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Abstract

Doxorubicin (DOX), an effective chemotherapeutic drug used in the treatment of various cancers, is limited in its clinical
applications due to cardiotoxicity. Recent studies suggest that transplanted adult stem cells inhibit DOX-induced
cardiotoxicity. However, the effects of transplanted embryonic stem (ES) and induced pluripotent stem (iPS) cells are
completely unknown in DOX-induced left ventricular dysfunction following myocardial infarction (MI). In brief, C57BL/6 mice
were divided into five groups: Sham, DOX-MI, DOX-MI+cell culture (CC) media, DOX-MI+ES cells, and DOX-MI+iPS cells. Mice
were injected with cumulative dose of 12 mg/kg of DOX and 2 weeks later, MI was induced by coronary artery ligation.
Following ligation, 56104 ES or iPS cells were delivered into the peri-infarct region. At day 14 post-MI, echocardiography
was performed, mice were sacrificed, and hearts were harvested for further analyses. Our data reveal apoptosis was
significantly inhibited in ES and iPS cell transplanted hearts compared with respective controls (DOX-MI+ES: 0.4860.06%
and DOX-MI+iPS: 0.3360.05% vs. DOX-MI: 1.0460.07% and DOX-MI+CC: 0.9660.21%; p,0.05). Furthermore, a significant
increase in levels of Notch-1 (p,0.05), Hes1 (p,0.05), and pAkt (p,0.05) were observed whereas a decrease in the levels of
PTEN (p,0.05), a negative regulator of Akt, was evident following stem cell transplantation. Moreover, hearts transplanted
with stem cells demonstrated decreased vascular and interstitial fibrosis (p,0.05) as well as MMP-9 expression (p,0.01)
compared with controls. Additionally, heart function was significantly improved (p,0.05) in both cell-transplanted groups.
In conclusion, our data show that transplantation of ES and iPS cells blunt DOX-induced adverse cardiac remodeling, which
is associated with improved cardiac function, and these effects are mediated by the Notch pathway.
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Introduction

Doxorubicin (DOX) is the antineoplastic drug of preference to

treat a wide variety of malignancies such as acute leukemia,

lymphoma and breast cancer, with a high survival rate among

patients [1,2]. However, the benefits of this drug become less

appealing due to the cardiotoxic side effects after treatment [3,4].

Moreover, some studies have found that patients receiving DOX

therapy had an increased risk of myocardial infarction (MI) and

that this risk persisted up to 25 years after DOX treatment [5].

DOX treatment demonstrates cardiac remodeling which results in

cardiac myocyte apoptosis and fibrosis [6–8]. Cardiac myocyte

apoptosis and heart dysfunction in DOX-induced heart failure

involves many complex mechanisms including oxidative stress and

upregulation of pro-apoptotic and downregulation of anti-

apoptotic proteins [9–12].

Adjuvant therapies have been proposed to decrease the

cardiotoxic effects of DOX. For instance, the use of antioxidants

such as probucol, taurine, and fenofibrate have been shown to

suppress DOX-induced oxidative stress and cardiac myocyte

apoptosis [13–15]. However, none of these therapies have been

shown to improve heart function at the physiological level. Since

cardiac myocytes have limited self-renewal, stem cells have

acquired significant consideration as an alternative method to

repair and regenerate cardiac cells [16]. Of note, human umbilical

cord blood derived stem cells and bone marrow-derived stem cells

have been shown to improve cardiac function and capillary density

in DOX-induced cardiomyopathy (DIC) [16–18].

Embryonic stem (ES) and induced pluripotent stem (iPS) cells

have the potential to develop into cell types from all three germ

layers compared with adult stem cells, which have a limited

plasticity, as well as attenuate apoptosis and fibrosis [19–21].

