
Journal of

Personalized 

Medicine

Article

Personal Network Inference Unveils Heterogeneous Immune
Response Patterns to Viral Infection in Children with
Acute Wheezing

Laura A. Coleman 1,2 , Siew-Kim Khoo 2,3, Kimberley Franks 2,3, Franciska Prastanti 2,3, Peter Le Souëf 1,2,
Yuliya V. Karpievitch 2,3, Ingrid A. Laing 1,2,3,† and Anthony Bosco 2,*,†

����������
�������

Citation: Coleman, L.A.; Khoo, S.-K.;

Franks, K.; Prastanti, F.; Le Souëf, P.;

Karpievitch, Y.V.; Laing, I.A.; Bosco,

A. Personal Network Inference

Unveils Heterogeneous Immune

Response Patterns to Viral Infection

in Children with Acute Wheezing. J.

Pers. Med. 2021, 11, 1293. https://

doi.org/10.3390/jpm11121293

Academic Editor: Reginald

M. Gorczynski

Received: 25 October 2021

Accepted: 1 December 2021

Published: 3 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia;
laura.coleman@uwa.edu.au (L.A.C.); peter.lesouef@uwa.edu.au (P.L.S.);
Ingrid.Laing@telethonkids.org.au (I.A.L.)

2 Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia;
Kim.Khoo@telethonkids.org.au (S.-K.K.); Kimberley.Franks@outlook.com (K.F.);
Franciska.Prastanti@telethonkids.org.au (F.P.); Yuliya.Karpievitch@telethonkids.org.au (Y.V.K.)

3 School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
* Correspondence: Anthony.Bosco@telethonkids.org.au
† Authors contributed equally.

Abstract: Human rhinovirus (RV)-induced exacerbations of asthma and wheeze are a major cause
of emergency room presentations and hospital admissions among children. Previous studies have
shown that immune response patterns during these exacerbations are heterogeneous and are charac-
terized by the presence or absence of robust interferon responses. Molecular phenotypes of asthma
are usually identified by cluster analysis of gene expression levels. This approach however is limited,
since genes do not exist in isolation, but rather work together in networks. Here, we employed
personal network inference to characterize exacerbation response patterns and unveil molecular
phenotypes based on variations in network structure. We found that personal gene network pat-
terns were dominated by two major network structures, consisting of interferon-response versus
FCER1G-associated networks. Cluster analysis of these structures divided children into subgroups,
differing in the prevalence of atopy but not RV species. These network structures were also observed
in an independent cohort of children with virus-induced asthma exacerbations sampled over a time
course, where we showed that the FCER1G-associated networks were mainly observed at late time
points (days four–six) during the acute illness. The ratio of interferon- and FCER1G-associated
gene network responses was able to predict recurrence, with low interferon being associated with
increased risk of readmission. These findings demonstrate the applicability of personal network
inference for biomarker discovery and therapeutic target identification in the context of acute asthma
which focuses on variations in network structure.

Keywords: acute asthma; network inference; transcriptome

1. Introduction

Acute respiratory viral infections are a leading cause of wheezing and asthma exacer-
bations in children, with a virus often identified in more than 80% of cases [1–3]. Rhinovirus
(RV) is the most common infectious agent identified during an acute respiratory illness and
particularly in acute childhood asthma, having been detected in up to 87.5% of cases [1–5].
RV is a single-stranded RNA virus, a member of the Picornaviridae family [6,7]. There
are three species of RV (A, B and C) [8]. RV-C is frequently the most prevalent species in
children presenting to hospital with acute asthma [2,9], especially in preschool children [10],
although RV-A is the most prevalent species in milder viral wheezing in children [11,12].
RV-C has been associated with a higher severity of exacerbations compared to RV-A or
RV-B [2,13]. RV-C enters host cells via the receptor cadherin 3 (CDHR3), unlike RV-A,
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which uses either intercellular adhesion molecule 1 (ICAM-1) or low-density lipoprotein
receptor (LDLR), and RV-B, which uses ICAM-1 [14]. Genetic variants in CDHR3 leading
to an increased cell surface expression have been associated with recurrent severe asthma
exacerbations in children [15,16]. The increased pathogenesis of RV-C is likely due to
multiple factors, including the altered structure of the viral capsid compared to RV-A and
RV-B that appear to make RV-C less detectible by the host immune system and anti-viral
drugs [17–19], and the lesser ability of the host immune system to make antibodies specifi-
cally against RV-C [20,21]. However, the mechanisms by which RV-C triggers increased
exacerbation severity and recurrence remain to be fully elucidated. RV-A can also trigger
wheezing exacerbations, although with a similar or lower prevalence compared to people
with common cold in the community [22–27]. RV-B infections are less frequent and less
pathogenic, due to slower replication and reduced cytokine and chemokine induction [28].

