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Abstract: Coronary artery bypass surgery grafting (CABG) is a commonly efficient treatment for
coronary artery disease patients. Even if we know the underlying disease, and advancing age is
related to survival, there is no research using the one year before surgery and operation-associated
factors as predicting elements. This research used different machine-learning methods to select the
features and predict older adults’ survival (more than 65 years old). This nationwide population-
based cohort study used the National Health Insurance Research Database (NHIRD), the largest and
most complete dataset in Taiwan. We extracted the data of older patients who had received their
first CABG surgery criteria between January 2008 and December 2009 (n = 3728), and we used five
different machine-learning methods to select the features and predict survival rates. The results show
that, without variable selection, XGBoost had the best predictive ability. Upon selecting XGBoost
and adding the CHA2DS score, acute pancreatitis, and acute kidney failure for further predictive
analysis, MARS had the best prediction performance, and it only needed 10 variables. This study’s
advantages are that it is innovative and useful for clinical decision making, and machine learning
could achieve better prediction with fewer variables. If we could predict patients’ survival risk before
a CABG operation, early prevention and disease management would be possible.

Keywords: National Health Insurance Research Database; NHIRD; older adults; CABG; machine
learning; overall survival prediction; feature selection

1. Introduction

Advancing age leads to markedly increasing coronary artery disease (CAD), a common
heart disease and the leading global cause of mortality [1], significantly increasing the
global healthcare burden [2]. Coronary artery bypass grafting (CABG) is an efficient
treatment for patients with CAD in myocardial revascularization [3]. The risk of CABG
surgery is approximately 1–3%. CABG is also high-cost surgery [4]. In recent years, various
studies evaluated CABG risk on survival rate, medical cost, and follow-up of different
CAD treatment strategies [3–8].

However, there is no complete research using an extensive database to build an
integral machine-learning model for predicting and evaluating which risk factors could
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preoperatively affect older adults’ survival rate. Thus, this research used the National
Health Insurance Research Database (NHIRD), with a sufficiently large data sample of
Taiwan, which provided all real and large healthcare data, including patients’ original
clinical records, treatments, inhospital expenditures, and diagnosis codes. In addition to
the patients’ basic characteristics and disease history, we used variables before one year
and during the operation as predictive indicators. Therefore, if we could predict patients’
mortality risk before a CABG operation, take early prevention and disease management
for those high-risk patients would be possible. Our studies used multistage selection,
which contains feature-searching methods and prediction-model development based on
logistic regression (LGR), random forest (RF), classification regression tree (CART), extreme
gradient boosting (XGBoost), and multivariate adaptive regression splines (MARS). The
model receives as input several preoperative medical factors and their characteristics. To
find the correct factors that affect the outcomes and reduce distortion, model performance
relies on feature selection (Nguyen, 2010).

There were three purposes of this retrospective population-based study. The first
research object was to analyze older adults’ survival rate after CABG surgery within a
10-year follow-up. Second, we used different feature-selection methods to investigate
which risk factors were crucial variables that could affect survival. Lastly, we aimed to
determine the best prediction survival model for older adults receiving CABG procedures,
and to identify the associated factors in the prediction model that determine surgery
risk factors.

2. Materials and Methods
2.1. Data Source

There are around 23 million people in Taiwan. The National Health Insurance Re-
search Database (NHIRD) enrolls nearly 99% of Taiwanese enrollees in the National Health
Insurance (NHI) program [9]. NHIRD contains the personal information of patients who
participate in the NHI program, including outpatient and inpatient information, and surgi-
cal procedure codes, and it enables the continuous tracking of all claimed records from each
patient. The diagnosed codes were International Classification of Diseases, Ninth Revision;
Clinical Modification (ICD-9-CM); the Tenth Revision (ICD-10-CM) in Taiwan was fully
adopted from 1 January 2016. According to the abovementioned advantages, the NHIRD
provides complete and comprehensive long-term follow-up for each patient. Demographic
ID information in NHIRD was anonymized and deidentified. This study was exempted
from a full ethical review by the Fu Jen Catholic University ethics institutional review
board in Taiwan (C108121), and the requirement to obtain informed consent was waived.