Although concerns have been raised regarding the teratoma

potential of these cells types, our published data as well as that of

others suggest teratoma formation is dose-dependent and trans-

plantation of up to 100,000 ES cells have not yielded teratomas up

to 12 weeks post-transplantation [22,23]. Notably, we reported

recently that ES cells and their condition media (CM) inhibit

apoptosis and improve cardiac function once transplanted in a

DIC model [24]. However, the mechanisms by which stem cells

attenuate cardiac remodeling and exert their benefits are not well

understood. Therefore, we hypothesize that transplanted ES and
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iPS cells inhibit cardiac remodeling (apoptosis and fibrosis),

mediated by the Notch pathway, and improve cardiac function

in a combined model of DIC and myocardial infarction. Our data

shows that transplantation of ES and iPS cells inhibits apoptosis

and fibrosis in DIC following MI. Moreover, our data demon-

strates that after transplantation of ES and iPS cells, levels of

Notch-1, Hes1 and Akt increased significantly with decreased

levels of PTEN, a negative regulator of Akt. Finally, hearts

transplanted with ES and iPS cells show a significant improvement

in cardiac function.

Materials and Methods

ES and iPS Cell Culture
CGR8 mouse ES cells were kindly provided by Michel Puceat

(Centre de Researches, INSERM, U390 France) and iPS cells

were generated from H9c2 cardiomyoblasts as previously

described [19], both of which have been used in numerous

published studies [19,20,24–26]. ES and iPS cells were maintained

in Dulbecco’s Minimum Essential Medium (DMEM, Invitrogen,

USA) containing leukemia inhibitory factor (LIF), sodium pyru-

vate, glutamine, b-mercaptoethanol, penicillin/streptomycin, non-

essential amino acids and 15% ES cell-qualified fetal bovine serum

on a 60 mm gelatin coated tissue culture plate as published by us

[20]. Moreover, activin A and bFGF were present in the iPS

growth medium but not in the ES cell medium.

DOX Treatment
All animal protocols were approved by the University of Central

Florida animal care committee as per US National Institute of

Health guidelines. C57BL/6 mice, male and female, of 8–10

weeks of age, were treated with DOX as previously reported [24].

In brief, mice were injected one time every other day (Monday,

Wednesday, and Friday) for three days with DOX to obtain a

cumulative dose of 12 mg/kg via intraperitoneal injection (IP).

Coronary Artery Ligation and Stem Cell Transplantation
Two weeks after the last dose of DOX, MI was induced by

coronary artery ligation under isoflurane inhalatory anesthesia

administered via an endo-tracheal tube as reported previously

[25,27]. In brief, a left thoracotomy was performed; the left

anterior descending (LAD) coronary artery was visualized using a

dissecting microscope and subsequently ligated using a 7.0

polypropylene suture. Subsequently, animals were divided into

five groups: Sham (No treatment), DOX-MI, DOX-MI+cell
culture (CC) media, DOX-MI+ES cells, and DOX-MI+iPS cells

with an n= 6–8 in each group. For each mouse, following ligation,

56104 ES or iPS cells were delivered into two independent sites in

the peri-infarct region, identified as the infarcted border zone

around the LAD region where the suture was placed, using a 29-

gauge floating needle. 20 ml of media was delivered in two

injections of 10 ml each at two different sites in the CC group.

Terminal Deoxynucleotidyl Transferase dUTP Nick End
Labeling (TUNEL) Assay
TUNEL staining was performed as previously reported [20]. In

brief, heart sections were deparafinized, rehydrated, and then

incubated with proteinase K (Sigma) at a dose of 25 ug/ml in

100 mM Tris-HCL for 15 minutes. Apoptotic positive nuclei were

determined by TUNEL staining according to manufacturer’s

instructions. In brief, sections were incubated with a TUNEL

reaction mixture for one hour, and then washed with 16PBS three

times. Finally, mounting media with DAPI was used to cover the

slides. Each slide was analyzed under an Olympus fluorescent

microscope. Photomicrographs were taken under 20X and the

percentage of apoptotic nuclei (red) was determined by counting

the total number of red positive cells and the total number of

nuclei (blue). Red apoptotic nuclei that merge with DAPI in blue

were considered positive. The following formula was applied to get

the percentage: (red+apoptotic nuclei/total blue nuclei)*100. One

to two sections of 6–8 animals per group were analyzed.