Previous gene expression profiling studies of childhood asthma exacerbations have
focused on identification of differentially expressed genes between samples collected from
children during the acute illness compared with convalescence, or alternatively for more
severe cases compared with less severe cases [29–32]. Moreover, employing cluster analysis
of gene expression profiles we demonstrated that immune response patterns during acute
exacerbations of asthma/wheeze were highly heterogeneous and could be divided into
IRF7-high versus IRF7-low molecular phenotypes [33]. Notably, these previous studies
focused on differential gene expression, and this approach is limited, since genes do
not exist or function in isolation (they work together in networks). Accordingly, there
is a growing understanding in the systems biology literature that the mechanisms that
determine health versus disease are more related to changes in network structure as
opposed to variations in gene expression levels [34].

In transcriptomics studies, network structure is typically measured by calculating
gene co-expression patterns across a large cohort of samples. This approach results in the
identification of an aggregate network that is essentially averaged over a large number of
subjects. A limitation of building aggregate networks is that you cannot capture patterns
in the data that are restricted to a small subgroup of patients or an individual subject. This
limitation is addressed by personal network inference algorithms that can model gene
network patterns at single subject resolution. Personal network inference considers the
group aggregate network as the linear combination of the individual networks of each
group member, and so by taking the difference between the aggregate network and the
aggregate minus one individual, a personal network can be constructed [35]. Here, we
employed personal network inference to unveil heterogeneous molecular phenotypes
underlying RV-C or RV-A induced wheezing in children. Our findings reveal a unique
level of insight about the mechanisms underlying acute asthma that are not detectable
employing conventional differential expression analyses.

2. Materials and Methods

Children aged 0–18 years were recruited into the Mechanisms of Acute Viral Res-
piratory Infection in Children (MAVRIC) cohort upon presentation to the emergency
department of Princess Margaret Hospital (PMH) with an acute lower respiratory tract
illness (ALRI). This study was granted ethics approval from PMH (Ethics #1761EP) and
informed consent was obtained from at least one parent/guardian prior to recruitment.
Controls were recruited from siblings or friends of cases, and from the community. They
were not required to be free of respiratory pathogens or upper respiratory symptoms.

At recruitment, children completed a skin prick test, and blood samples and nasal
swabs were collected. Asthma exacerbation severity score, atopy, and total and specific
IgE were assessed as described previously [33]. The presence of respiratory viruses and
specific pathogenic bacteria were assessed using a tandem multiplex RT-PCR assay [36].
RV species were identified by genotyping a 270-bp variable sequence in the 5′ non-coding
region of the RV genome, and RV species and genotypes were assigned as previously
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described [37]. Clinical characteristics were compared using t tests or two-proportion z
tests as appropriate.

Nasal epithelial samples were collected using flocked swabs (Copan Diagnostics
Inc., Murrieta, CA, USA). Swabs were stored in TRIzol (Invitrogen, Carlsbad, CA, USA)
at −80 ◦C, and total RNA was extracted using RNeasy (Qiagen, Hilden, Germany).
RNA quantity and quality were assessed using a Bioanalyzer RNA 6000 Nano Chip
(Agilent, Santa Clara, CA, USA) and NanoDrop 2000 spectrophotometer (Thermofisher
Scientific, Waltham, MA, USA) [33]. Of the children recruited with nasal samples avail-
able, 120 contained enough RNA of sufficient quality for microarray. The RNA was pro-
cessed and hybridised to genome-wide gene expression micro-arrays (Human Gene ST2.1;
Affymetrix, Santa Clara, CA, USA). The micro-array hybridisation was performed by The
Ramaciotti Centre for Genomics at the University of New South Wales (GSE103166).