2.2. Study Population

To understand the important factors that affect older patients’ survival rate after CABG
surgery, this retrospective cohort study enrolled patients over 65 years old from 1 January
2008 to 31 December 2009, from the NHIRD, Taiwan. We selected patients who had first
undergone CABG operation (the operation code of only one anastomosis vessel is 68023A
and 68023B, 68024A and 68024B are 2 vessels, and 68025A and 68025B are 3 diseased
vessels). CABG’s initial surgery date was used as the index date to ensure that this study
focused on older individuals; patients under 65 years old (n = 3533) were excluded. We
also excluded those who had had CABG surgery before the index year (between 2002
and 2007; n = 39), had died in the hospital (n = 434), and those with missing information
(n = 5). According to these criteria, a total of 4162 patients undergoing CABG surgery were
divided into two groups, dead and alive patients ≥65 years old, between 1 January 2008
and 31 December 2009 (Figure 1).
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Figure 1. Patient selection and further analysis of 3728 older adult patients who had undergone first-time coronary artery
bypass surgery grafting (CABG) between 2008 and 2009.

2.3. Comorbidities and Variable Definitions

In this research, the baseline characteristic variables were sex, Charlson comorbidity
index (CCI) score, number of anastomosis vessels, and patient comorbidities (Supple-
mentary Materials) including: hypertension, hyperlipidemia, diabetes mellitus (DM),
congestive heart failure (CHF), peripheral vascular disease (PVD), coronary artery dis-
ease (CAD), chronic obstructive pulmonary disease (COPD), myocardial infarction (M),
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chronic kidney disease (CKD), end-stage renal disease (ESRD), and stroke. Blood trans-
fusion (94001C, 94002C, 4013C, 94015C, 94003C), mechanical ventilation (57001B, 57002B,
57003B) in the preoperative one year, and CHA2DS2-VASc score [10,11] were also included.
CHA2DS2-VAS was calculated for each research patient using a history of hypertension,
diabetes mellitus, congestive heart failure, and vascular disease. Age between 65 and
74 years old, and female gender were 1 point. Two points were assigned for a history
of ischemic stroke and transient ischemic attack (ICD-9-CM codes: 433–438; ICD-10-CM:
I63.0–9, G45.9) or age ≥ 75 years old.

The date of comorbidities was defined as the date before the index date, which could
be traced back to 2002–2007. Primary outcomes were overall survival rate of older adults
after the CABG procedure, and cause of death was provided by the NHIRD death registry
data. Patients in this study were all followed up from the index date until the date of death
or the end of the research (31 December 2018).

2.4. Feature-Selection and Machine-Learning Prediction Models

The hospital must update each patient’s information every day. After long-term
accumulation, much medical information is accumulated. We also used the NHIRD to
determine key factors that affect the survival of older adults from the first CABG surgery.
The medical records contained numerous items. Therefore, before making predictions,
features were reduced through feature selection (FS), an essential preprocessing step [12].

However, models have different abilities to predict survival. Some studies used ma-
chine methods for an early diagnosis of bipolar disorder, prostate-cancer-specific survival,
erectile dysfunction, CKD, and medical cost [13–17]. This research used multiple-stage
selection methods to uncover potential collinearity among variable subsets and evaluate the
response variable’s predictive performance. After that, we used a fivefold cross-validation
process to verify the model of LGR, RF, CART, XGBoost, and MARS (for classification
or continuous variables) to compare the predicted performance with all variables and
evaluate the classification results after feature selection per classification method [18,19].
The classification model’s performance indicators were mean accuracy, kappa, sensitivity,
specificity, and area under the ROC curve (AUC). The evaluation performance of the
AUC value was defined by Hosmer et al. [17]: AUC ≥ 0.9, outstanding discrimination;
0.8 ≤ AUC < 0.9, good discrimination; 0.7 ≤ AUC < 0.8, acceptable/fair discrimination;
0.6 ≤ AUC < 0.7, poor discrimination; and AUC < 0.6, no discrimination [13]. The greater
the accuracy, sensitivity, specificity, and kappa values are, the better the model is.

In this research, we used five different machine-learning methods to construct predic-
tive models and conducted the best feature selection for evaluating the mortality of the
CABG patients.