Caspase-3 Activity Assay
The heart was homogenized, the supernatant was collected and

protein quantification using a Bradford assay was performed.

Caspase-3 colorimetric activity assay (Bio Vision) was performed

according to the manufacturer’s instructions as previously reported

[20]. In brief, the reaction buffer, provided in the kit containing

10 mM of DTT, was added to the heart homogenates. The

specific enzyme, DEVD-pNA, was added to each sample and

incubated for 1–2 hours at 37uC. The developed colorimetric

reaction was measured at 405 nm in a 96 well microplate reader

(Biorad Model) and values plotted as arbitrary units. Data

collected from 4–8 animals per group.

Notch-1 and a-Sarcomeric Actin Double Staining
The bottom part of the heart was embedded in different ethanol

dilutions (75%, 80%, 90%, and 100%), and paraffin blocks were

formed containing the heart tissue. Five micron sections were

obtained and placed on microscope slides. A double immunoflu-

orescent staining protocol was applied as reported previously [28].

Sections from five to six different hearts in each group were

deparaffinized, rehydrated, and then blocked with a mouse

antigen blocking reagent for one hour and then incubated with

primary antibodies for mouse Notch-1 antibody (1:20 dilution,

abcam) and a monoclonal anti-a-sarcomeric actin antibody (1:30

dilution; Sigma-Aldrich). Control sections were omitted for

primary antibody. Biotinylated Anti-Mouse IgG reagent (MOM

kit, Vector Laboratories) was applied for 1 hour at room

temperature. Sections were next incubated with kit components,

fluorescein Avidin DCS (16 ul/ml) or Texas Red Avidin DCS

(15 ug/ml), respectively to develop the reaction. Washings with

PBS were performed and sections were covered with mounting

media containing 49,6-diamino-2-phenylindole (DAPI). Fluores-

cence labeled cells were identified, analyzed and representative

photomicrographs were taken under fluorescent (Olympus 1670

and Nikon TE 2000-E) and confocal (LEICA laser scanning)

microscopes. To get the percentage total Notch+ve cells where

divided to total DAPI times 100. One to two sections of 6 animals

per group were analyzed.

Sodium Dodecyl Sulfate Polyacrylamide Gel
Electrophoresis and Western Blot
Western blot analysis was performed as previously reported

[19,26]. In brief, proteins were loaded in an 8% or 10% SDS-Page

and electrophoresis was run at 150 V for 1 hour. Proteins were

transferred to a PVDF membrane (BioRad) using a Trans-Blot

Semi-dry transfer. Cell membranes were blocked with 5% skim

milk in tris-buffered saline and tween 20 for 1 hour and then

incubated with primary antibodies Notch-1 (Cell signaling),

pPTEN (Cell Signaling), pAKT (Cell Signaling), Hes1 (Abcam)

and b-actin (Cell signaling) at appropriate dilutions for 1 hour at

room temperature or overnight at 4uC. Following the incubation

of primary antibodies, secondary antibody was used and

membranes were incubated for 1 hour. Finally, membranes were

treated with an enhanced chemiluminescent substrate (ECL,

Thermo Scientific) for 1–2 min and then exposed at different
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exposure times. b-actin was used as loading control. Blots from 4–

6 different experiments were scanned and band intensities from

each blot were analyzed using image J software and expressed

relative to b-actin signal.

pAkt Activity Assay
Heart homogenization and protein quantification were per-

formed as stated before. pAkt1 (PAN) activity assay (Exalpha

Biological) was performed following the directions of the

manufacturer’s instructions as reported previously [24]. In brief,

50 ul of each sample was pipetted into microtiter wells that

contain capture antibodies, provided by the manufacturer. Plates

were incubated for two hours to develop the reaction. Washings

were performed to remove any unbound material in the plates. A

biotin conjugated anti-Phospho Akt1 antibody was added to each

well and incubated for two hours. Excess antibody was washed and

a HRP-conjugated streptavidin was added to each well for 30 min

at room temperature. A colorimetric reaction was developed that

was measured at 450 nm in a microplate reader. Total protein

concentration of each sample was determined by Bradford assay.

