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Abstract

Crystallography and NMR system (CNS) is currently a widely used method for fragment-

free ab initio protein folding from inter-residue distance or contact maps. Despite its wide-

spread use in protein structure prediction, CNS is a decade-old macromolecular structure

determination system that was originally developed for solving macromolecular geometry

from experimental restraints as opposed to predictive modeling driven by interaction map

data. As such, the adaptation of the CNS experimental structure determination protocol for

ab initio protein folding is intrinsically anomalous that may undermine the folding accuracy of

computational protein structure prediction. In this paper, we propose a new CNS-free hierar-

chical structure modeling method called DConStruct for folding both soluble and membrane

proteins driven by distance and contact information. Rigorous experimental validation

shows that DConStruct attains much better reconstruction accuracy than CNS when tested

with the same input contact map at varying contact thresholds. The hierarchical modeling

with iterative self-correction employed in DConStruct scales at a much higher degree of fold-

ing accuracy than CNS with the increase in contact thresholds, ultimately approaching near-

optimal reconstruction accuracy at higher-thresholded contact maps. The folding accuracy

of DConStruct can be further improved by exploiting distance-based hybrid interaction maps

at tri-level thresholding, as demonstrated by the better performance of our method in folding

free modeling targets from the 12th and 13th rounds of the Critical Assessment of tech-

niques for protein Structure Prediction (CASP) experiments compared to popular CNS- and

fragment-based approaches and energy-minimization protocols, some of which even using

much finer-grained distance maps than ours. Additional large-scale benchmarking shows

that DConStruct can significantly improve the folding accuracy of membrane proteins com-

pared to a CNS-based approach. These results collectively demonstrate the feasibility of

greatly improving the accuracy of ab initio protein folding by optimally exploiting the informa-

tion encoded in inter-residue interaction maps beyond what is possible by CNS.
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Author summary

Predicting the folded and functional 3-dimensional structure of a protein molecule from

its amino acid sequence is of central importance to structural biology. Recently, promising

advances have been made in ab initio protein folding due to the reasonably accurate esti-

mation of inter-residue interaction maps at increasingly higher resolutions that range

from binary contacts to finer-grained distances. Despite the progress in predicting the

interaction maps, approaches for turning the residue-residue interactions projected in

these maps into their precise spatial positioning heavily rely on a decade-old experimental

structure determination protocol that is not suitable for predictive modeling. This paper

presents a new hierarchical structure modeling method, DConStruct, which can better

exploit the information encoded in the interaction maps at multiple granularities, from

binary contact maps to distance-based hybrid maps at tri-level thresholding, for improved

ab initio folding. Multiple large-scale benchmarking experiments show that our proposed

method can substantially improve the folding accuracy for both soluble and membrane

proteins compared to state-of-the-art approaches. DConStruct is licensed under the GNU

General Public License v3 and freely available at https://github.com/Bhattacharya-Lab/

DConStruct.

This is a PLOS Computational Biology Methods paper.

Introduction

The development of a computational method that can successfully predict the functional

3-dimensional (3D) structure of a protein molecule purely from its amino acid sequence is of

central importance to structural biology [1]. In the recent past, promising progress has been

made in this endeavor mediated by reasonably accurate prediction of inter-residue distance or

contact maps using sequence co-evolution coupled with deep learning [2–7], and performing

data-assisted folding driven by such predicted interaction maps [8–10]. Inter-residue interac-

tion maps contain spatial proximity information that can be translated into geometric con-

straints to directly construct protein 3D models by maximal constraint satisfaction. Therefore,

the prediction of inter-residue distance or contact interaction maps and predicted interaction-

assisted 3D structure modeling has fueled considerable research efforts in the community

[11,12].

Despite the rapid advances in predicting interaction maps by utilizing state-of-the-art deep

learning architectures [4], progress in building 3D models from the predicted maps has been

disproportionately slow. ROSETTA molecular modeling suite [13] offers various functions to

integrate predicted interaction maps into its internal scoring function as additional constraints

for fragment assembly-based ab initio folding [14] that can be coupled with loop perturbation

sampling [15], but fragment-based folding involves extensive conformational sampling requir-

ing a large amount of computing power. Beyond the realm of time-consuming conformational

sampling with fragments, majority of fragment-free distance or contact-based protein folding

methods [16–19] rely on a decade-old experimental protein structure determination software

called Crystallography and NMR system (CNS) [20], which was originally developed for solv-

ing macromolecular geometry from experimental nuclear overhauser enhancement (NOE)

restraints as opposed to predicted data and therefore intrinsically incompatible for data-driven
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predictive modeling. Even the most recent advances in protein structure prediction [8,9] are

primarily due to the progress made in predicting finer-grained interaction maps, but 3D

model building from the predicted fine-grained maps still routinely utilize CNS-based experi-

mental structure determination protocol. Because of the dependency on CNS, folding accuracy

of computational protein structure modeling methods may get compromised, hindering the

realization of their full potential. Thus, there is a critical need to develop a fragment-free fold-

ing protocol specifically suitable for predicted inter-residue interaction map data rather than

relying on the CNS-based structure determination approach.

CNS-based macromolecular structure determination protocol (CNSsolve) follows several

conventions that can be revised for improved folding from predicted inter-residue interaction

maps. First, CNS adopts a molecular topology file (.mtf) format for representing polypeptide

geometry in all-atom representation, while distance or contact maps are usually defined at a

coarse-grained level (e.g., between Cβ–Cβ or Cα–Cα atom pairs). As such, adaptation of a

detailed all-atom representation may not be necessary for distance or contact-assisted folding,

at least during the early stages, to accurately predict the backbone geometry while the side-

chain atoms can be added conditioned on the backbone conformation subsequently. Adopting

a coarse-grained representation reduces the conformational space that may improve folding

accuracy and efficiency. Second, CNS has an in-built biophysical force field with bonded and

non-bonded terms, some of which may be conflicting or mutually contradictory with the pre-

dicted inter-residue interactions, posing difficulties in maximal satisfaction of interaction

restraints. Finally, CNS only accepts restraints in a specific format that cannot be easily cus-

tomized or extended for different applications.

In this article, we present a new inter-residue interaction-assisted hierarchical folding method

based on multistage structure modeling with iterative self-correction. Free from the limitations

of CNS, our folding method employs 3-stage hierarchical predictive modeling with iterative self-

correction driven purely by the geometric restraints induced by inter-residue interactions and

secondary structures. Starting from a residue-residue interaction map and secondary structure,

our method (DConStruct) can hierarchically estimate the correct overall fold of a target protein

in coarse-grained mode to progressively optimize local and non-local interactions while enhanc-

ing the secondary structure topology in a self-correcting manner. DConStruct is versatile in that

it can exploit the information encoded in the interaction maps at multiple granularities ranging

from binary contact maps to distance-based maps at varying thresholds.

We rigorously test DConStruct on several hundred soluble and membrane proteins as well

as public data from the latest rounds of the Critical Assessment of techniques for protein Struc-

ture Prediction (CASP) experiments. Our experimental results show that DConStruct yields

much better folding accuracy than existing CNS-based folding protocols when tested with the

same input. Our method attains better performance in folding difficult CASP free modeling

targets compared to popular CNS- and fragment-based approaches as well as energy-minimi-

zation protocols, some of which even using much finer-grained interaction maps than ours.

The open-source DConStruct software package, licensed under the GNU General Public

License v3, is freely available at https://github.com/Bhattacharya-Lab/DConStruct.

Results

DConStruct: hybridized distance- and contact-based hierarchical structure

modeling

Fig 1 illustrates the DConStruct hierarchical structure modeling protocol. Different from the

CNS-based approaches [8,9,16–19], DConStruct employs multiscale predictive modeling with

iterative self-correction comprising of three modeling stages. The initial modeling stage
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employs coarse-grained modeling considering the protein conformation as a string of beads,

in which each bead corresponds to the Cα atom of an amino acid residue, in order to estimate

the overall fold from a sparse set of interatomic interactions and secondary structure informa-

tion. Given an input interaction map and secondary structure for an amino acid sequence,

approximate spatial positioning between the residues is first estimated using prior knowledge

of a protein’s backbone geometry, derived from the pseudo-covalent bonds formed between

the Cα atoms and secondary structure-specific local preferences of the inter-residue distances

[21], thus generating a sparse proximity map. For sequentially distant residue pairs, graph-the-

oretic formulation is adopted to fill the missing entries in the proximity map, which is further

refined using the idealized geometry of the secondary structure elements (SSEs) to enhance

physical realism. Multidimensional Scaling (MDS) [22–24] is then employed to estimate the

3D coordinates from the proximity map, resulting in a pool of coarse-grained models. The sec-

ond stage of DConStruct employs iterative self-correction of the coarse-grained model pool

using corrective coordinate perturbation heuristics followed by Limited-memory Broyden–

Fletcher–Goldfarb–Shanno (LBFGS) [25] optimization. Next, top models are selected based

Fig 1. The 3-stage hierarchical structure modeling protocol of DConStruct.

https://doi.org/10.1371/journal.pcbi.1008753.g001
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on maximal satisfaction of the geometric restraints induced by the interaction map coupled

with a secondary structure-assisted geometric chirality checking [26]. The final modeling stage

of DConStruct consists of atomic-level iterative self-correction. First, MODELLER [27] is used

to generate all-atom models from the selected top models. Then, unsatisfied high-confidence

interactions, non-interactions, and secondary structure restraints are identified and cumula-

tively applied with iterative self-correction and model combination to generate the final folded

conformation.