2.4.1. LGR

Logistic regression is a classical prediction method suitable for predicting general
binary classification problems. The central concept of LGR is the natural logarithm of
an odds ratio by logit [20]. It is used to analyze the relationship between dependent and
independent variables. The predicted variable Y has only two possibilities: yes (1) and
no (0).

2.4.2. RF

Random forest (RF) is an ensemble method, and the classifier in the original RF
algorithm is a classification and regression tree (CART) that is based on the bagging
algorithm and bootstrap aggregation. It randomly selects variables to split when the CART
tree grows [21]. The out-of-bag (OOB) error of random forest is the average error of each
weak sample using an approximate test error to measure performance [22]. Lastly, each
tree was based on node impurity to improve the amplitude of the random forest and find
out the importance of variables.
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2.4.3. MARS

MARS is a nonparametric statistical method developed by physicist Friedman et al.
(1991) [23]. It is flexible regression processing that can automatically create a criterion
model and separate linear-regression slopes to process multiple complex data and establish
prediction models.

Approximated nonlinearity is adopted using separate linear-regression slopes in dif-
ferent intervals of the independent variable space. For the best MARS model, the first stage
uses a forward algorithm to construct many possible basic functions and corresponding
knots to initially overfit the data. We used the generalized cross-validation criterion (GCV)
to generate the best combination in the second stage [22].

MARS can also use dummy variables to deal with missing values, and it does not
need to assume the distribution of demand functions and errors.

2.4.4. CART

Breiman et al. developed the classification and regression-tree algorithm in 1984 [24].
In the process of the CART algorithm, a series of rules are generated through recursion.
First, CART builds a maximal tree to divide the two subsets into left and right through
binary splits, and calculates the impurity by using the Gini index under each attribute
segmentation. Nodes and leaf nodes start from the root during analysis. The smallest Gini
index is used to determine segmented attributes and values. Then, the parent node can
divide two exclusive children from each node, and iteratively calculate until the whole
decision tree stops growing and is constructed [22].

2.4.5. XGBoost

The algorithm applied by XGBoost is a gradient-boosting decision tree (GBDT) that
can be used for both classification and regression problems [25]. The greedy method
optimizes the maximal gain of the objective function during the construction of each tree
layer. The idea of the algorithm is to continuously add trees and perform feature splitting
to grow a tree. Each time a tree is added, it learns a new function to fit the residual of the
last prediction.

Lastly, multiple learners are added together to make the final prediction, and the
accuracy rate is higher than that of a single one. To solve overfitting, XGBoost controls
the complexity of the model by using regularization terms, and objective function op-
timization uses the second derivative of the Taylor expansion loss function to compute
pseudoresiduals [22].

2.5. Statistical Analysis

Both cohorts were stratified into two groups (dead and alive) and compared using
Pearson’s chi-squared tests for categorical variables. Demographic data at baseline pre-
sented numbers and percentages as n (%). Independent sample t-tests assessed continuous
variables as means and standard deviations (mean ± SD) to compare the difference. All
significance thresholds were associated with 2-tailed p values < 0.05. Data extraction was
performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). Variable selection
and model establishment was carried out with R statistical software (R studio 3.5.1;
http://www.r-project.org (accessed on 12 January 2021)).

3. Results
3.1. Demographic Characteristics of Study Population

The demographic data and comorbidities of the patients who accepted their first
CABG surgery are listed in Table 1. We included ≥65 year-old adults who had fulfilled the
criteria from 1 January 2008, to 31 December 2009, in the Taiwan NHIRD. The dead group
was 2272 (69.98%), and the alive group was 1456 (71.09%). In comparison, male patients
had higher mortality than that of female patients.

http://www.r-project.org
http://www.r-project.org
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Table 1. Demographic features of older CABG adults in Taiwan from 2008 to 2009.