Microarray data on nasal samples were analysed in the open-source statistical software
R (www.r-project.org/ accessed on 28 July 2020). The microarray data were pre-processed
employing the RMA algorithm, using custom mapping of microarray probe-sets to the
genome (hugene21sthsentrezgcdf Version 19) [38]. The quality of the microarray data was
assessed using the R package arrayQualityMetrics, and nine low quality samples were
removed from the analysis. Differentially expressed genes were identified employing the
limma (LInear Models for Micro-Array) R package, with false discovery rate (FDR) control
for multiple testing using Benjamini Hochberg correction [39–41]. The linear models were
adjusted for batch effects and other hidden confounders with sva (surrogate variable
analysis) [42]. The sva package estimates variation in expression data caused by biological
and technical factors that may not be measurable, allowing them to be included in the
linear models used by limma [42,43]. The probe-sets were filtered with the pvac package,
which calculates the proportion of variance of a probeset explained by the first principle
component, with a cut-off value of 0.5 [44]. The pvac algorithm assesses the consistency of
expression levels across probes measuring the same gene and then removes genes from
analysis if they are inconsistent. The comparisons made were RV-A-infected, RV-C-infected
and RV-negative cases, restricted to only cases with wheeze as noted by the attending
physician, compared with RV-negative controls and RV-negative convalescence samples.
The significant genes from any of the comparisons were combined to form a panel of 646
exacerbation signature genes.

Personalised networks were constructed for each individual subject by applying
Linear Interpolation to Obtain Network Estimates for Single Samples (LIONESS) using
the lionessR package [45]. Expression data were first corrected for technical variation
using the RUVcorr and RUVnormalize packages, with smoothing set at 0.2, k at 20 and
nu coefficient at 0, and 100 negative control genes selected [46,47]. The genes previously
identified as differentially expressed from the limma analysis were selected for personalised
network analysis. Individual gene co-expression networks were extracted using lionessR.
The top one percent of network edges by edge weight were plotted using the software
Gephi [48]. Genes were grouped into pathways using upstream regulator analysis in
the Ingenuity Pathways Analysis software (Qiagen Digital Insights, Aarhus, Denmark).
IRF-high/low classification was made by examining the proportion of network edges
assigned to interferon signalling pathways. Functional pathways were also examined
using InnateDB pathway over-representation analysis [49].

Differences in proportions of network edges between groups were compared using
non-parametric t tests. The network proportions were also used in a principal components
analysis to cluster the acute cases using FactoMineR [50]. The top 20 most connected
genes (“hubs”) in each network were used to construct word clouds for each cluster.
Clinical characteristics were compared using t tests or two-proportion z tests as appropriate.
Survival analysis of time until next hospitalisation was conducted using the survival [51]
and survminer [52] R packages. Rank plots of eigengenes against network proportions
were used to test for relationships between gene expression and network topology.

www.r-project.org/
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We then went on to investigate the interferon high/low gene signature in a second
cohort (GSE115824). RNA-seq data were processed as per the original paper, using voom
to normalise the RNA-seq count data whilst taking into account and adjusting for the
mean-variance relationship of each gene [53]. Individual networks were constructed and
pathways classified as before using the signature genes present in the data (544 genes
present/646 total).

3. Results

We stratified the population into five groups, comprising RV-C cases, RV-A cases,
RV-negative cases, RV-negative convalescence and RV-negative controls. The clinical
characteristics of the study population are shown in Table 1. As per the inclusion criteria,
controls and subjects sampled during convalescence had not been diagnosed with acute
asthma or wheeze. However, one or more viruses was detected in 38% of the controls and
21% of the convalescence samples.

Table 1. Characteristics of the study population used for microarray analysis of gene expression.