Our test data include 150 single domain soluble proteins from the FRAGFOLD dataset

[28], 40 Free Modeling (FM) target domains with publicly available experimental structures

from the 12th and 13th editions of CASP [29,30], 510 membrane proteins [31,32], and 15

targets from the EVfold set [16]. To evaluate the reconstruction of 3D structural models, we

use true residue-residue interaction maps and true secondary structures. To assess ab initio
folding performance, we use DMPfold [8] and trRosetta [33] distance predictors in con-

junction with SPIDER3 [34] secondary structure predictor, all employing cutting-edge deep

learning architectures. We install and run DMPfold locally to predict distance histogram

maps directly from the multiple sequence alignments (MSA) [35] without using iterative

refinement (i.e., rawdistpred.current files) containing 20 distance bins with associated like-

lihoods between interacting residue pairs. We use a local installation of trRosetta for pre-

dicting distance maps from the same multiple sequence alignments (MSA) [35]. We also

predict secondary structures by locally installing and running SPIDER3 with default param-

eter settings. We compare our new method DConStruct against a pure contact-driven

approach FT-COMAR [36], CNS-based contact- and secondary structure-driven CON-

FOLD-like protocols [17,18,31], fragment-based contact- and secondary structure-driven

pipelines employing ROSETTA [14,15], CNS-based distance- and secondary structure-

driven method DMPfold [8], non-Euclidean distance function-based multi-step modeling

approach GDFuzz3D [37], state-of-the-art transform-restrained energy-minimization pro-

tocol trRosetta [33], and several top human and server predictors participating in CASP12

and CASP13. For CNS- and ROSETTA-based contact-assisted ab initio folding methods

[14,18], RaptorX [4] contact maps, obtained by submitting jobs to its web server, are used.

CGLFold results are taken directly from its published paper, whereas GDFuzz3D results are

obtained by submitting jobs to its web server. All other methods are run locally, as detailed

in the Methods section.

Reconstruction of soluble proteins

We evaluate the reconstruction performance of soluble proteins using the true three-state

secondary structures computed from the experimental structures by DSSP [38] and the true

Cα–Cα and Cβ–Cβ contact maps calculated at kÅ threshold (k = 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5,

12). We define a contact when the Euclidian distance between two representative atoms

(Cα–Cα or Cβ–Cβ) for a residue pair is at most kÅ with a minimum sequence separation of 6

residues. We compare our new method DConStruct with the standalone contact-based

method FT-COMAR [36] and the CNS-based CONFOLD protocol [17] on the 150 FRAG-

FOLD soluble protein domains with length ranging from 50 to 266 residues. FT-COMAR is a

pure distance geometry-based structure reconstruction method that can take only Cα–Cα con-

tacts but no secondary structure, whereas CONFOLD is a CNS-based state-of-the-art contact-

assisted method that utilizes contact and secondary structure for structure reconstruction. All

methods are tested with the same input. The reconstruction accuracy is evaluated for the top

predicted models using TM-score [39], a widely used metric for evaluating the quality of 3D

structural models.
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As shown in Tables 1 and 2, DConStruct significantly outperforms the tested methods

FT-COMAR and CONFOLD on the 150 FRAGFOLD soluble protein domains across all

thresholds for both Cα–Cα (Table 1) and Cβ–Cβ (Table 2) contact maps. For the Cα–Cα con-

tact maps at the standard threshold of 8Å, the mean TM-score of the top models generated by

DConStruct is 0.85, which exceeds that of CONFOLD and FT-COMAR by 0.04 and 0.36 TM-

score points, respectively, and statistically significantly better compared to both CONFOLD

(p-value 1.49e-13) and FT-COMAR (p-value 2.3e-46) at 95% confidence level. Moreover,

DConStruct attains a better TM-score than FT-COMAR and CONFOLD for ~99% and ~89%

targets, respectively (S1 Table). It is interesting to note that for the Cα–Cα maps at higher con-

tact thresholds beyond 8Å, in addition to outperforming FT-COMAR by a very large margin,

the reconstruction accuracy of DConStruct becomes progressively better compared to CON-

FOLD as contact threshold increases with DConStruct attaining ~7% (mean TM-scores of

0.90 vs. 0.84), ~9% (mean TM-scores of 0.94 vs. 0.86), and ~9% (mean TM-scores of 0.95 vs.

0.87) better performance compared to CONFOLD at 9, 10, and 11Å contact thresholds,

respectively. Between 11Å and 12Å, performance improvement stays at ~9% level with DCon-

Struct attaining a mean TM-score ~0.95, which is much higher than that of CONFOLD (mean

TM-score� 0.88). Fig 2A shows the TM-score distributions of the reconstructed models at

various contact thresholds. For all thresholds, the DConStruct distributions are skewed toward

higher TM-score regions, indicating better reconstruction performance compared to FT-CO-

MAR and CONFOLD that gets progressively better at higher thresholds. With the increase in

contact thresholds, DConStruct results in much more higher number of near-optimal recon-

struction cases having TM-score! 1.0. For example, at 8 Å threshold, only 3 out of 150 recon-

structed models using DConStruct have TM-score > 0.95, whereas CONFOLD fails to

reconstruct any structure with TM-score > 0.95. At 12Å threshold, 105 out of 150 (70%)

reconstructed models using DConStruct have TM-score> 0.95, whereas CONFOLD attains

TM-score > 0.95 only for 11 out of 150 (~7%) cases. Similar trends are observed for the recon-

struction with Cβ–Cβ contact maps, for which DConStruct continues to significantly outper-

form CONFOLD across all contact thresholds. For the Cβ–Cβ contact maps at 8Å threshold,

DConStruct is statistically significantly better than CONFOLD (p-value 2.07e-06) and attains

better TM-score than CONFOLD for ~73% targets (S2 Table). As shown in Fig 2B, for Cβ–Cβ

Table 1. Reconstruction performance of soluble proteins on 150 FRAGFOLD domains for true Cα-Cα contact maps. The mean TM-score of top predicted models

are reported. Values in bold represent the best performance.

Method 8Å 8.5Å 9Å 9.5Å 10Å 10.5Å 11Å 11.5Å 12Å
DConStruct 0.85 0.87 0.9 0.91 0.94 0.95 0.95 0.95 0.95

CONFOLD 0.81 0.82 0.84 0.85 0.86 0.87 0.87 0.88 0.88a

FT-COMAR 0.49 0.51 0.51 0.57 0.62 0.65 0.62 0.65 0.63

a CONFOLD fails to run for the target 1dixA at 12Å, and the mean TM-score for CONFOLD is measured over the rest 149 targets at 12Å.

https://doi.org/10.1371/journal.pcbi.1008753.t001

Table 2. Reconstruction performance of soluble proteins on 150 FRAGFOLD domains for true Cβ-Cβ contact maps. The mean TM-score of top predicted models are

reported. Values in bold represent the best performance.

Method 8Å 8.5Å 9Å 9.5Å 10Å 10.5Å 11Å 11.5Å 12Å
DConStruct 0.88 0.89 0.90 0.91 0.92 0.93 0.93 0.93 0.93

CONFOLD 0.86 0.87a 0.88 0.89 0.9 0.90b 0.91 0.9 0.9

a, b CONFOLD fails to run for target 1smxA at 8.5Å, and for targets 1fcyA, 1ql0A using 10.5Å, and the mean TM-score for CONFOLD is measured over the rest 149

targets at 8.5Å, and over the rest 148 targets at 10.5Å.

https://doi.org/10.1371/journal.pcbi.1008753.t002
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Fig 2. TM-score distributions of the reconstructed models on 150 FRAGFOLD soluble protein domains using (A)

FT-COMAR, CONFOLD, and DConStruct for true Cα–Cα contact maps; and (B) CONFOLD and DConStruct for true Cβ–

Cβ contact maps.

https://doi.org/10.1371/journal.pcbi.1008753.g002
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contacts at higher-thresholded contact maps beyond 8Å, the reconstruction performance of

DConStruct gets progressively better compared to CONFOLD with the DConStruct distribu-

tions being skewed more and more towards higher TM-score regions. Collectively, the results

demonstrate that DConStruct attains much better reconstruction accuracy compared to the

CNS-based CONFOLD protocol across multiple contact thresholds for both Cα–Cα and Cβ–

Cβ contacts in addition to greatly outperforming the pure distance geometry-based FT-CO-

MAR method. Notably, the reconstruction performance of DConStruct becomes markedly

better than CONFOLD for higher-thresholded contact maps beyond the standard contact

threshold of 8Å currently used by the community. Additional controlled experiments reveal

that the better performance of DConStruct at higher-thresholded contact maps is due to the

cooperativity between various stages of its hierarchical modeling paradigm, as discussed later.