Variables ≥65 Dead
(n = 2272)

≥65 Alive
(n = 1456) p-Value

n % n %

Sex
Female 682 30.02 421 28.91 0.471
Male 1590 69.98 1035 71.09

Age, mean (SD), y 74.30 (5.60) 71.27 (4.78) <0.001
Follow up years, Mean (SD) 4.42(3.14) 10.05 (0.57) <0.001

Follow up years, Median 4.22 10.02 -
CHA2DS score, mean (SD) 4.21 (1.67) 3.30 (1.57) <0.001

Comorbidities

DM 1477 65.01 739 50.76 <0.0001
Hypertension 624 27.46 379 26.03 0.335

Hyperlipidemia 1522 66.99 1056 72.53 <0.001
MI 1182 52.02 560 38.46 <0.001

Liver cirrhosis 50 2.2 10 0.69 <0.001
CHF 1385 60.96 563 38.67 <0.001
CAD 2222 97.8 1435 98.56 0.098
PVD 541 23.81 248 17.03 <0.0001

Acute pancreatitis 43 1.89 21 1.44 0.301
Malignant dysrhythmia 104 4.58 58 3.98 0.385

Intracranial bleeding 53 2.33 14 0.96 0.002
AF 348 15.32 159 10.92 <0.001
TIA 951 41.86 424 29.12 <0.0001
CKD 572 25.18 129 8.86 <0.0001
ACS 1490 65.58 810 55.63 <0.0001

COPD 1043 45.91 558 38.32 <0.0001
Stroke 947 41.68 423 29.05 <0.0001
Cancer 164 7.22 66 4.53 <0.001

CCIS scores 0 75 3.3 139 9.55 <0.0001
1 269 11.84 330 22.66
2 383 16.86 362 24.86
3 424 18.66 239 16.41
4 341 15.01 165 11.33
5 275 12.1 115 7.9

6+ 505 22.23 106 7.28
Mean (SD) 3.86 (2.40) 2.59 (1.93) <0.0001

Surgical Variables

Anastomosis vessels, mean (SD) 2.64 (0.72) 2.79 (0.77) <0.001
Length of stay (LOS), mean (SD) 25.59 (14.77) 18.29 (9.15) <0.001

Blood transfusion, (Bag), mean (SD) 10.89 (14.68) 7.23 (5.31) <0.001
Mechanical ventilation, (Day), mean (SD) 7.16 (13.90) 2.76 (3.09) <0.001

Surgical cost 611,701 (488,753) 394,843 (165,389) <0.001

One Year Before Surgery

Outpatient visits, mean (SD) 37.70 (23.34) 32.36 (20.13) <0.001
Hospitalization, mean (SD) 1.91 (1.34) 1.45 (0.82) <0.001

ED visits, mean (SD) 58 2.55 14 0.96 <0.001
Blood transfusion, (Bag), mean (SD) 3.83 (3.69) 4.09 (4.87) 0.636

Mechanical ventilation, (Day), mean (SD) 5.55 (13.48) 3.93 (4.05) 0.373
Medical cost (related cardiology

department), mean (SD) (thousand NT$) 81,957 (107,098) 60,969 (80,674) <0.0001

Medical cost (thousand NT$) 155,186 (197087) 91,439 (98,235) <0.0001
CCIS = Charlson comorbidity index score; SD: standard deviation; ED: Emergency departmen; MI: Myocardial
infarct; CHF: Congestive heart failure; CAD: Coronary artery disease; PVD: Peripheral vascular disease; AF:
Atrial fibrillation; TIA: Transient ischemic attack; CKD: Chronic kidney disease; ACS: Acute coronary syndrome;
COPD: Chronic obstructive pulmonary disease ; AKF: Acute kidney failure ; DM: Diabetes mellitus.
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Statistically significant results were demonstrated for the dead and alive groups. The
mean follow-up periods were 4.42 ± 3.14 and 10.05 ± 0.57 years (p < 0.001), respectively, and
the other data were as follows, as described in the brackets: CHA2DS score (4.21 ± 1.67
vs. 3.30 ± 1.57, p < 0.001), diabetes (65.01 vs. 50.76, p < 0.001), myocardial infarction
(52.02 vs. 38.46, p < 0.001), liver cirrhosis (2.2 vs. 0.69, p < 0.001), peripheral vascular disease
(PVD; 23.81 vs. 17.03, p < 0.001), congestive heart failure (CHF; 60.96 vs. 38.67, p < 0.001), in-
tracranial bleeding (2.33 vs. 0.96, p = 0.002), atrial fibrillation (AF; 15.32 vs. 10.92, p < 0.001),
transient ischemic attack (TIA; 41.86 vs. 29.12, p ≤ 0.001), chronic kidney disease (CKD;
25.18 vs. 8.86, p ≤ 0.001), acute coronary syndrome (ACS; 65.58 vs. 55.63, p < 0.001), chronic
obstructive pulmonary disease (COPD; 45.91 vs. 38.32, p < 0.001), stroke (41.68 vs. 29.05,
p < 0.001), cancer (7.22 vs. 4.53, p < 0.001) and CCI scores (3.86 ± 2.40 vs. 2.59 ± 1.93,
p < 0.001).