RV-Negative
Controls

RV-Negative
Convalescence

RV-Negative
Cases RV-A Cases RV-C Cases

n 21 14 19 11 26

Age in years, mean (SD) 6.62 (4.50) 4.18 (1.67) 3.47 (3.26) # 6.42 (3.30) * 4.11 (3.09) #

Males, n (%) 8 (38) 7 (50) 10 (53) 6 (55) 14 (54)

Overall atopy, n (%) 10/17 (59) 7/11 (64) 8 (42) 10 (91) ** 16 (62)

Atopy to aeroallergens
only, n (%) 10/17 (59) 7/11 (64) 8 (42) 9 (82) * 14 (54)

Children with virus
detected, n (%) 8 (38) 3 (21) 12 (63) 11 (100) *###††† 26 (100) ***###†††

Time between first
symptoms and hospital

presentation in days,
mean (SD)

NA NA 5.21 (4.22) 5.00 (4.56) 3.62 (2.50)

Children diagnosed with
acute asthma, bronchiolitis

or wheeze, n (%)
NA NA 17 (89) 11 (100) 26 (100)

Exacerbation severity Z
score, mean (SD) NA NA 0.56 (0.79) 0.44 (0.76) 0.43 (0.88)

Acute use of
corticosteroid, n (%) NA NA 11/14 (79) 8/8 (100) 15/17 (88)

* p < 0.05 compared with RV-negative cases; ** p < 0.01 compared with RV-negative cases; *** p < 0.001 compared with RV-negative cases;
# p < 0.05 compared with RV-negative controls; ### p < 0.001 compared with RV-negative controls; ††† p < 0.001 compared with RV-negative
convalescence; NA = not assessed.

Other characteristics were similar except that the RV-C cases subset were younger
compared with the RV-negative controls (RV-C: 4.11 years (SD 3.09), RV-negative controls:
6.62 years (SD 4.50), p < 0.05). The RV-negative cases were also younger than the RV-
negative controls (RVneg: 3.47 years (SD 3.26), p < 0.05), as well as the RV-A-infected cases
(RV-A: 6.42 years (SD 3.30), p < 0.05). The proportion of children with atopy was higher in
the RV-A-infected cases compared with the RV-negative cases (RV-A: 91%, RVneg: 42%,
p < 0.01), as was the proportion of children with atopy to aeroallergens (RV-A: 82%, RVneg:
42%, p < 0.05) (Table 1).

Gene expression profiles from nasal epithelial samples were available from all subjects
presented in Table 1. We initially analyzed the data employing conventional statistical
methods to identify differentially expressed genes between all experimental groups. We
identified a total of 646 differentially expressed genes, which were selected for further
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analysis (Table S1). The signature included genes associated with interferon responses,
innate immunity, and type 2 inflammation (e.g., IRF7, IFIT1-3, IFNG, TLR4, TLR8, and
IL33). A subset of the genes have been validated using qRT-PCR, specifically RSAD2, MX1,
DDX60, IRF7, ISG15, THBS1, CD163, IL18R1. TLR2, FCER1G, ARG1, IL1R2, IL33, and
NCR1 [33]. We performed hierarchical cluster analysis on this signature to examine the
global patterns in the data, and the results revealed a clear separation of cases and controls
as expected (Figure 1).

Figure 1. Gene expression was profiled in nasal swab samples from children with acute asthma/wheeze or controls.
Differentially expressed genes were identified in children with acute wheezing, convalescence or controls, stratified by RV
infection status. The data were transformed to Z-scores, analyzed by hierarchical clustering and visualized as a heatmap.

We then analyzed the gene signature using LIONESS, to extract personal gene network
patterns from the data. We retained the top 1% of network edges for each individual subject
and summarized the proportion of network edges from each personal network at the
signaling pathway level using Upstream Regulator Analysis. Notably, these pathways
represent known signaling cascades that are controlled by defined molecular drivers. The
dominant pathways identified in the gene signature were core interferon, type I interferon
and dexamethasone. Cluster analysis of these data employing FactoMineR revealed that
there were four distinct clusters in the data (Figure 2). We summarized the proportion
of network edges assigned to each pathway as pie charts, and hubs were summarized
across subjects within each cluster as word clouds. The data showed that the personal gene
network pathway signatures and hubs differed between groups. For example, prominent
hubs for cluster A were EPSTI1, IFIH1, EIF2AK2, IFIT3, CMPK2, IFIT2, and DDX58. Cluster
B was enriched with the hubs DDX58, IFIT1, MX1, EIF2AK2, IFIT5, and IFIT3. Cluster C
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was the most distinct group and was marked by the hubs FCER1G, MCEMP1, and DYSF
and greatly reduced representation of interferon-associated genes. The most prominent
hubs for Cluster D were IFI44, IFIT1, IFI44L, EIF2AK2, ISG15, OAS3, and DDX60 (Figure 2).