Values obtained from the ELISA experiments were normalized to

the total protein concentration for each of the samples and were

plotted as arbitrary units. Data collected from 4–5 animals per

group.

Masson’s Trichrome Staining
Heart sections were deparaffinized and rehydrated in serial

dilutions of alcohol, then stained with Masson’s trichrome staining

following the technique reported previously [26]. In brief, sections

were incubated in Bouins Fixative for 45 min, washed and stained

with Weigert Iron Hematoxylin, Anylin Blue, and finally mounted

with Cytoseal-60 and cover slipped. Each slide was analyzed under

a brightfield microscope with the fibrotic areas stained in blue and

the healthy in red. The percentage of interstitial and vascular

fibrosis area over total interstitial and vascular area was measured

using Image J.

MMP-9 Immunoassay
MMP-9 expression was determined from heart homogenates

(n = 4–6 hearts/group) using an enzyme-linked immunoassay

(R&D Systems) as previously described and following the

manufacturer’s protocol [26]. The color reaction, proportional

to MMP-9 concentration, was quantified in a microtiter plate

reader at 450 nm. Results were corrected to protein concentra-

tion, which was determined by the Bradford assay. Data was

plotted as arbitrary units.

Echocardiographic Analysis
At day (D) 14 post-MI, two-dimensional (2D) echocardiography

was performed under 2% isoflurane via nose cone to analyze

cardiac function as previously described [24]. In brief, M-mode

images of the left ventricle were documented. Left ventricular (LV)

dimensions including LV fractional shortening (FS) and LV

ejection fraction (EF) were measured. After echocardiography

analysis was performed, animals were sacrificed using pentobar-

bital (80 mg/Kg) and cervical dislocation. The hearts were

harvested, rinsed with PBS and sectioned transversally with the

top portion kept in RNA later and the bottom portion in 10%

paraformaldehyde (PFA).

Statistical Analysis
One-way analysis of variance (ANOVA) was performed

followed by Tukey test for all samples. All values were presented

as a mean 6 SEM. p,0.05 was considered to be statistically

significant between the values.

Results

ES and iPS Cell Transplantation Decreases Apoptosis in
DIC post-MI
To determine whether ES and iPS cell transplantation has an

anti-apoptotic effect in DIC post-MI, TUNEL staining was

performed. Figure 1A–O shows representative photomicrographs

of TUNEL staining in each of the study groups at day 14 post-MI.

After quantitative analysis, we observed a significant increase in

TUNEL-positive nuclei in the DOX-MI and DOX-MI+CC
groups compared with the Sham control group (p,0.001,

Figure 1P). Notably, the percent apoptotic nuclei was significantly

reduced in DOX-MI+ES cell and DOX-MI+iPS cell transplanted

hearts compared with DOX-MI and DOX-MI+CC hearts (DOX-

MI+ES: 0.4860.06% and DOX-MI+iPS: 0.3360.05% vs. DOX-

MI: 1.0460.07% and DOX-MI+CC: 0.9660.21% TUNEL

positive nuclei/total nuclei; p,0.05; Figure 1P). Moreover, to

confirm our TUNEL results, a caspase 3 activity assay was

performed using heart homogenates from each group. Statistical

analysis of caspase 3 activity showed a significant increase in the

activity of this apoptotic marker in DOX-MI and DOX-MI+CC
groups compared with Sham (p,0.05, Figure 1Q). However, a

significant decrease in caspase 3 activity in DOX-MI+ES and

DOX-MI+iPS cell transplanted hearts was observed when

compared with the DOX-MI and DOX-MI+CC hearts (DOX-

MI+ES: 1.8860.06 A.U. and DOX-MI+iPS: 1.8760.03 A.U. vs.

DOX-MI: 2.1360.03 A.U. and DOX-MI+CC: 2.1360.04 A.U.;

p,0.05; Figure 1Q).