The surgical variables were significantly different in terms of cost (TWD 611,701 ±
488,753 vs. TWD 394,843 ± 165,389, p < 0.001), the average diameter of anastomosis vessels
(2.64 ± 0.72 vs. 2.79 ± 0.77, p < 0.0001), the length of stay (25.59 ± 14.77 vs. 18.29 ± 9.15,
p < 0.001), blood transfusion (10.89 ± 14.68 vs. 7.23 ± 5.31, p < 0.001), and mechanical
ventilation (7.16 ± 13.90 vs. 2.76 ± 3.09, p < 0.001). In addition, variables of 1 year
before surgery, such as the mean number of outpatient department visits (37.70 ± 23.34
vs. 32.36 ± 20.13, p < 0.001), emergency department visits (2.55 vs. 0.96, p = 0.0006),
hospitalization visits (1.91 ± 1.34 vs. 1.45 ± 0.82, p < 0.0001), the mean bag of blood
transfusion (13.34 vs. 4.60, p = 0.0006), the length of mechanical ventilation (11.09 vs. 3.85,
p < 0.001), and medical cost (155,186 ± 197,087 vs. 91,439 ± 98,235, p < 0.001), were also
statistically significantly different between the dead and alive groups of older adults who
had undergone first CABG surgery.

3.2. Results of Feature Selection on CABG

To determine which risk factors could predict survival among older CABG patients,
we used different feature-selection methods to determine them. Ranking first was the most
important. A total of 72 variables were included in this study, and each variable had its
ranking in 5 different methods after filtering (Table 2)—the studied characteristics included
surgical, recent 1-year variables, and the patient’s baseline. LGR selected 17 variables. RF
selected a total of 11 variables. CART chose nine variables. XGBoost and MARS both
selected seven variables. Among those methods, LOS, CHA2DS2 score, and CKD were
only selected by CART. CART, XGBoost, and MARS all selected the risk factors of surgical
cost, patient’s age, renal disease, and CCI score as essential variables.

Table 2. Ranking of essential variables of older CABG adults.

Variables LGR
(17 Variables)

RF
(11 Variables)

CART
(9 Variables)

MARS
(7 Variables)

XGBoost
(7 Variables)

Surgical Variables

Blood transfusion, (Bag), mean 1
Length of stay (LOS), mean 4

Surgical cost 3 1 1

One Year Before Surgery

ED visits, mean 4 6
Outpatient visits, mean 15
Hospitalization, mean 3

Mechanical ventilation, (Day), mean 16 7 7
Blood transfusion, (Bag), mean 1

Medical cost 8 6
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Table 2. Cont.

Variables LGR
(17 Variables)

RF
(11 Variables)

CART
(9 Variables)

MARS
(7 Variables)

XGBoost
(7 Variables)

Baseline

Age 11 5 3 2
CHF 7 4 6 5
CKD 7
ACS 12
CAD 2

CCI score 9 2 3
COPD 11
PVD 14

Diabetes mellitus 5 5
Renal disease 1 4 4
Major illness 8

Ischemic stroke 3
CHA2DS2 scores 2

Ulcer disease 17 7
Hypertension 6

Hyperlipidemia 2
AKF 13

Acute pancreatitis 10
Connective tissue disease 9 8

Moderate or severe renal disease 5 9 6
Moderate or severe liver disease 10

Through different variable-selection algorithm methods, we could make predictions
with these variable combinations.