Figure 2. Cluster analysis of personal gene network patterns unveils molecular subtypes of acute wheezing. FactoMineR
cluster plot, word cloud plots of the top 20 hub genes for each individual case (top) and averaged personal gene network
pathway proportions (bottom) for clusters A, B, C and D. Word color and size indicates frequency.

Cluster A had both the highest proportion of type 1 and 3 interferon-related pathways
and highest combined proportions of all interferon-associated pathways. Cluster B had
lower proportions for interferon pathways than Cluster A, followed by Cluster C and
finally Cluster D that had the lowest proportions (Figure 2). Notably, Cluster C had the
highest proportion of dexamethasone pathway genes, but generally, a decrease in interferon
pathway genes corresponded with an increase in genes for the category “other” which was
not enriched for any known biological pathways. We employed a series of bioinformatics
tools to further probe the biological function of the genes from the “other” pathway category.
This analysis revealed that the “other” pathway category was associated with the synthesis
and metabolism of membrane lipids and arachidonic acid, and phagocytosis.
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We then examined the clinical features of children from the four clusters. The data
showed the clusters differed in the prevalence of atopy, which was lower in Cluster D
compared with Cluster A (36% vs. 74%), as well as aeroallergen sensitization, which was
lower in Cluster D compared with Clusters A and B (27% vs. 68% and 69%) (Table 2). There
was no difference between the groups in relation to the detection of RV-C or RV-A.

Table 2. Clinical characteristics of Clusters A, B, C, and D.

Cluster A Cluster B Cluster C Cluster D

n 19 16 10 11

Age in years, mean (SD) 4.10 (2.67) 4.21 (2.67) 5.42 (5.24) 3.99 (3.24)

Males, n (%) 12 (63) 10 (62) 3 (30) 5 (45)

Overall atopy, n (%) 14 (74) 11 (69) 5 (50) 4 (36) *

Atopy to aeroallergens only, n (%) 13 (68) 11 (69) 4 (40) 3 (27) *†

Children with virus detected, n (%) 18 (95) 12 (75) 8 (80) 11 (100)

RV species, RV-A n (%), RV-C
n (%), RV-negative n (%) 3 (16), 9 (47), 7 (37) 3 (19), 7 (44), 6 (37) 3 (30), 3 (30), 4 (40) 2 (18), 7 (64), 2 (18)

Time between first symptoms and
hospital presentation in days,

mean (SD)
3.63 (3.30) 5.50 (4.05) 5.20 (4.21) 3.55 (2.66)

Children diagnosed with acute
asthma, bronchiolitis or wheeze,

n (%)
18 (95) 16 (100) 9 (90) 11 (100)

Exacerbation severity Z score,
mean (SD) 0.55 (0.81) 0.37 (0.92) 0.57 (0.73) 0.42 (0.84)

Acute use of corticosteroid, n (%) 9/11 (82) 9/9 (100) 8 (80) 8/9 (89)

* p < 0.05 compared with Cluster A; † p < 0.05 compared with Cluster B.

We also examined recurrent illness. Survival analysis of time until next hospitalization
showed that although visually, Cluster C appeared to have the shortest time until a second
wheezing episode, and being approximately twice as likely to experience a second episode
than Clusters A and D, this was not significantly different (p = 0.55); most likely this was
due to the low numbers within each cluster (Figure 3A). The difference in likelihood of and
time to readmission was most pronounced when Cluster A and D combined were compared
with Cluster C (Figure 3B). When the survival curve was split by dividing children into
quartiles based on the ratio of interferon-associated edges to FCER1G-associated edges,
we found that children with the lowest IFN:FCER1G were more likely to have a second
admission and had a shorter time until the next admission (Figure 3C). These differences
in the incidence of and time until readmission were most obvious when the upper three
quartiles were combined: members of the first quartile were twice as likely to experience a
second admission (p = 0.018) (Figure 3D).

We then examined variations in personal network structure within each cluster. For
cluster A, gene network patterns in a subset of the children were completely dominated
by interferon-associated genes (Figure 4A), whereas in other children the patterns con-
sisted primarily of interferon-associated genes alongside a second, less prominent module
featuring FCER1G, DYSF, CST7, and MCEMP1 (Figure 4B).
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Figure 3. Survival curves of time (days) until next hospitalization for (A) Clusters A, B, C and D, (B) Clusters A and D
combined and Cluster C, (C) IFN:FCER1G quartiles 1–4 and (D) IFN:FCER1G quartile 1 and quartiles 2–4 combined.