Two representative examples shown in Fig 3 illustrate the advantage of DConStruct over

CNS-based CONFOLD, especially at higher-thresholded contact maps. The first (Fig 3A) is a

c2 domain from novel protein kinase C epsilon from Rat (PDB ID: 1gmi), a mainly β protein

of 135 residues. For this target, the TM-scores of the reconstructed models using DConStruct

Fig 3. Superimpositions between the reconstructed models (rainbow) and the corresponding experimental structures

(gray) for two soluble proteins (A) PDB ID 1gmi and chain A; and (B) PDB ID 1a3a and chain A; using DConStruct

and CONFOLD for true Cα-Cα contact maps at 8, 10, and 12Å thresholds.

https://doi.org/10.1371/journal.pcbi.1008753.g003
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and CONFOLD at 8Å threshold are 0.79 and 0.74, respectively; whereas at 10Å and 12Å
thresholds, DConStruct reconstructs much higher quality models with the TM-scores of 0.9

and 0.96, respectively, which are substantially better than CONFOLD having a TM-score of

0.82 at both 10Å and 12Å thresholds. Of note, DConStruct is able to reach sub-angstrom

reconstruction accuracy at 12Å threshold for this target with a Cα root mean squared deviation

(rmsd) of 0.96Å, outperforming CONFOLD by a large margin. The second (Fig 3B) is a phos-

photransferase IIa-mannitol protein from Escherichia coli (PDB ID: 1a3a). Reconstruction for

this α+β target of 145 residues at 8Å threshold results in a TM-score of 0.93 for DConStruct

and 0.84 for CONFOLD. At 12Å distance threshold, reconstruction with DConStruct results

in a TM-score of 0.97, whereas CONFOLD attains a TM-score of 0.88. Once again, DCon-

Struct reaches sub-angstrom reconstruction accuracy at 12Å threshold with a Cα rmsd of

0.82Å that is substantially better than CONFOLD.

The results not only demonstrate the advantage of DConStruct over CNS-based CON-

FOLD, but open up some important follow-up questions. First, recognizing that DConStruct

scales at a much better degree of reconstruction accuracy than CONFOLD with the increase in

contact thresholds, a natural question to ask is can we improve the performance even further

by combining multiple contact thresholds into some form of hybrid interaction maps? Second,

does the better reconstruction performance of DConStruct translate to better ab initio protein

folding? Finally, can we use DConStruct to improve the folding accuracy of membrane pro-

teins? We systematically examine these questions by performing rigorous experiments.

To examine whether it is possible to further improve the reconstruction performance by

combining multiple contact thresholds, we formulate hybrid interaction maps at tri-level

thresholding. Instead of using a single contact threshold, our hybrid interaction maps use tri-

level thresholding with variable upper bounds of 8, 10, and 12Å derived from the Euclidian

distance between two representative atoms (Cα–Cα or Cβ–Cβ) for a residue pair having a mini-

mum sequence separation of 6 residues. That is, we interpolate the real-valued Euclidian dis-

tance between a residue pair to one of the three upper bounds, thus resulting in tri-level

thresholding. We reconstruct the same set of 150 soluble proteins after feeding the hybrid

interaction maps and three-state secondary structures into DConStruct, and compute the TM-

scores of the reconstructed models.

For the Cα–Cα maps, running DConStruct with the hybrid interaction maps results in

near-optimal reconstruction with a mean TM-score of 0.97, which not only outperforms the

mean TM-score of reconstruction with binary contact maps across all thresholds but also

yields better TM-scores for 149 out of 150 (~99%) cases than 8 and 10Å thresholds and 144

out of 150 (~96%) cases than 12Å threshold (S3 Table). For the Cβ–Cβ maps, reconstruction

with the hybrid interaction maps leads to better TM-scores than reconstruction with binary

contact maps for 145 out of 150 (~97%), 99 out of 150 (~66%), and 87 out of 150 (~58%) cases

for 8, 10, and 12Å thresholds, respectively (S4 Table). That is, DConStruct with hybrid interac-

tion maps at tri-level thresholding yields better reconstruction performance than contact maps

at a fixed threshold. As shown in Fig 4, running DConStruct with hybrid maps further

improves the reconstruction accuracy for the two representative proteins described in Fig 3

with the first protein (PDB ID: 1gmi) attaining a TM-score of 0.97 and the second protein

(PDB ID: 1a3a) achieving a TM-score of 0.98, both reaching improved sub-angstrom Cα

rmsds of 0.78Å and 0.62Å for 1gmi and 1a3a, respectively.

Folding CASP free modeling targets

To investigate whether the improved reconstruction performance of DConStruct translates to

better ab initio folding, we perform predictive modeling for 40 free modeling (FM) targets
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with publicly available experimental structures from the 12th and 13th rounds of the Critical

Assessment of techniques for protein Structure Prediction (CASP) experiments. We compare

the predictive modeling performance of DConStruct with two CNS-based approaches:

DMPfold [8] and CONFOLD2 [18], as well as two fragment-based methods: ROSETTA [13]

as used in the PConsFold protocol [14] and CGLfold [15]. We also compare DConStruct with

GDFuzz3D [37], a multi-step protocol that uses a non-Euclidean distance function. DMPfold

[8] is a cutting-edge ab initio folding method that employs deep learning to predict inter-

atomic distance bounds, torsion angles, and hydrogen bonds and feeds these constraints into

CNS to build models in an iterative fashion. CONFOLD2 [18] employs CNS to integrate pre-

dicted contacts and secondary structure in a two-stage modeling pipeline in which unsatisfied

contacts are filtered out after initial model generation. Popular fragment-based method

ROSETTA [13] adds constraints from predicted contacts into the well-established fragment

assembly engine as implemented in the PconsFold [14] protocol. CGLfold [15] is a recent frag-

ment-based method that combines global exploration and loop perturbation using predicted

contacts. GDFuzz3D [37] employs multi-step modeling that involves a combination of coarse-

grained and all-atom modeling. We run DMPfold with default parameter settings to predict

structural models using its CNS-based iterative modeling. CONFOLD2 only accepts contact

maps at 8Å threshold and PconsFold protocol utilizes ROSETTA’s FADE function for contact

constraints with its parameters set for 8Å contacts. We, therefore, perform ab initio folding

using CONFOLD2 and ROSETTA by feeding 8Å contact maps predicted from the state-of-

the-art RaptorX contact prediction method [4] together with secondary structures predicted

using SPIDER3 [34]. For CGLFold, we collect results for the 29 CASP FM targets from their

published paper [15]. For GDFuzz3D, we submit jobs to its web server, which is limited to pro-

tein size of less than 400 residues. A total of 28 CASP FM domains have length less than 400

residues and we obtain the GDFuzz3D predicted models for these targets by feeding the Rap-

torX predicted contacts to its web server. To perform predictive modeling using DConStruct

driven by hybrid interaction maps at tri-level thresholding, we collect the DMPfold predicted

initial distance histograms (rawdispred.current files) containing 20 distance bins with associ-

ated likelihoods and convert them into hybrid interaction maps with variable upper bounds of

8, 10, and 12Å by summing up the likelihoods for distance bins below the three distance

thresholds of 8, 10, and 12Å and subsequently select the top contacts based on their likeli-

hoods, resulting in predicted hybrid interaction maps at tri-level thresholding. In addition to

predicted hybrid interaction maps, we also feed three-state secondary structures predicted

using SPIDER3 [34] into DConStruct. Unlike DMPfold, we do not use any other predicted

structural features such as torsion angles and hydrogen bonds or perform any CNS-based iter-

ative modeling in DConStruct. To evaluate ab initio folding performance, we compare TM-

Fig 4. Superimpositions between the reconstruction models (rainbow) and its native structure (gray) for two soluble

proteins (A) PDB ID 1gmi and chain A; and (B) PDB ID 1a3a and chain A; generated by DConStruct with hybrid

interaction maps at tri-level thresholding.

https://doi.org/10.1371/journal.pcbi.1008753.g004
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scores of the top predicted models from each of the tested methods. Additionally, we evaluate

the number of models with correct overall folds having TM-score > 0.5 [40].

As reported in Table 3, DConStruct outperforms all other methods by attaining better TM-

scores and correctly folding more FM targets. DConStruct attains the highest mean TM-score

of 0.46, which is statistically significantly better than the second-best performing method

DMPfold (mean TM-score of 0.42) at 95% confidence level (p-value of 0.03329857). The

median TM-score of DConStruct is 0.5, which is also the highest and significantly better than

all competing methods, including the CNS-based protocols DMPfold and CONFOLD2 as well

as the fragment-based approaches ROSETTA and CGLFold (S5 Table). DConStruct correctly

folds 20 out of 40 CASP FM targets, whereas the number of correct folds for DMPfold, CON-

FOLD2, CGLFold, ROSETTA, and GDFuzz3D are only 15, 10, 8, 6, and 9, respectively. Of

note, when compared head-to-head with CGLFold (S6 Table) and GDFuzz3D (S7 Table) on

the common set of targets comprising of 29 and 28 CASP FM targets for CGLFold and

GDFuzz3D, respectively, the performance of DConStruct is even better with a mean TM-score

of 0.49 and a median TM-score > 0.5 in both cases. We also compare DConStruct with a cus-

tomized version of DMPfold by changing its input interface to use the same multiple sequence

alignments [35] as used in DConStruct. While the customized version of DMPfold leads to

better performance over the default DMPfold method by improving the mean and median

TM-scores to 0.44 and 0.43, respectively (S8 Table), DConStruct still outperforms (mean TM-

score of 0.46 and median TM-score of 0.5) the customized version of DMPfold, let alone the

default DMPfold method. The results demonstrate that DConStruct delivers much better ab
initio folding performance compared to the CNS- and fragment-based approaches, including

the state-of-the-art DMPfold protocol employing CNS-based iterative modeling using much

finer-grained distance maps than ours together with additional predicted structural features

such as torsion angles and hydrogen bonds. Of note, the hybrid interaction maps used in

DConStruct are derived from the DMPfold predicted initial distance histograms. That is, even

with lower-resolution interaction maps and much less information, DConStruct leads to better

ab initio folding accuracy than CNS, underscoring its effectiveness in predictive modeling with

inter-residue interaction maps beyond what is possible by CNS.