Transplantation of ES and iPS Cells Contributes to Cardiac
Repair in DIC post-MI Through Notch-1
Notch-1 regulates the fate of cardiac progenitor cells (CPCs) and

stimulates proliferation of cardiac myocytes [29,30]. Previous

studies have shown that after treatment with DOX, Notch-1

receptor expression levels in CPCs are low compared with its

ligands, delta-like 3 and jagged [5]. Thus, we wanted to study the

expression of Notch-1 in DIC-post MI hearts. Therefore, we

examined Notch-1+ve cells co-labeled with a-sarcomeric actin

(Figure 2A–T). Quantitative analysis of immunostaining demon-

strated Notch-1 receptor expression in DIC post-MI was

significantly decreased in DOX-MI and DOX-MI+CC groups

compared with Sham control group (p,0.05, Figure 2U).

Conversely, a significant increase of Notch1+ve cells in DOX-

MI+ES and DOX-MI+iPS cell transplanted hearts was observed

when compared with the untreated DOX-MI and DOX-MI+CC
groups (DOX-MI+ES: 1.5460.19% and DOX-MI+iPS:
1.7160.34% vs. DOX-MI: 0.7060.06% and DOX-MI-CC:

0.6960.09% Notch-1+ve cells/total nuclei; p,0.05; Figure 2U).

Moreover, western blot (WB) analysis was performed to validate

the results of our Notch-1 immunostaining. Densitometric analysis

of Notch-1 bands confirmed that expression of Notch-1 in DOX-

MI and DOX-MI+CC hearts was significantly decreased com-

pared with our control Sham group (p,0.05, Figure 2V).

Additionally, WB analysis also confirmed hearts transplanted with

ES and iPS cells contained a significantly increased percentage of

Notch-1+ve cells when compared with the untreated groups, DOX-

MI and DOX-MI+CC (DOX-MI+ES: 1.8660.22 A.U. and

DOX-MI+iPS: 1.9060.29 A.U. vs. DOX-MI: 0.8760.2 A.U. and

DOX-MI+CC: 0.8760.16 A.U.; p,0.05; Figure 2V). Statistical

analysis revealed Notch-1 expression was not significant between

DOX-MI+ES and DOX-MI+iPS groups.

Notch-1 Protects Doxorubicin-Induced Heart Failure
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Effects of ES and iPS Cell Transplantation on Hes1 in DIC
post-MI
To further characterize the effects of Notch-1 in DIC post-MI,

Hes1, a downstream effector of Notch-1, was studied. Western blot

studies were performed to study the expression of this protein in

DIC post-MI. Densitometric analysis of Hes1 WB bands

demonstrated a significant increase in expression of Hes1 in the

ES and iPS cell transplanted hearts compared with Hes1

expression in DOX-MI and DOX-MI+CC groups (DOX-MI+
ES: 1.9460.29 A.U. and DOX-MI+iPS: 1.7560.35 A.U. vs.

DOX-MI: 0.4160.11 A.U and DOX-MI+CC: 0.5660.10 A.U.;

p,0.05; Figure 3A–B). Nevertheless, Hes1 protein levels between

ES and iPS cell transplanted groups were not significant.

Akt and PTEN Expression is Regulated by ES and iPS Cells
Transplanted in DIC post-MI Hearts
Previous studies have shown that DOX treatment decreases

expression of the pro-survival protein Akt [24]. Therefore, we

studied the expression of this protein in DIC post-MI and its

modulation when ES and iPS cells were transplanted. A pAkt

ELISA was performed to analyze pAkt levels in DIC post-MI.

pAkt activity was significantly decreased in DOX-MI and DOX-

MI+CC groups compared with Sham control group (p,0.001,

Figure 4A). However, increased pAkt activity was observed in

hearts transplanted with ES and iPS cells compared with DOX-

MI and DOX-MI+CC groups (DOX-MI+ES: 42.762.45 A.U.

and DOX-MI+iPS: 43.8763.84 A.U. vs. DOX-MI: 26.7561.56

A.U and DOX-MI+CC: 22.1061.47 A.U.; p,0.05; Figure 4A).

