Figure 7)—for example, if a covariate symptom such as aphasia

unintentionally affects our target symptom—then a case of con-

founding is present, and covariate control would close the con-

founding back-door path. Note that causal models are likely not

suited to explain a full mass-univariate analysis and its complexity.

However, given the assumptions visualised in Figure 7, it can be

shown that some ways of covariate control in lesion-behaviour map-

ping can be disadvantageous.

As outlined above, a rationale behind controlling for secondary

behavioural variables might be to obtain a ‘pure’ behavioural variable,

while non-controlled variables are expected to be not only related to

the neural correlates of interest, but also to other brain regions due to

systematic collateral damage. This methodological strategy, that has

been used intuitively by many researchers, is mirrored by more recent

discussions about the validity of lesion-behaviour mapping. It has

been shown that collateral lesion damage between voxels induces

spatial biases in lesion-behaviour mapping methods (Inoue et al.,

2014; Mah et al., 2014; Sperber et al., 2019). As we have observed in

the present experiment, the control for secondary variables is not a

solution to this problem. Instead, an unspecific control for lesion size

F IGURE 7 A graphical causal model of lesion-deficit relations in a
situation where damage to a sub-region of the vasculature can induce
damage to two distinct areas. Damage in each of the two areas can
lead to a post-stroke symptom. One of those is the target symptom
that is supposed to be investigated by voxel-based lesion-behaviour

mapping (VLBM), central to the study is the causal relation between
damage to area X and the target symptom, that is, we are interested
in mapping the neural correlates of the target symptom. The other
symptom highly correlates with the target symptom, and one might
consider including it as a covariate into the analysis. However,
without any direct causal effect of the covariate symptom on the
target symptom (dotted grey line), no actual confounding would be
present at all, and covariate control would bias the analysis

1396 SPERBER ET AL.



seems to be a better option for control here. Such control, although

imperfect (see Xu et al., 2018, for a critical discussion), appears to par-

tially counteract spatial biases (see also Sperber & Karnath, 2017), but

will of course only have an effect if there is a relation between lesion

size and symptom at all. This was the case for the simulations in the

present study, but it is not necessarily the case in all real deficits (see

DeMarco & Turkeltaub, 2018).

Experiment 2 has shown that the shared variance of neuropsycho-

logical variables does not necessarily represent shared cognitive functions.

Furthermore, VLBM might associate such shared variance with brain

areas, although shared neural correlates of the original variables do not

exist. These findings, however, do not discredit such an approach per

se. The central question here is if the common factor of the variables

really represents shared cognitive functions. If this is truly the case, we

see no objection against mapping it, and VLBM would be a reasonable

and powerful tool to identify such shared neural correlates. A close look

at dissociation patterns might be helpful to get a deeper understanding of

how different cognitive functions anatomically relate to each other. A

more fail-safe alternative, however, might be—if possible—to find a

behavioural task that directly assesses the shared cognitive function.

Thus, while we have shown that the above methods can be disad-

vantageous when used in VLBM, this does not mean that they must

do so in any analysis. In fact, we believe that the presence of a strong

theoretical background is a crucial point not only in previous studies

using these methods but also in future experiments planning to use

such strategies. The VLBM method itself performs a hypothesis-free

parametric mapping. Without a strong theoretical background utilising

the methods that were investigated in the present article, this can be

fatal. For example, researchers might misjudge that two behavioural

variables partially share neural correlates. They might find putative

neural correlates of the common factor, although they do not truly

exist. Or, after controlling for a secondary variable, researchers might

obtain counter-intuitive findings of areas where damage negatively

correlates with the behavioural deficit. While we have shown that this

can be a methodological artefact that regularly arises after controlling

for a second variable, the researchers might interpret this finding post

hoc as brain areas that inhibit beneficial plastic reorganisation of func-

tional brain anatomy. On the other hand, if a strong theoretical basis

is present, the statistical methods investigated in the present paper

can indeed provide a powerful tool to investigate human brain archi-

tecture and how different cognitive modules relate to each other.

The present study focused on mass-univariate VLBM. In recent

years, multivariate lesion-behaviour mapping methods (MLBM) which

model structural lesion data (but not behavioural data) in a multivariate

way were established (Pustina et al., 2018; Zhang et al., 2014). These

methods also seem to suffer from biases induced by systematic collat-

eral damage (Sperber et al., 2019), which are likely a main reason for

the findings of the present paper. Thus, MLBM will likely suffer the

same limitations as VLBM when behavioural variables are controlled

for other variables or if shared variance of variables is mapped.

A limitation of the present study is the limited ecological validity

of simulations (Sperber & Karnath, 2018). While simulation-based vali-

dation of lesion-behaviour mapping methods is well-controlled and

allows high flexibility in investigating different methodological factors,

it is not clear to what extent findings can be transferred to real data.

Lesion-deficit relations in simulations are over-simplified, and choos-

ing a certain strength of lesion-behaviour relation might not be repre-

sentative for all actual post-stroke deficits. However, the present

study did not aim to find an optimal method, but instead investigated

limitations of methods. Very likely, limitations of VLBM in a simulation

setting will also be in some way present in real VLBM analyses, and

the present study has shown that these limitations are inherent to the

method, as they even exist in the over-simplified simulation setting.

6 | CONCLUSION

Shared variance between post-stroke behavioural variables is ambiguous

and can have different reasons. Thus, statistical procedures that in any

way consider this variance are prone to artefacts. Overall, the multivariate

character of behavioural data in lesion-behaviour mapping studies poses

special challenges, and lesion-behaviour mapping studies that aim to cap-

ture this character require a solid theoretical ground to provide valid

results. If this is the case, lesion-behaviour mapping using such statistical

methods is a powerful tool to investigate brain architecture. However,

when in doubt, it might be better to not use them, and instead

researchers might rather focus on a simple, but well-elaborated study

design to control for possible confounds of the behavioural target variable

or to identify brain areas underlying common cognitive functions.
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