Fig 5 shows the ab initio models predicted by DMPfold and DConStruct for four represen-

tative CASP FM targets. For the two CASP12 FM targets T0898-D1 and T0870-D1, DMPfold

fails to attain the correct overall fold whereas DConStruct correctly folds both targets attaining

TM-scores of 0.65 and 0.67 for T0898-D1 and T0870-D1, respectively. T0968s2-D1 and

T0957s2-D1 are two CASP13 FM targets, for both of which DConStruct predicts more

Table 3. Folding performance of CASP free modeling protein targets on 40 CASP12 and CASP13 free modeling target domains. Values in bold represent the best

performance.

Method Mean TM-score Median TM-score # TM-scores > 0.5

DConStruct 0.46 0.50 20/40

DMPfold 0.42 0.38 15/40

GDFuzz3Da 0.41 0.39 9/28

CGLFoldb 0.40 0.43 8/29

CONFOLD2 0.38 0.32 10/40

ROSETTA 0.37 0.36 6/40

a GDFuzz3D results are reported for 28 CASP free modeling target domains having length less than 400 residues, obtained by submitting jobs to its web server, which is

limited to protein target residues less than 400 residues.
b CGLFold results are adopted directly from the published results containing 29 CASP free modeling target domains.

https://doi.org/10.1371/journal.pcbi.1008753.t003
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accurate models with TM-score� 0.7, much better than DMPfold. In summary, the advantage

of DConStruct over the state-of-the-art CNS-based ab initio folding method DMPfold is

significant.

A salient feature of DConStruct is its flexibility to use distance maps predicted by any

method, not just DMPfold. To demonstrate such versatility, we integrate DConStruct with

trRosetta [33] to perform ab initio folding for the 40 CASP FM targets. trRosetta is a state-of-

the-art deep learning-based protein structure prediction method that predicts inter-residue

distances and orientation (dihedral and planer angles). The predicted angles and distances are

Fig 5. Ribbon diagrams of 3D models for the four CASP FM targets: T0898-D1, T0870-D1, T0968s2-D1, and

T0957s2-D1; predicted by DMPfold and DConStruct along with the experimental structures. All molecules are

rainbow colored blue to red from the N- to C-termini. Models are optimally superimposed on the experimental

structures, and then separated by translations along the horizontal direction.

https://doi.org/10.1371/journal.pcbi.1008753.g005
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subsequently transformed to ROSETTA restraints to generate 3D structures through

ROSETTA energy-minimization protocol [13]. We collect the trRosetta-predicted distance

maps for the 40 CASP FM targets using the same multiple sequence alignments [35] previously

indicated and convert them into hybrid interaction maps at tri-level thresholding to feed them

into DConStruct along with SPIDER3-predicted secondary structures. Since trRosetta-based

modeling uses both distance and orientation information whereas DConStruct is a hybridized

distance- and contact-based method, we employ trRosetta-based modeling using only distance

information for a fair performance comparison with DConStruct-based modeling that uses

the same trRosetta distance maps, albeit at tri-level thresholding. We run trRosetta-based

modeling locally with the parameter setting (‘--no-orient’) that uses the fine-grained distance

information predicted from trRosetta but no orientation information. Additionally, we com-

pare the performance of DConStruct-based modeling with trRosetta distance maps with the

top performing predictors (server and human groups) participating in both CASP12 and

CASP13 experiments including A7D, RaptorX-Contact, BAKER-ROSETTASERVER,

BAKER, Zhang-Server, Zhang, Jones-UCL, and MULTICOM [29,30] by collecting the TM-

scores of the top CASP predictors directly from the CASP website (S8 Table). As shown in

Table 4, the integration of with DConStruct with trRosetta improves the performance even

further, attaining a mean TM-score of 0.49 and a median TM-score of 0.51 with 21 correct

folds, significantly better than the distance-only trRosetta-based modeling having a mean TM-

score of 0.42 and a median TM-score of 0.34 with only 12 correct folds. When compared to

the top CASP predictors, DConStruct with trRosetta outperforms all other methods except

A7D, the CASP13-winning AlphaFold [41] method, even though A7D results are based only

on a small subset of 17 CASP13 FM targets as A7D (or AlphaFold) did not participate in

CASP12. Compared to the top CASP predictors participating in both CASP12 and CASP13,

many of which exploit template and/or fragment information along with additional manual

interventions possibly for some of the human groups, DConStruct with trRosetta attains much

better performance. Fig 6 shows the models predicted by RaptorX-Contact, BAKER, Zhang,

A7D, trRosetta distance-only modeling, and DConStruct using trRosetta-predicted distance

maps for three large CASP FM targets (length > 245). The top CASP predictors fail to attain

the correct overall fold for the CASP12 FM targets T0864-D1 and T0904-D1, whereas DCon-

Struct correctly folds both targets attaining TM-scores of 0.73, and 0.77 respectively. While

Table 4. Folding performance of DConStruct using trRosetta-predicted distance maps compared to top CASP predictors and trRosetta distance-only modeling on

40 CASP12 and CASP13 free modeling target domains.

Method Mean TM-score Median TM-score # TM-scores > 0.5

A7Da 0.60 0.61 12/17

DConStruct (with trRosetta distance maps) 0.49 0.51 21/40

Zhangb 0.44 0.44 12/39

BAKERb 0.43 0.41 13/39

trRosetta (distance-only) 0.42 0.34 12/40

MULTICOMb 0.42 0.4 10/39

Zhang-Server 0.41 0.42 12/40

Jones-UCLb, c 0.39 0.37 10/38

RaptorX-Contact 0.38 0.35 9/40

BAKER-ROSSETASERVER 0.35 0.34 4/40

a A7D results contain only 17 CASP13 free modeling target domains.
b CASP human groups’ results do not include the server-only target T0950-D1.
c Jones-UCL results additionally do not include the target T0869-D1 due to missed submission.

https://doi.org/10.1371/journal.pcbi.1008753.t004
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trRosetta distance-only modeling attains correct fold for T0904-D1 (TM-score 0.59), one of

the two CASP12 FM targets, the folding performance is much lower than DConStruct. For the

CASP13 large FM target T0969-D1, DConStruct predicts accurate 3D model (TM-score of

0.79), which is better than the top CASP predictors including the AlphaFold method employed

in A7D (TM-score of 0.73) as well as trRosetta distance-only modeling (TM-score of 0.67).

The results indicate that DConStruct is versatile in that it can be seamlessly integrated with

trRosetta to perform hybridized distance- and contact-based modeling, while attaining state-

of-the-art performance.

One may argue that DConStruct achieves better folding performance than several other

approaches simply because the hybrid interaction maps fed into DConStruct are of higher

quality containing more fine-grained information. This is not true when we look at the perfor-

mance comparison of DConStruct to the customized version of DMPfold employing CNS-

based modeling and distance-only trRosetta-based energy-minimization. On 40 CASP12 and

CASP13 free modeling target domains, DConStruct attains better folding performance with a

mean TM-score of 0.46 and a median TM-score of 0.5 compared to the customized version of

DMPfold having a mean TM-score of 0.44 and a median TM-score of 0.43 (S8 Table). While

both DConStruct and the customized version of DMPfold pipeline perform 3D folding based

on the same original distance maps predicted by DMPfold from the same multiple sequence

alignments [35], the CNS-based iterative modeling used in the customized version of DMPfold

pipeline uses much finer-grained distance maps than ours together with additional predicted

structural features such as torsion angles and hydrogen bonds. That is, the 3D folding protocol

employed by DConStruct is the primary driver of its improved performance, even when using

Fig 6. Ribbon diagrams of 3D models for the three CASP FM large targets: T0864-D1, T0904-D1, and T0969-D1; predicted by the top CASP human and server

predictors, trRosetta distance-only modeling, and DConStruct using trRosetta-predicted distance maps along with the experimental structures. A7D prediction

is relevant only for CASP13 target T0969-D1. All molecules are rainbow colored blue to red from the N- to C-termini. Models are optimally superimposed on the

experimental structures, and then separated by translations along the horizontal direction.

https://doi.org/10.1371/journal.pcbi.1008753.g006
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much less information. Similarly, DConStruct achieves much better performance with a mean

TM-score of 0.49 and a median TM-score of 0.51 compared to trRosetta-based energy-mini-

mization having a mean TM-score of 0.42 and a median TM-score of 0.34 (Table 4). Once

again, both DConStruct and energy-minimization-based folding protocols use the original dis-

tance maps predicted by trRosetta from the same multiple sequence alignments, but trRosetta-

based energy-minimization protocol utilizes the full-fledged distance histograms containing

much finer-grained information whereas DConStruct uses hybrid interaction maps at tri-level

thresholding derived from the original distance histograms. In summary, DConStruct-based

folding leads to better 3D models than CNS- and energy-minimization-based methods.