3.3. Performance of Different Prediction Models

Lastly, we used the results of different feature-selection methods and nonfeature
selection to produce five different prediction models: LGR, RF, CART, MARS, and XGBoost.
In order to predict survival, the ability of each model was an independent validation
dataset. The results showed that, without variable selection (72 variables), the predictive
ability of XGBoost was the best (accuracy: 0.7225) among the five models (as shown in
Table 3). LGR, RF, and CART individually used 17,119 variables. XGBoost had the best
predictive ability (accuracy: 0.7131) and only required seven variables. The best forecasting
ability among these five methods was logistic regression (accuracy: 0.7184). We also added
three risk factors to the variable selections of XGBoost and MARS—CHA2DS score, acute
pancreatitis, and AKF—for further predictive analysis. Adding these three variables can
improve the ability of prediction models. Overall, the feature-selection method opted for
XGBoost, with surgical cost, CCI scores, age, renal disease, diabetes, CHF, ulcer disease, and
three risk factors (AKF, acute pancreatitis, and CHA2DS2-VAS score). The average accuracy
for MARS was 0.7225; MARS was ranked as the best and only needed ten variables.

Table 3. Performance evaluation of prediction models on nonselection and after feature selection.

Method Accuracy Kappa Sensitivity Specificity AUC

Overall
(72 variables)

LGR 0.7198 0.4427 0.6711 0.7939 0.7926
RF 0.7077 0.3965 0.7355 0.6655 0.7784

MARS 0.7104 0.4294 0.6444 0.8108 0.7890
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.7225 0.4394 0.7044 0.7500 0.7934
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Table 3. Cont.

Method Accuracy Kappa Sensitivity Specificity AUC

LGR selection
(17 variables)

LGR 0.6179 0.2752 0.4888 0.8141 0.6981
RF 0.6260 0.2829 0.5177 0.7905 0.6912

MARS 0.6219 0.2771 0.5088 0.7939 0.6917
CART 0.5911 0.2292 0.4533 0.8006 0.6576

XGBoost 0.6246 0.2845 0.5044 0.8074 0.6977

RF selection
(11 variables)

LGR 0.6876 0.3960 0.5866 0.8412 0.7784
RF 0.6916 0.3937 0.6244 0.7939 0.7637

MARS 0.6890 0.3817 0.6444 0.7567 0.7675
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.6983 0.4161 0.5977 0.8513 0.7790

CART selection
(9 variables)

LGR 0.7091 0.4009 0.7311 0.6756 0.7624
RF 0.6554 0.3464 0.5200 0.8614 0.7557

MARS 0.7091 0.3954 0.7488 0.6486 0.7653
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.7131 0.4062 0.7444 0.6655 0.7652

MARS selection
(7 variables)

LGR 0.6876 0.3960 0.5866 0.8412 0.7784
RF 0.6916 0.3937 0.6244 0.7939 0.7637

MARS 0.6890 0.3817 0.6444 0.7567 0.7675
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.6983 0.4161 0.5977 0.8513 0.7790

XGBoost
selection

(7 variables)

LGR 0.7184 0.4186 0.7444 0.6790 0.7739
RF 0.6903 0.3800 0.6600 0.7364 0.7453

MARS 0.7131 0.4096 0.7333 0.6824 0.7683
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.7104 0.4212 0.6733 0.7668 0.7763

XGBoost
selection

and 3 risk factors
(10 variables)

LGR 0.6890 0.3937 0.6044 0.8175 0.7807
RF 0.7037 0.4008 0.6911 0.7229 0.7727

MARS 0.7225 0.4233 0.7600 0.6665 0.7831
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.6970 0.4069 0.6200 0.8141 0.7845

MARS selection
and 3 risk factors

(10 variables)

LGR 0.6916 0.3964 0.6155 0.8074 0.7780
RF 0.6836 0.3806 0.6088 0.7972 0.7629

MARS 0.7024 0.3998 0.6844 0.7297 0.7722
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.7077 0.4190 0.6600 0.7804 0.7806
Abbreviations: LGR: logistic regression; RF: random forest; CART: classification and regression tree; MARS:
multivariate adaptive regression splines; AUC: area under the curve; XGBoost: extreme gradient boosting.