In Cluster B, children had networks consisting primarily of interferon-associated
genes, but with greater representation of the second FCER1G module seen in Cluster A.
For some children, these gene modules overlapped (Figure 5A), whereas in others they
remained isolated (Figure 5B).

In Cluster C, personal gene networks were dominated by the FCER1G-associated
module, but a module of interferon-related genes was also present. As in Cluster B, these
modules were overlapping in some children (Figure 6A) but isolated in others (Figure 6B).

Finally, in Cluster D, networks were highly heterogeneous, comprising an interferon-
associated gene module, and often a second FCER1G module and a third module, the
composition of which was highly variable (Figure 7A,B).
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Figure 4. Illustrative examples of personal gene network structures generated in Gephi for representative subjects from
Cluster A. Example (A) shows an interferon-dominated network, whereas Example (B) shows a network with two prominent
modules. Red indicates highly connected genes (“hubs”) and black denotes genes with few connections.

Figure 5. Illustrative examples of personal gene network structures generated in Gephi for representative subjects from
Cluster B. Example (A) shows a network with overlapping modules, whereas Example (B) shows a network with two
isolated modules. Red indicates highly connected genes (“hubs”) and black denotes genes with few connections.

It has been demonstrated that changes to network structure can occur in the absence
of differential gene expression [34]. To investigate this issue in the current study, we
superimposed the cluster membership derived from personal gene network patterns over
the heatmap from Figure 1. The data showed that whilst a subset of subjects from Cluster
1 were co-localized in the heatmap, the bulk of the subjects were randomly distributed
throughout the dendrogram (Figure 8). Moreover, we calculated ranks for pathway-level
data based on gene expression (eigengenes) or personal network pathway signatures, and
the data were independent (Figures S1–S9).
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Figure 6. Illustrative examples of personal gene network structures generated in Gephi for representative subjects from
Cluster C. Example (A) shows a network where the modules overlap, whereas in Example (B) the modules are isolated. Red
indicates highly connected genes (“hubs”) and black denotes genes with few connections.

Figure 7. Illustrative examples of personal gene network structures generated in Gephi for representative subjects from
Cluster D. Examples (A,B) show networks with more than two prominent modules. Red indicates highly connected genes
(“hubs”) and black denotes genes with few connections.
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Figure 8. Heatmap of gene signature in case, convalescence and control samples, colored by cluster membership. NA = not
applicable (control or convalescence sample).

We also examined personal gene network patterns underlying acute wheezing and
their dynamic states in a data set from public domain. The data contained nasal transcrip-
tomes from children with acute viral wheeze sampled at enrolment (with no exacerbation),
and on days one to three and four to six during the acute illness. The characteristics of
the study population have been previously described [54]. We applied personal network
inference to interrogate gene network patterns in children experiencing a virus-induced
exacerbation or controls, stratified by time point using our gene signature of 646 genes. At
baseline, two clusters/groups were identified (Figure 9). The hub genes and interferon
pathway proportions varied between the two groups, with Cluster A having PARP14,
IFIH1, DDX58 and IFIT2 as major hubs and a higher proportion of both interferon types 1
and 3 genes and total interferon-related genes compared with Cluster B, which had PERP
as a prominent hub. Of note, the dexamethasone and “other” pathways were increased
in Cluster B, similar to what we observed in the MAVRIC cohort where the proportion of
interferon pathways was decreased.
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Figure 9. Word cloud plots of the top 20 hub genes for each individual at the baseline visit (top) and averaged network
pathway proportions (bottom) for clusters A and B. Word color and size indicates frequency.

During acute illness (day one to three), two clusters were identified (Figure 10). The
hub genes and interferon pathway proportions varied between the two groups, with
Cluster A having STAT2, ZBP1 and DHX58 as major hubs and a higher proportion of both
interferon types 1 and 3 genes and total interferon-related genes compared with Cluster B,
which had TAP1 as a prominent hub. As before, we observed a shift between interferon
pathway genes which were decreased and dexamethasone and “other” pathways which
were increased.
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Figure 10. Word cloud plots of the top 20 hub genes for each individual at the acute (Day 1–3) visit (top) and averaged
network pathway proportions (bottom) for clusters A and B. Word color and size indicates frequency.