Folding membrane proteins

Membrane proteins (MPs) have significant therapeutic values because of their importance in

drug design [42]. However, only a small fraction of MPs are amenable to homology modeling,

partially due to the lack of sufficient MPs with experimentally solved structures. Recently, the

Xu group has developed a deep transfer learning (DTL) method for predicting the interaction

maps from the sequences of the MPs that can be fed into CNS-based ab initio folding to predict

the 3D structure of the MPs. The method (hereafter called Xu’s DTL with CNS) has demon-

strated state-of-the-art performance on a dataset of 510 non-redundant MPs [31]. Noticing the

ability of DConStruct to achieve improved ab initio folding accuracy for CASP FM targets, we

examine whether DConStruct can improve ab initio folding accuracy of the MPs by exploiting

distance-based hybrid interaction maps. For the 510 MPs, we follow the same protocol

adopted for ab initio folding of CASP FM targets by obtaining the hybrid interaction maps

from DMPfold- and trRosetta-predicted distance maps and feeding them independently to

DConStruct along with SPIDER3 predicted secondary structures for predicting the 3D struc-

tures of the MPs. We collect the top predicted 3D models using Xu’s DTL with CNS from the

Mendeley Data provided in the published paper [31] to directly compare with DConStruct. As

shown in Table 5, using DMPfold-predicted distance maps, DConStruct attains an improved

mean TM-score of 0.55, which is higher than Xu’s DTL with CNS (mean TM-score of 0.52).

The performance of DConStruct is even better (mean TM-score of 0.59) when trRosetta-pre-

dicted distance maps are used. For DConStruct using DMPfold- and trRosetta-predicted dis-

tance maps, the TM-scores have a median of 0.54 and 0.61, respectively, better than that of

Xu’s DTL with CNS having a median TM-score of 0.5. The performance of DConStruct is sta-

tistically significantly better at 95% confidence level (p-value = 6.54e-06 for DConStruct with

DMPfold-predicted distance maps, p-value = 5.11e-27 for DConStruct with trRosetta-pre-

dicted distance maps). Furthermore, DConStruct using DMPfold-predicted distance maps

correctly folds 294 MP targets with a success rate of ~58%, which is ~8% higher than the suc-

cess rate of Xu’s DTL with CNS (50%) that can fold only 255 MP targets correctly (S9 Table).

When trRosetta-predicted distance maps are used by DConStruct, the success rate reaches to

~67% (correctly folds 342 MP targets), which is 17% higher than Xu’s DTL with CNS (S9

Table). The results confirm that DConStruct leads to improved ab initio folding accuracy even

Table 5. Folding performance of 510 MPs using Xu’s deep transfer learning (DTL) with CNS and DConStruct.

Values in bold represent the best performance.

Method Mean TM-scores Median TM-score # TM-score > 0.5

DConStruct (with trRosetta distance maps) 0.59 0.61 342/510

DConStruct (with DMPfold distance maps) 0.55 0.54 294/510

Xu’s DTL with CNS 0.52 0.50 255/510

https://doi.org/10.1371/journal.pcbi.1008753.t005
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for MPs while underscoring the versatility of DConStruct to utilize distance information pre-

dicted by different methods.

Fig 7 shows the 3D models predicted by Xu’s DTL with CNS and DConStruct (using

DMPfold- and trRosetta-predicted distance maps) for five MPs with lengths varying from 210

to 534 residues. For all five targets, DConStruct predicts correct overall fold attaining a TM-

score of at least 0.7 and reaching as high as 0.84 TM-score for the target 4g1uA, whereas the

Xu’s DTL with CNS fails to correctly fold any of the targets having a maximum TM-score of

only 0.47.

The three stages of DConStruct and their implications in hierarchical

protein folding

To evaluate the relative contributions of the three stages adopted in DConStruct hierarchical

structure modeling, we perform stage-by-stage 3D reconstruction of 15 protein targets tested

in EVfold [16] and study their folding accuracy and correctness of secondary structure topol-

ogy. For each protein, we use the true three-state secondary structure computed from the

experimental structures using DSSP [38] and the true Cβ–Cβ contact maps calculated at 8Å
threshold having a minimum sequence separation of 6 residues. The rationale for using true

input information is to prevent any bias caused by possible prediction noise in stage-wise hier-

archical folding. In addition to measuring the stagewise folding accuracy using TM-score, we

compute the percentage of correctly recovered secondary structure topology for the helix (QH)

and beta strand (QE) residues.

As reported in Table 6, the mean TM-score after employing only stage 1 is 0.54 and 6 out

of 15 targets fail to attain correct overall fold with poor secondary structure topology having a

mean QH of ~13% and a mean QE of only ~1%. By introducing stage 2, the mean TM-score

significantly improves to 0.76 with all proteins attaining correct overall folds. There is also a

marked improvement in the helix topology having a mean QH of ~59%, although beta strand

topology still remains suboptimal at a mean QE of ~13%. Stage 3 further improves the folding

accuracy, attaining a mean TM-score of 0.83 but it is not as pronounced as the difference

between stage 2 and stage 1. Much better mean QH of ~94% is achieved with the introduction

of stage 3, indicating near-optimal helix topology along with substantial improvement in beta

strand topology having a mean QE of ~62%. The results offer some interesting insights. First,

as shown in Fig 8, the folding accuracy gain is substantial with the introduction of stage 2 with

the TM-score distributions getting shifted to higher accuracy regions (0.22 mean TM-score

gain from stage 1) compared to stage 3 (only 0.08 mean TM-score gain from stage 2), indicat-

ing that iterative self-correction with local structural perturbation is very effective in improv-

ing the overall fold-level accuracy. Second, stage 2 not only greatly improves the overall fold

but also facilitates the formation of short-range hydrogen bonds, as demonstrated by signifi-

cantly higher mean QH compared to stage 1. Third, while stage 3 has only minor contribution

in boosting the overall fold-level accuracy, it optimizes the secondary structure topology

through iterative self-correction by facilitating long-range hydrogen bonds formation for sta-

bilizing the beta sheet geometry as revealed by much higher mean QE in addition to attaining

near-optimal short-range hydrogen bonds by reaching close-to-optimal mean QH. We note

that the final mean QE is still far from optimal, indicating that there is room for improvement

in accurately modeling the beta strands. In summary, the three stages of the hierarchical struc-

ture modeling adopted in DConStruct have complementary roles. Stage 2 is primarily respon-

sible for improving the global folding accuracy beyond what can be achieved by the coarse-

grained modeling in stage 1, whereas stage 3 is responsible for the refinement of global fold
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Fig 7. Ribbon diagrams of 3D models of MPs predicted using Xu’s DTL with CNS and DConStruct (using

DMPfold- and trRosetta-predicted distance maps) along with the experimental structures for five protein targets:

PDB ID 4xu4 and chain A, PDB ID 5doq and chain B, PDB ID 4g1u and chain A, PDB ID 4m64 and chain A, and

PDB ID 1o5w and chain A. All molecules are rainbow-colored blue to red from the N- to C-termini. Models are

optimally superimposed on the experimental structures and then separated by translations along the horizontal

direction.

https://doi.org/10.1371/journal.pcbi.1008753.g007
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while stabilizing the local secondary structure topology. All three stages, working cooperatively

in a hierarchical manner, contribute to enhancing 3D folding at both global and local levels.

A representative example from the EVfold dataset shown in Fig 9 may help further eluci-

date the relative contributions of the three stages used in DConStruct. This is an α/β protein of

165 residues (PDB ID: 5p21 chain A). While stage 1 is able to attain the correct overall fold

Table 6. Stage-by-stage 3D reconstruction results for 15 protein targets in EVfold dataset using true Cβ-Cβ contact maps at 8Å threshold and true secondary

structuresa.

Target Stage 1 Stage 1 + Stage 2 Stage 1 + Stage 2 + Stage 3

TM-score QH QE TM-score QH QE TM-score QH QE

1bkrA 0.75 37.14 - 0.87 74.29 - 0.90 98.57 -

1e6kA 0.61 37.25 0.00 0.79 70.59 20.00 0.87 92.16 85.00

1f21A 0.65 29.31 4.17 0.82 63.79 27.08 0.88 98.28 60.42

1g2eA 0.43 14.29 0.00 0.67 80.95 0.00 0.77 100.00 36.00

1hzxA 0.75 1.1 0.00 0.87 60.22 0.00 0.91 86.19 25.00

1oddA 0.60 9.38 0.00 0.67 59.38 0.00 0.77 100.00 42.86

1r9hA 0.44 0.00 0.00 0.74 42.86 0.00 0.82 100.00 77.78

1rqmA 0.59 10.26 0.00 0.80 51.28 24.00 0.84 89.74 68.00

1wvnA 0.45 19.36 0.00 0.71 74.19 17.65 0.78 100.00 70.59

2hdaA 0.24 - 5.26 0.53 - 0.00 0.61 - 47.37

2it6A 0.52 11.11 0.00 0.79 66.67 8.82 0.86 100.00 58.82

2o72A 0.38 - 2.13 0.71 - 27.66 0.81 - 87.23

3tgiE 0.64 0.00 2.63 0.88 0.00 13.16 0.94 57.14 71.05

5p21A 0.61 0.00 0.00 0.88 75.81 5.13 0.93 98.39 74.36

5ptiA 0.44 0.00 0.00 0.64 50.00 40.00 0.79 100.00 60.00

Mean 0.54 13.02 1.01 0.76 59.23 13.11 0.83 93.88 61.75

a For target 1bkrA, QE scores are ignored since there is no beta strand residue in the experimental structure; and for targets 2hdaA and 2o72A, QH scores are ignored

since there are no helix residues in their experimental structures.

https://doi.org/10.1371/journal.pcbi.1008753.t006

Fig 8. Stagewise TM-score distributions of the reconstructed models on 15 proteins from the EVfold set. Stage-by-stage (A) density plots and (B) violin

plots are shown with the means indicated using the unfilled circles, the medians indicated using the horizontal yellow lines, and the interquartile ranges

indicated using the vertical black strips.

https://doi.org/10.1371/journal.pcbi.1008753.g008

PLOS COMPUTATIONAL BIOLOGY Hybridized distance- and contact-based hierarchical protein folding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008753 February 23, 2021 18 / 31

https://doi.org/10.1371/journal.pcbi.1008753.t006
https://doi.org/10.1371/journal.pcbi.1008753.g008
https://doi.org/10.1371/journal.pcbi.1008753


with a TM-score of 0.61, the resulting model lacks any secondary structure with 0% QH and

QE. The addition of Stage 2 significantly improves the folding accuracy, attaining a TM-score

of 0.88 (TM-score gain of 0.27 from stage 1), as well as the helix topology, pushing the QH

to> 75%, but not so much in beta strand topology having a QE of only ~5%. The introduction

of stage 3 further boosts the TM-score to 0.93 (TM-score gain of 0.05 from stage 2) and

achieves a near-optimal helix topology with a QH of> 98% along with significant enhance-

ment in beta strand topology with a QE close to 75%. The pronounced improvement in the

global fold-level accuracy caused by stage 2, and its further refinement together with the stabi-

lization of local secondary structure topology caused by stage 3 is visually noticeable in Fig 9.