4. Discussion

This population-based cohort study was based on NHIRD, which is the largest ob-
servational database from Taiwan. The strengths of using NHIRD are as follows: (1) it
included various individual medical information; (2) each patient could be tracked for a
long-term follow-up; (3) it could show current diagnostic and therapeutic modes in the real
world. The purpose of the research was to find the risk factors that could predict survival
rates with different combinations of feature-selection methods and prediction models. We
evaluated the survival to discharge and risks factors of older adults after the first CABG
from 2008 to 2009 and followed up to 10 years. Our study showed that, without variable
selection, XGBoost had the best predictive ability. By selecting XGBoost and adding the
CHA2DS score, acute pancreatitis, and acute kidney failure for further predictive analysis,
MARS had the best prediction performance and only needed 10 variables.

Previously, most studies focused on chronic or vascular diseases that had been ac-
quired before the CABG surgery [26]. No known study investigated using preoperative and
perioperative variables as predictor factors for long-term survival probability. A previous
history of DM and CKD is a decisive risk factor for cardiovascular diseases, such as CAD



Healthcare 2021, 9, 547 10 of 11

and CHF. In part, most are contributed from aging [5,27,28], MI, AF, chronic renal failure,
abnormal renal function, and renal failure have higher mortality after CABG [6,26,29–31].
Liu et al. found that ≥65 age, the female sex, diabetes, congenital heart disease, hyper-
tension on Levels 2 and 3, and using private insurance contributed to a higher risk of
readmission [1]. The score of CHA2DS2-VASc was employed as a risk-measurement tool;
it was recorded in treatment guidelines for stroke prevention and is a factor for predicting
stroke. Tian et al. suggest that CHA2DS2-VASc score should be on the clinical applica-
tion [10]. This study demonstrated two significant findings: first, preoperative 1-year and
perioperative variables are significant predictors. Second, after applying machine-learning
variable screening and prediction methods, it is clearer to identify which variables could
affect survival. Furthermore, we could also use fewer factors to achieve good predictive
ability. Our study’s limitations are the lack of clinical lab data, such as family history, and
detailed health-check values.

5. Conclusions

On the basis of our research, we developed multiple-stage frameworks to build a
survival model for predicting the mortality of older adults who had undergone their
first CABG. The advantages of this study are that it is innovative and practical in clinical
research. Furthermore, we could achieve better prediction with only 10 variables. This
could help clinicians make decisions more quickly and encourage patients towards earlier
healthcare management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/healthcare9050547/s1, ICD-9-CM and ICD-10-CM codes used for diagnosis in this study.

Author Contributions: Conceptualization, T.-S.L., S.-J.L. and M.C.; data curation, Y.-C.H.; formal
analysis, Y.-C.H.; methodology, Y.-C.H. and M.C.; project administration, T.-S.L., S.-J.L. and M.C.;
software, Y.-C.H.; supervision, T.-S.L.; validation, T.-S.L., S.-J.L. and M.C.; writing—original draft,
Y.-C.H.; writing—review and editing, Y.-C.H., S.-J.L. and Y.-N.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of Fu Jen Catholic
University (protocol code C108121; date of approval, 5 March 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data presented in this study are not available on request from the
corresponding author. Due to the General Data Protection Regulation, the data presented in this
research are not publicly available.

Acknowledgments: The authors would like to thank the editor and the reviewers for their valuable
comments. The authors sincerely appreciate NHIRD, which was provided by the Ministry of Health
and Welfare.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, G.; Zhang, Y.; Zhang, W.; Hu, L.; Lv, T.; Cheng, H.; Hu, Y.; Huang, J. Risk Prediction Model of Readmission after Coronary

Artery Bypass Grafting (CABG) in China. Res. Sq. 2020. [CrossRef]
2. Malmberg, M.; Gunn, J.; Rautava, P.; Sipilä, J.; Kytö, V. Outcome of Acute Myocardial Infarction Versus Stable Coronary Artery

Disease Patients Treated with Coronary Bypass Surgery. Ann. Med. 2021, 53, 70–77. [CrossRef] [PubMed]
3. Chang, Y.-C.; Chiang, J.-H.; Lay, I.-S.; Lee, Y.-C. Increased Risk of Coronary Artery Disease in People with a Previous Diagnosis of