For the late visit (Day 4–6), three clusters were identified (Figure 11). The hub genes
and interferon pathway proportions varied between the three groups, with Cluster A hav-
ing STAT2, ZBP1, OASL and PML as major hubs, and a higher proportion of both interferon
types 1 and 3 genes and total interferon-related genes compared with Cluster B, which had
IFIT3, GNS, RALB, FCER1G, and DDX58 as prominent hubs, and Cluster C, which had
SERPINA1, IFIH1, and AQP3 as major hubs. Decreases in the interferon pathways once
again corresponded with increases in the dexamethasone and “other” pathways.
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Figure 11. Word cloud plots of the top 20 hub genes for each individual at the late (Day 4–6) visit (top) and averaged
network pathway proportions (bottom) for clusters A, B, and C. Word color and size indicates frequency.

4. Discussion

Rhinovirus-induced exacerbations of asthma and wheeze are a major cause of emer-
gency room presentations and hospital admissions among children. Previous studies have
demonstrated that immune response patterns during these illnesses are highly heteroge-
neous and are characterised by the presence or absence of robust interferon responses.
Here, for the first time we employed personal network inference to unveil heterogeneous
response patterns on the basis of variations in network structure at single subject resolution.
Our findings demonstrate that personal gene network patterns were dominated by two
major network structures: comprising interferon-response versus FCER1G-associated net-
works. Moreover, cluster analysis of these structures divided the children into subgroups,
which differed on the basis of atopy but not RV species. We also demonstrated that the
network structures could be observed in an independent cohort of children with virus-
induced asthma exacerbations that were sampled over a time course, and we showed that
the FCER1G-associated networks were mainly observed at late time points (days four to
six) during the acute illness. Finally, we showed that the ratio of interferon- and FCER1G-
associated gene network responses was able to predict the likelihood of recurrence, where
children with low interferon were most likely to be readmitted to hospital for wheeze.
In summary, employing personal network inference, we have identified two major gene
network patterns that stratify the population into molecular phenotypes. Our findings sug-
gest that next generation biomarker discovery and drug development programs for acute
asthma/wheeze should focus on variations in network structure rather than differential
gene expression.
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Reconstruction of the network wiring diagrams from the MAVRIC cohort indicated
that the four subgroups were defined based on the balance between the interferon-associated
module and a second module associated with FCER1G, DYSF, MCEMP1, and CST7. The
networks of the first group were dominated almost entirely by interferon-related genes,
those of the second group were weighted towards interferon-associated genes but had
greater representation of the second module, and the third group’ networks were weighted
in favour of non-interferon genes. The group where the host response is skewed away
from interferon-related genes towards other pathways is at increased risk of recurrence,
particularly those with a low ratio of interferon- to FCER1G-associated edges. The fourth
group did not fit this pattern, having low representation of interferon-associated genes, but
not skewing strongly towards the other module. Instead, the networks in this group were
much more heterogeneous and unfocused. This observation highlights a unique character-
istic of LIONESS/personal network inference, which can extract biological insights in the
presence of highly heterogeneous responses.

Our analysis of the data from the external validation cohort published by Altman and
co-workers, showed that subgroups were also defined by the balance between interferon-
associated genes and other modules. At the baseline and acute visits, the subgroups were
interferon-high and -low. In comparison, the late visit had one interferon-high group
and two interferon-low groups that were centred around different hub genes. The first
interferon-low group contained several hub genes also observed in the FCER1G/DYSF gene
module, indicating this group corresponds to cluster C from the previous analysis, whereas
the hub genes of the second interferon-low group were more heterogeneous, as observed for
cluster D from the MAVRIC cohort. The observation that the FCER1G/DYSF module was
prominent at the late visit is consistent with the recruitment of FCER1G-bearing myeloid
cell populations from the circulation [32].

This study expands previous work, where unsupervised cluster analysis was used
to identify subgroups of children with acute wheeze [33]. The key gene module that
divided acute cases into two groups was reconstructed employing prior knowledge and
was centred on IRF7, a key regulator of interferon expression in response to viral infection.
IRF7 was also a major component of the core interferon pathway described in this study,
where network construction was based on a data-driven approach. Whilst these findings
demonstrate that a variety of methods can be employed to identify interferon-high and
–low response phenotypes during exacerbations, the LIONESS approach is the only method
that can extract gene network patterns at single subject resolution.