In addition to global fold-level accuracy and local secondary structural topology, the pseudo-

covalent geometry also gets progressively improved during three stages used in DConStruct.

Fig 10 shows the distribution of the pseudo-covalent bond lengths between the consecutive Cα

atoms for the three stages. While the pseudo-covalent bond lengths of the coarse-grained

structure generated in stage 1 deviates significantly from the ideal value of 3.8Å [43], stage 2

improves the geometry by enforcing the constraints on consecutive Cα atoms with a noticeable

peak around the ideal value of 3.8Å (Fig 10 inset). The geometry gets further improved by the

introduction of stage 3, resulting in a near-ideal distribution of the pseudo-covalent bond

lengths between the consecutive Cα atoms. Fig 11 shows the distributions of the virtual bond

and dihedral angles formed by consecutive Cα triplets and quadruplets, respectively, for the

three stages. Interestingly, the improvement of the angular density distributions induced by

the introduction of various stages exhibit contrasting behavior based on the secondary struc-

ture types. For residues in alpha helices (Fig 11A and 11B), the distributions of the virtual

bond and dihedral angles get noticeably improved in stage 2 leading to a peak around their

ideal values [43], with stage 3 further narrowing the spread of the distributions, thereby reduc-

ing the outlines. By contrast, for residues in beta stands (Fig 11C and 11D), stage 3 is the main

driver of the improvement, bringing the distributions closer to their ideal values [43] from the

multimodal distributions of stage 1 and stage 2. Overall, the stagewise optimizations employed

Fig 9. Visualization of effect of the three stages adopted in DConStruct for a representative protein target from EVfold dataset (PDB ID 5p21 and chain A).

https://doi.org/10.1371/journal.pcbi.1008753.g009
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in DConStruct cooperatively improve the global fold-level accuracy and local secondary struc-

tural topology, while progressively reducing the inconsistencies in pseudo-covalent geometry,

thus gradually making the structure consistent with a physically realistic protein

conformation.

Why does DConStruct attain better accuracy at higher-thresholded contact

maps?

An interesting finding is that DConStruct attains better folding performance for the interac-

tion maps at higher contact thresholds such as 10 and 12Å. To unravel the underlying cause of

such trend, we perform stage-by-stage 3D reconstruction on the same EVfold dataset compris-

ing of 15 proteins by varying contact thresholds from 8 to 12Å in a step size of 2Å with true

secondary structures, and study the gain in folding performance caused by the introduction of

stage 2 (Δ2) and stage 3 (Δ3).

As reported in Table 7 by using true Cβ-Cβ contacts, the mean Δ2 (gain by stage 2) signifi-

cantly increases with the increase in contact threshold in that Δ2 gets more than doubled from

0.22 at 8Å threshold to 0.46 at 12Å threshold. The mean Δ3 (gain by stage 3), on the other

hand, remains relatively constant at around 0.07. This implies that stage 2 is the main driver of

the improved folding accuracy for higher-thresholded contact maps (S10 Table). The results

remain very similar when we repeat the experiment with the true Cα-Cα contacts (S11 Table).

To further understand whether an increase in distance threshold has any effect on the second-

ary structure topology, we study stage-wise QH and QE at varying contact thresholds from 8 to

12Å using both Cβ-Cβ (S12 Table) and Cα-Cα contacts (S13 Table). This time, stage 3 shows

noticeable gain in beta strand topology with ~10–15% increase in QE as contact threshold

increases from 8 to 12Å, while the gain in QH achieved by stage 2 remains almost constant at

higher-thresholded contact maps. In summary, these results further emphasize the cooperative

aspect of the hierarchical modeling approach used in DConStruct, and indicate that the

Fig 10. Stagewise distributions of the pseudo-covalent bond lengths for the protein target (PDB ID 5p21 and

chain A). The inset magnifies the stage 1 and stage 2 distributions around the ideal value of 3.8Å.

https://doi.org/10.1371/journal.pcbi.1008753.g010
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improved folding accuracy at higher-thresholded contact maps is the result of the combined

improvement in the fold-level accuracy by stage 2 and enhancement in long-range hydrogen

bonds formation for stabilizing the beta sheet geometry by stage 3.

Fig 11. Stagewise distributions of the virtual bond and dihedral angles for residues in (A-B) alpha helices and

(C-D) beta strands for the protein target (PDB ID 5p21 and chain A).

https://doi.org/10.1371/journal.pcbi.1008753.g011

Table 7. TM-score gain Δ2 (TM-score of stage 2 –TM-score of stage 1) and Δ3 (TM-score of stage 3 –TM-score of

stage 2) after performing stage-by-stage 3D reconstruction for 15 protein targets in EVfold dataset using true Cβ-

Cβ contact maps at 8, 10, and 12Å thresholds and true secondary structures.

Target 8Å 10Å 12Å
Δ2 Δ3 Δ2 Δ3 Δ2 Δ3

1bkrA 0.12 0.04 0.27 0.06 0.46 0.06

1e6kA 0.19 0.08 0.33 0.07 0.46 0.05

1f21A 0.17 0.06 0.33 0.06 0.46 0.03

1g2eA 0.24 0.10 0.37 0.07 0.48 0.09

1hzxA 0.12 0.04 0.31 0.04 0.51 0.02

1oddA 0.08 0.10 0.32 0.12 0.39 0.14

1r9hA 0.30 0.08 0.38 0.06 0.52 0.05

1rqmA 0.21 0.04 0.35 0.02 0.48 0.03

1wvnA 0.26 0.07 0.35 0.05 0.42 0.05

2hdaA 0.28 0.08 0.39 0.12 0.38 0.13

2it6A 0.27 0.08 0.39 0.09 0.51 0.05

2o72A 0.33 0.10 0.42 0.09 0.50 0.10

3tgiE 0.24 0.06 0.37 0.04 0.48 0.03

5p21A 0.27 0.05 0.34 0.04 0.48 0.05

5ptiA 0.20 0.15 0.33 0.12 0.38 0.12

Mean 0.22 0.08 0.35 0.07 0.46 0.07

https://doi.org/10.1371/journal.pcbi.1008753.t007
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Discussion

This article has presented a new hybridized distance- and contact-based hierarchical structure

modeling method DConStruct that can greatly improve ab initio protein folding. In contrast

to the existing folding approaches, our method neither depends on the CNS experimental

structure determination protocol nor performs time-consuming fragment-based conforma-

tional sampling, but rather employs 3-stage hierarchical structure modeling driven purely by

the geometric restraints induced by inter-residue interaction maps and secondary structures.

Our new predictive modeling method DConStruct is unique in that it can hierarchically esti-

mate the correct overall fold of a target protein in coarse-grained mode to progressively opti-

mize the local and non-local interactions while enhancing secondary structure topology in a

self-correcting manner. Rigorous experimental validation reveals that DConStruct not only

attains much better contact-driven reconstruction performance than currently popular CNS-

based approaches, but also scales at a much higher degree of folding accuracy than CNS with

the increase in contact thresholds. DConStruct is also versatile in that it can exploit the infor-

mation encoded in the interaction maps at multiple granularities ranging from binary contact

maps to distance-based hybrid maps at tri-level thresholding, which results in better ab initio
folding performance for CASP12 and CASP13 FM targets compared to several popular CNS-

and fragment-based approaches as well as energy-minimization protocols. Even without using

fine-grained distance maps or fragment assembly, ab initio folding using DConStruct can

yield the correct fold for more CASP FM targets than state-of-the-art approaches. Further, our

experimental results show that DConStruct leads to better folding accuracy for membrane pro-

teins compared to a CNS-based approach. We expect that our new structure modeling method

can enhance the accuracy of distance- or contact-driven folding of many more non-homolo-

gous proteins that lack experimental structures, thereby facilitating structure-based studies for

additional protein families, leading to new biological insights.