Carpal Tunnel Syndrome: A Nationwide Retrospective Population-Based Case-Control Study. BioMed Res. Int. 2019, 2019, 1–8.
[CrossRef] [PubMed]

4. Lee, T.-S.; Li, S.-J.; Jiang, Y.; Shia, B.-C.; Chen, M. Cost Analysis of Coronary Artery Bypass Grafting Surgery under Single-Payer
Reimbursement in Taiwan. Int. J. Appl. Sci. Eng. 2020, 17, 419–428. [CrossRef]

https://www.mdpi.com/article/10.3390/healthcare9050547/s1
https://www.mdpi.com/article/10.3390/healthcare9050547/s1
http://doi.org/10.21203/rs.3.rs-38789/v1
http://doi.org/10.1080/07853890.2020.1818118
http://www.ncbi.nlm.nih.gov/pubmed/32875916
http://doi.org/10.1155/2019/3171925
http://www.ncbi.nlm.nih.gov/pubmed/30941360
http://doi.org/10.6703/IJASE.202012_17(4).419


Healthcare 2021, 9, 547 11 of 11

5. Chen, S.-W.; Chang, C.-H.; Lin, Y.-S.; Wu, V.C.-C.; Chen, D.-Y.; Tsai, F.-C.; Hung, M.-J.; Chu, P.-H.; Lin, P.-J.; Chen, T.-H. Effect of
Dialysis Dependence and Duration on Post-Coronary Artery Bypass Grafting Outcomes in Patients with Chronic Kidney Disease:
A Nationwide Cohort Study in Asia. Int. J. Cardiol. 2016, 223, 65–71. [CrossRef] [PubMed]

6. Chou, C.-L.; Hsieh, T.-C.; Wang, C.-H.; Hung, T.-H.; Lai, Y.-H.; Chen, Y.-Y.; Lin, Y.-L.; Kuo, C.-H.; Wu, Y.-J.; Fang, T.-C. Long-term
Outcomes of Dialysis Patients After Coronary Revascularization: A Population-based Cohort Study in Taiwan. Arch. Med. Res.
2014, 45, 188–194. [CrossRef]

7. Milojevic, M.; Head, S.J.; Parasca, C.A.; Serruys, P.W.; Mohr, F.W.; Morice, M.-C.; Mack, M.J.; Ståhle, E.; Feldman, T.E.; Dawkins,
K.D.; et al. Causes of Death Following PCI Versus CABG in Complex CAD. J. Am. Coll. Cardiol. 2016, 67, 42–55. [CrossRef]

8. Zhang, Z.; Kolm, P.; Grau-Sepulveda, M.V.; Ponirakis, A.; O’Brien, S.M.; Klein, L.W.; Shaw, R.E.; McKay, C.; Shahian, D.M.;
Grover, F.L.; et al. Cost-Effectiveness of Revascularization Strategies. J. Am. Coll. Cardiol. 2015, 65, 1–11. [CrossRef]

9. Kuo, C.-S.; Lu, C.-W.; Chang, Y.-K.; Yang, K.-C.; Hung, S.-H.; Yang, M.-C.; Chang, H.-H.; Huang, C.-T.; Hsu, C.-C.; Huang, K.-C.
Effectiveness of 23-Valent Pneumococcal Polysaccharide Vaccine on Diabetic Elderly. Medicine 2016, 95, e4064. [CrossRef]

10. Tian, Y.; Yang, C.; Liu, H. CHA2DS2-VASc Score as Predictor of Ischemic Stroke in Patients Undergoing Coronary Artery Bypass
Grafting and Percutaneous Coronary Intervention. Sci. Rep. 2017, 7, 1–7. [CrossRef]

11. Yin, L.; Ling, X.; Zhang, Y.; Shen, H.; Min, J.; Xi, W.; Wang, J.; Wang, Z. CHADS2 and CHA2DS2-VASc Scoring Systems for
Predicting Atrial Fibrillation following Cardiac Valve Surgery. PLoS ONE 2015, 10, e0123858. [CrossRef]
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