The second most prominent gene module was enriched with biological functions
associated with the activation of platelets, neutrophils, leukocytes, eosinophils and mast
cells (including FCER1G, MCEMP1, LILRA5, CR1, SELL, FPR2, CD53, CLEC4D, CLEC4E,
ALOX5, IL17RA, and SERPINA1) [55]. Children from MAVRIC cluster D had the lowest
representation of this module and also the lowest prevalence of atopy, suggesting that
this module is associated with allergic inflammation. Similarly, throughout both cohorts
and across multiple time points, there was a persistent trend where decreases in the
proportion of interferon-associated genes within networks corresponded to an increase
in the dexamethasone pathway, featuring genes such as ADAM9, AQP5, CD177, CD48,
CR1, IL33,and NLRC4, and the “other” pathway. This group of “other” pathway genes
was enriched with biological pathways associated with the synthesis and metabolism of
membrane lipids and arachidonic acid, suggesting a role in inflammation through lipid
mediators such as prostaglandins and leukotrienes.

Our findings suggest that when investigating immune responses to respiratory viral
infection and acute wheeze and asthma in children, personalised methods are required
in order to capture both group-wise and individual disease mechanisms. We did not,
however, find any differences between children with specific virus species, such as RV-A
and RV-C. It is not surprising that we could not tease these apart, given that there are
multiple immune response phenotypes producing opposing patterns of gene expression,
resulting in an overall lack of differential expression between virus species groups. Due to



J. Pers. Med. 2021, 11, 1293 16 of 19

the almost equal prevalence of children with interferon-high and -low phenotypes in both
virus groups, sample sizes were too small for meaningful comparison. Follow-up studies
with increased numbers of subjects will be required to determine if there are distinct gene
network patterns associated with RV-C versus RV-A exacerbations.

Personal network inference could potentially be transformative for biomarker discov-
ery and drug development for highly heterogeneous diseases such as asthma. For example,
a previous trial of omalizumab to prevent asthma exacerbations in children found that the
treatment had the greatest benefit in children sensitized to cockroach or house dust mite.
Omalizumab treatment was able to markedly reduce seasonal exacerbations, but not by
preventing viral infections, which were equally prevalent in the treatment and placebo
groups [56]. Personal network inference would enable the identification of network struc-
tures associated with treatment effectiveness (e.g., FCER1G), providing a powerful tool to
stratify patients, monitor response to therapy and conduct mechanism of action studies.

Developments in drug discovery techniques using network pharmacology have led
to the concept of network-based polypharmacy, where multiple nodes are selected from a
network and one or more drugs targeting these nodes are administered, leading to more
widespread perturbation of the system through the disruption of multiple hubs at once [57].
These new techniques are exciting given their potential to be combined with personalised
network analysis, creating a new paradigm of personalised medicine, where therapies can
be generated in response to an individual disease pattern. These new therapies would
be able to target and alter the behaviour of entire networks and functional pathways,
hopefully leading to greater efficacy of treatment.

Our study has several limitations that we acknowledge. The study participants in the
MAVRIC cohort are recruited upon presentation to emergency departments with acute
illness, and therefore it is not possible to control for variations in the timing between
the onset of infection and the expression of severe symptoms. A subset of the controls
was related to the cases, which can potentially lead to biased estimates of variability
and effect sizes in the data. The sample size of the study was limited, which makes
it difficult to identity relationships between clinical traits and molecular phenotypes.
Another limitation was that the gene expression profiling was performed using microarray
technology on a mixed population of cells derived from nasal swab specimens. Future
studies should employ bulk-RNA-Seq and single cell RNA-Seq to improve the sensitivity,
accuracy, and resolution of these analyses. Notwithstanding these limitations, we have
used personalised network inference to identify distinct immune phenotypes in children
with acute wheeze following respiratory viral infection, as well as predictors of recurrence.
Future work will go on to further characterise these immune phenotypes, with the ultimate
goal of developing new tools for the identification of children at increased risk of severe or
persistent respiratory disease and early intervention.
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