Our method outperforms CNS due to a couple of reasons. First, CNS combines the

restraints derived from the interaction maps with an in-built biophysical force field having

parameters fine-tuned for experimental data, while our method is free from the influence of

such force fields. Second, CNS adopts an all-atom representation throughout the folding simu-

lation, while our new method DConStruct follows a hierarchic approach by first estimating the

correct overall fold in coarse-grained mode and then progressively optimizing the local and

non-local interactions in atomistic detail. As such, the adaptation of coarse-grained represen-

tation in DConStruct during the early stages of folding significantly reduces the conforma-

tional space, accelerating the estimation of the overall fold driven purely by the inter-residue

interactions defined between the Cα–Cα or Cβ–Cβ atom pairs. Finally, the introduction of

additional folding stages in DConStruct cooperatively improves the overall fold and facilitates

hydrogen bonds formation for stabilizing the secondary structure topologies, ultimately result-

ing in improved folding performance compared to CNS.

The hierarchical structure modeling paradigm employed in DConStruct attains better fold-

ing accuracy than CNS-based CONFOLD protocol for higher-thresholded contact maps at 10

and 12Å, beyond the standard contact threshold of 8Å currently used by the community.

Experimental results show that this behavior is attributed to the cooperative nature of the

3-stage hierarchical modeling approach adopted in DConStruct, with stage 2 further improv-

ing the fold-level accuracy with the increase in contact threshold than the initial fold estimated

by the coarse-grained modeling from stage 1, and stage 3 better enhancing long-range hydro-

gen bonds formation for stabilizing the beta sheet geometry at higher-thresholded contact

maps. Moreover, feeding hybrid interaction maps at tri-level thresholding that combines con-

tact maps at 8, 10, and 12Å thresholds further improves the performance of DConStruct,

PLOS COMPUTATIONAL BIOLOGY Hybridized distance- and contact-based hierarchical protein folding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008753 February 23, 2021 22 / 31

https://doi.org/10.1371/journal.pcbi.1008753


opening the unique possibility of utilizing hybridized distance and contact maps for predictive

protein modeling. Indeed, our hybridized distance- and contact-based hierarchical folding

method DConStruct delivers better performance in ab initio folding of CASP free modeling

targets compared to CNS-based CONFOLD2 and DMPfold protocols as well as ROSETTA-

based fragment assembly pipeline PconsFold and recent fragment-based CGLfold method.

DConStruct convincingly outperforms the DMPfold protocol, which uses much finer-grained

distance maps along with additional predicted structural features such as torsion angles and

hydrogen bonds, whereas our method utilizes only hybrid interaction maps at tri-level thresh-

olding derived from the DMPfold-predicted initial distance histograms. Additionally, DCon-

Struct attains better performance than distance-based trRosetta protocol. The better predictive

modeling performance of DConStruct also translates to superior ab initio folding of mem-

brane proteins compared to the state of the art. In summary, the advantage of DConStruct in

de novo protein modeling over the others is significant.

We may further improve the folding accuracy of our new method by extending the hierar-

chical structure modeling by allowing finer-grained distance intervals, which contain more

information than what we are using now. For example, we may directly feed all the distance

bins from DMPfold or trRosetta with their likelihood values to DConStruct during predictive

modeling. The recently concluded CASP14 experiment has expanded the contact prediction

category by introducing a new RR format that includes fine-grained inter-residue distance his-

togram prediction. The newly introduced RR format includes 10 distance intervals: <4Å, 4-

6Å, 6-8Å, 8-10Å, 10-12Å, 12-14Å, 14-16Å, 16-18Å, 18-20Å, and>20Å. Due to the inherent

flexibility of DConStruct that can utilize any distance histogram predicted by any method, the

fine-grained predicted distance information having 10 intervals can be directly fed into DCon-

Struct for predictive modeling instead of the hybrid interaction maps at tri-level thresholding.

Combining various complementary approaches for predicting fine-grained distance maps can

also be explored. Needless to say, accurate estimation of finer-grained distance maps is a very

challenging problem, which may suffer from high false-positive rates and thus prone to be

noisy. Empowering our method to be robust and noise-tolerant while utilizing finer-grained

distance intervals shall result in much better 3D models. To utilize the input distance informa-

tion more effectively, we may employ an efficient geometric build-up algorithm with least-

square approximation [44], which has been shown to be noise-tolerant. With the help of the

geometric build-up algorithm, the missing entries in inter-residue proximity maps can be

potentially approximated more accurately, which might further improve the generation of the

proximity map from a sparse set of distances, possibly resulting in more accurate coarse-

grained models. We may also improve the hierarchical structure modeling by performing

enhanced sampling targeted at the regions not restrained by input interaction maps. This may

improve the quality of the flexible loops or terminal regions, which may not be proximal to the

core regions, ultimately enhancing the overall folding accuracy. In this regard, the choice of an

optimal representation that can strike a balance between the conformational space and model-

ing granularity can be a related potential area of improvement. DConStruct currently imposes

Cβ constraints only at stage 3 whereas stage 1 and stage 2 operates on a Cα-only mode. We

could explore the possibility of adopting a unified representation having both Cα and Cβ

atoms during the early modeling stages for potentially improved folding performance, even

though the addition of the Cβ atoms leads to increased conformational space that may under-

mine some of the advantages of the coarse-grained representation adopted by DConStruct.

Furthermore, we may leverage additional information from the existing literature obtained

from rigorous statistical analyses of residue-level and secondary structure-specific distances

and angles [43]. For example, we may augment additional knowledge-based constraints

derived from the correlation of residue-level and secondary structure-specific pseudo-covalent
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bond lengths and virtual bond and dihedral angles. In addition to secondary structure, contact

and/or distance information, our method can also be extended to use other structural features

such as inter-residue orientation, solvent accessibility, and disulfide bridges, which contain

complementary information about protein conformation, and thus, shall benefit predictive

structure modeling. The results of the recently concluded CASP14 experiment indicate dra-

matic progress in protein structure prediction by the emergence of the new AlphaFold2

method attaining an average TM-score of 0.84 for the CASP14 free modeling targets. Alpha-

Fold2 represents a significant improvement over the AlphaFold method employed in A7D

during CASP13. It might be interesting to explore the possibility of coupling our folding proto-

col with the predicted structural information utilized by AlphaFold2 and compare the folding

performance as the details of the AlphaFold2 method becomes available.

Methods

Hierarchical structure modeling employed in DConStruct

From interaction map and secondary structure to proximity map. Our folding protocol

starts by estimating the proximity map from a given interaction map and secondary structure

using knowledge-based and graph-theoretic approach. Simply speaking, a proximity map is an

approximation of the inter-residue distance matrix. Using a coarse-grained string of beads

representation, in which each bead corresponds to the Cα atom of an amino acid residue, we

first estimate the proximity between the residue pairs close in sequence from prior knowledge

of protein backbone geometry derived from the pseudo-covalent bonds formed between the

Cα atoms and the secondary structure-specific local structural preferences [21,36], thus gener-

ating a sparse proximity map. For sequentially distant residue pairs, we apply a graph-theoretic

approach to fill the missing entries in the proximity map. We treat the input interaction map

as an adjacency matrix representing a graph G = (V, E), where V = {v1, v2, . . .} is the set of

nodes, representing a residue’s Cα (or Cβ) atom, and E = {eij} is the set of edges, where eij repre-

sents the interaction (e.g., residue-residue contact) between vi and vj. Thus, the graph G encap-

sulates the mathematical relation of inter-residue spatial proximity in 3D space. A graph

distance function [37,45], defined as the shortest path length among all paths for any given res-

idue pair, can be applied to the graph that shall be measured for the entire set of V. The path

length can be calculated by summing the total number of edges connecting any pair of residues

(vi, vj) under consideration. This function approximates the spatial distances and can generate

an initial estimate of the proximity map. Here we use Floyd-Warshall all pair shortest path

algorithm [46] to compute the path length. We further refine the initial estimate of the proxim-

ity map by idealized secondary structure element (SSE) modeling. SSEs are identified from the

given secondary structure and are independently modeled by setting the sequence of pseudo

angles and pseudo dihedral angels spanning each SSE to their ideal values [21,47]. The SSEs,

modeled in angular space, are subsequently converted into Cartesian space assuming the dis-

tance between two consecutive residues is constant (3.8Å) to extract the intra-SSE-all-residue-

pairs distances for refining the initial proximity map. The rationale for this step is to enhance

the physical realism of the proximity map for the intra-SSE segments.

From proximity map to coarse-grained 3D models. We turn the proximity map into a

3D model using an efficient graph realization technique. The basic idea is to treat the graph

distance-based proximity information between Cα atoms for each residue pair to calculate the

corresponding coordinates for all residues by applying the graph-based method, multidimen-

sional scaling (MDS) [22–24], for generating coarse-grained 3D models. MDS starts with dis-

similarity matrices that are derived from points in a multidimensional space, and it finds the

positioning of the points in a low-dimensional space, where the distances between points
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resemble the original dissimilarities. Here, we use the proximity map between the Cα atoms of

each residue pair as dissimilarity matrix and then calculate the coordinates of the Cα atom for

all residue. If there are n points (each representing the Cα atom of a residue) Xk 2 R3, k = 1,. . .,

n in 3D. Here we use classical metric MDS (CMDS) [48], which is the first and simplest MDS

algorithm. For a perfect dissimilarity (distance) matrix without any error in the Euclidean

space, CMDS will exactly reconstruct the configuration of points (or its mirror configuration)

with a computational complexity of O(n3). But, when there are errors in the dissimilarity

matrix, CMDS minimizes the sum of least squared errors between the estimated and the

observed distances in the output model for all pairs of points. In practice, the technique grace-

fully tolerates errors due to the overdetermined nature of the solutions. This is important in

our case, as our graph-based proximity map is an approximation of the true Euclidean distance

matrix that can be noisy and physically unrealistic, particularly for sequentially distant residue

pairs. We iteratively apply this technique to produce an initial pool of 20 coarse-grained 3D

models by enumerating over 20 different random seeds in order to achieve conformational

diversity in the resulting model pool.

Improving coarse-grained models through iterative self-correction. We apply iterative

self-correction via local perturbation to further optimize the coarse-grained models. Specifi-

cally, we identify the residues having inconsistent spatial positioning with respect to the rest of

the structure and employ coordinate refinement heuristics [49] to correct its coordinate with-

out introducing new error in the coordinate set. For the residue-pairs having their Euclidean

distances close to the distance threshold of the input interaction map, we apply corrective

coordinate perturbation to maximally reproduce contacts and non-contacts. We also perform

local perturbation for intra-SSE-segments by coordinate adjustments without affecting other

correctly positioned residues outside of SSE. Furthermore, we enforce idealized pseudo-cova-

lent bond lengths constraints formed between consecutive Cα atoms (3.8Å), and steric clash

constraints (defined as two Cα atoms that are closer than 3.5Å from each other). Specifically,

for the consecutive Cα atoms, we calculate the pseudo-covalent bond lengths formed in the

coarse-grained models and determine the deviations from the ideal value of 3.8Å, which we

then use to correct the coordinate of each Cα atom by moving it towards or to the opposite

direction of its adjacent Cα atom in the Cartesian space. Finally, we employ Limited-memory

Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) [25] algorithm for minimizing a harmonic

function of the observed and expected distance values of Cα quadruplets (i– 1, i + 1, i + 2,

i+ 3); with distances between the (i - 1)th residue and the (i + 1)th, the (i + 2)th, and the (i+ 3)

th residues, respectively. The expected values specific to helices and strands are adopted from

existing literature [21] to refine the local secondary structure topology. The entire self-correc-

tion process described above is iteratively applied to generate a pool of 20 optimized 3D

models.

Contact violation-based model selection and geometric chirality checking. For the

selection of one representative structure from the optimized model pool, we use a contact vio-

lation-based score function that combines contact or non-contact satisfaction of a model as: F

= ∑ contact-error + ∑ non-contact-error + n’, where contact- and non-contact-errors are cal-

culated using a squared error function, defined as (dij−threshold)2 for residue-pair (i, j) with

distance dij that violates input contacts (or non-contacts), and n’ is the number of residue pairs

inconsistent with the input interaction map. We rank the pool of optimized models using this

score function to select the highest ranked model as the representative.

One remaining issue in our selected model is that it can be a mirror image of the biologi-

cally relevant 3D conformation that has the correct chirality or handedness at the local level.

This is a typical issue faced during the reconstruction of 3D structure from a 2D representation

since any distance function is invariant to the isometric transformations in 3D: translation,
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rotation and symmetry. As such, it is not obvious which of the two structures related by mirror

symmetry represents a biological relevant structure. Nonetheless, secondary structure can be

used to identify the correct chirality of a 3D conformation since the observed chirality is

mostly right-handed for α-helices and left-handed β-sheets [26]. We define a geometric cost

function for identifying the correct chirality as the sum over tetrapeptides in α-helices and β-

sheets by utilizing the secondary structure-specific normalized triple scalar product values

adopted from existing literature [26]. From among the two mirror images of the selected

model, we select the structure with lowest cost as the correct chirality.

Atomic-level model building and iterative self-correction. We use MODELLER [27] to

generate atomic-level model and perform restraint satisfaction using the secondary structure

and interaction map-derived geometric restraints to generate optimized atomic-level model,

and subsequently employ restraint satisfaction iteratively using unsatisfied interactions, non-

interactions, and secondary structure restraints for self-correction along with model combina-

tion to generate the final folded conformation.

Test datasets and programs to compare

For the 3D reconstruction from the true contact-based interaction map and true secondary

structure, we use 150 soluble proteins from FRAGFOLD [28] dataset with sequence length

ranging from 50 to 266 residues. We extract the true contact maps from the experimental

structures having a sequence separation of at least 6 residues by varying the contact thresholds

from 8 to 12Å in a step size of 0.5Å. We use DSSP [38] program to compute the true secondary

structures from the experimental structures. We compare DConStruct with two widely used

reconstruction methods, FT-COMAR [36] and CONFOLD [17], using the same input.

FT-COMAR is a fast and purely distance geometry-based heuristic method that reconstructs

the Cα trace purely from a given Cα–Cα contact matrix and does not accept secondary struc-

ture. On the other hand, CNS-based CONFOLD reconstructs protein 3D structure using a

contact map and a secondary structure via a two-stage process. For CONFOLD-based recon-

struction, we set the parameters of CONFOLD as ‘-stage2 3’ (model generation at stage 2 using

sheet-detection only for true contacts), ‘-rep 0.8’ (used for true contact), ‘-rrtype cb’ (for Cβ–Cβ

contacts) or ‘-rrtype ca’ (for Cα–Cα contacts). Furthermore, we extract the true distance-based

hybrid interaction maps (both Cα–Cα and Cβ–Cβ) from the experimental structures and use

them together with their true secondary structures for 3D reconstruction using DConStruct.

For ab initio folding, 40 free modeling (FM) domains from CASP12 and CASP13 with pub-

licly available experimental structures are used with target lengths ranging from 67 to 356 resi-

dues. The performance of DConStruct is compared with DMPfold [8], CONFOLD2 [18],

ROSETTA [13] and CGLFold [15], GDFuzz3D [37], trRosetta [33] and several top predictors

participated in CASP12 and CASP13. DMPfold is a deep learning-based CNS-dependent ab
initio folding method. CONFOLD2 is a modified version of CONFOLD based on CNS-based

distance geometry algorithm. For ab initio folding using CONFOLD2, RaptorX predicted top

2L contacts, obtained by submitting jobs to its web server, are used according to the published

paper [4], together with the secondary structures predicted using SPIDER3 [34]. For

ROSETTA, we adopt a similar process as in PconsFold [14] protocol with the only exception

of using RaptorX contacts instead of PconsC [50]. We obtain fragments (3-mers and 9-mers)

from the ROBETTA server [51] to generate a pool of 2,000 models with a maximum duration

of 15 calendar days. The lowest ROSETTA energy models are subsequently selected as the pre-

diction. CGLFold [15] is a recent fragment-based method that combines global exploration

and loop perturbation using the predicted contact maps from ResTriplet [52]. The TM-scores

for CGLFold 29 FM targets are collected from its published paper. GDFuzz3D [37] uses a
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multi-step modeling that involves a combination of coarse-grained and all-atom modeling.

For GDFuzz3D, we submit jobs to its web server, which is limited to protein size of less than

400 residues. We, therefore, collect GDFuzz3D predicted models for 28 CASP FM targets

having length less than 400 residues by feeding the RaptorX predicted contacts to its web

server. trRosetta [33] is a state-of-the-art deep learning-based transform-restrained energy-

minimization protocol. We run trRosetta-based modeling locally with the parameter setting

(‘--no-orient’) that uses the fine-grained distance information predicted from trRosetta but no

orientation information for a head-to-head performance comparison with DConStruct. To

generate distance-based hybrid interaction maps for DConStruct, we use the DMPfold dis-

tance predictor. We feed the multiple sequence alignments (MSAs) [35] to DMPfold and

obtain the predicted initial distance histograms (rawdispred.current files) containing 20 dis-

tance bins with their associated likelihoods (we do not run any further DMPfold iterations

involving CNS-based modeling). The predicted histograms are then converted to hybrid

interaction maps with tri-level thresholding with variable upper bounds of 8, 10, and 12Å
by summing up the likelihoods for distance bins below the three distance thresholds of 8,10,

and 12Å. We select the top 8L Cβ–Cβ high confidence interacting residue pairs having

likelihoods > 0.85 since using the top 8L Cβ–Cβ contacts delivers the best performance in

an independent benchmarking on the EVfold dataset (S14 Table) when experimented

with top 2L, 4L, 8L, and 16L Cβ–Cβ contacts. A similar strategy is followed to derive hybrid

interaction maps from trRosetta-predicted distance maps. The hybrid interaction maps cou-

pled with the SPIDER3 predicted secondary structures are then fed to DConStruct for ab initio
folding.

We also evaluate ab initio folding of membrane proteins using 510 non-redundant mem-

brane proteins used in [31] with length ranging from 50 to 646 residues. We generate the dis-

tance-based hybrid interaction maps using DMPfold as mentioned above and predict their 3D

structures using DConStruct to compare our models with that of Xu’s deep transfer learning

(DTL) and CNS-based ab initio folding method [31].

To evaluate the implications of the 3-stage hierarchical structure modeling approach

adopted in DConStruct, we use 15 proteins from the EVfold [16] dataset ranging from 48 to

248 residues in length. We use true contact interactions with a sequence separation of at least 6

residues and true secondary structures to perform stage-by-stage 3D reconstruction and analy-

sis after using the PULCHRA program [53] to generate all-atom models from the coarse-

grained models produced in the intermediate stages.

Evaluation metrics

We use TM-score [39] to evaluate the folding accuracy. TM-score compares the predicted

models with the experimental structure to determine their structural similarity. TM-score has

the value in (0, 1], with higher value indicating better folding accuracy. Meanwhile, TM-

score > 0.5 represents correctly folded models [40]. We measure the correctness of secondary

structure topology using the percentage of correctly recovered secondary structure residues

for helices (QH) and beta strands (QE).
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