Our ELISA data was confirmed through WB studies as shown in

Figure 4B. Furthermore, our data also suggests that the increase in

levels of activated Akt is due to the inhibition of PTEN, an Akt

inhibitor, as demonstrated by WB analysis. Densitometric analysis

of PTEN WB bands revealed a significant increase in levels of this

protein in DOX-MI and DOX-MI+CC compared with Sham

(p,0.05, Figure 4C). However, levels of PTEN were significantly

decreased in hearts transplanted with ES and iPS cells when

compared with DOX-MI and DOX-MI+CC groups (DOX-MI+
ES: 0.4860.09 A.U. and DOX-MI+iPS: 0.5060.1 A.U. vs.

DOX-MI: 1.4460.27 A.U and DOX-MI+CC: 1.5760.23 A.U.;

p,0.05; Figure 4C).

Effects of Transplanted ES and iPS Cells on Interstitial and
Vascular Fibrosis in DIC post-MI Hearts
To determine the effect of transplanted ES and iPS cells on

interstitial cardiac fibrosis and vascular fibrosis in DIC post-MI,

Masson’s trichrome staining was performed on heart sections from

Figure 1. Effects of transplanted ES and iPS cells on cardiac myocyte apoptosis using TUNEL staining. Representative
photomicrographs at 20X are shown on the left with DAPI in blue (A, D, G, J and M), TUNEL in red (B, E, H, K and N) and merged images (C,
F, I, L and O). Top right histogram (P) shows the percentage of total apoptotic nuclei at 2 weeks post-MI. Bottom right histogram (Q) shows
quantitative analysis of caspase 3 activity assay in arbitrary units. $p,0.05 vs. Sham; *p,0.05 vs. DOX-MI and DOX-MI+CC; n = 5.
doi:10.1371/journal.pone.0101024.g001
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each of the study groups. Representative photomicrographs of

Masson’s trichrome staining of interstitial fibrosis are shown in

Figure 5 (A–E). Quantitative analysis performed demonstrated

significant interstitial fibrosis is DOX-MI and DOX-MI+CC
groups compared with the control group (p,0.05, Figure 5K).

However, interstitial fibrosis was significantly decreased in DOX-

MI+ES and DOX-MI+iPS cell treated hearts compared with

DOX-MI and DOX-MI+CC groups (DOX-MI+ES:
0.4360.11 mm2 and DOX-MI+iPS: 0.3960.13 mm2 vs. DOX-

MI: 1.2660.42 mm2 and DOX-MI+CC: 1.5460.16 mm2; p,

0.05; Figure 5K). Next, quantitative analysis of vascular fibrosis in

heart sections (Figure 5, F–J) revealed that DOX-MI+ES and

DOX-MI+iPS cell transplanted hearts contained significantly less

vascular fibrosis than DOX-MI and DOX-MI+CC groups (p,

0.05, Figure 5L).

To elucidate mechanisms by which ES and iPS cells propagate

fibrosis inhibition in DIC post-MI myocardium, MMP-9, a

mediator of extracellular matrix (ECM) degradation and subse-

quent fibrosis, was quantified. MMP-9 expression was significantly

enhanced in the DOX-MI and DOX-MI+CC groups compared

to the Sham control group (p,0.01; Figure 5M). Notably, MMP-9

concentration was significantly reduced following ES and iPS cell

transplantation (DOX-MI+ES: 1.4860.25 A.U. and DOX-MI+
iPS: 1.5560.26 A.U. vs. DOX-MI: 3.9760.56 A.U and DOX-

MI+CC: 3.9760.44 A.U.; p,0.01; Figure 5M).

ES and iPS Cell Delivery in DIC post-MI Model Improves
Cardiac Function
Two weeks following MI surgery, cardiac function was analyzed

using 2D echocardiography. Our data demonstrates a significant

impairment of left ventricle (LV) function expressed as fractional

shortening (FS) and ejection fraction (EF) in DOX-MI and DOX-

MI+CC groups compared to the Sham control group (p,0.001;

Figure 6A–B). Cumulative quantitative data revealed a significant

improvement in fractional shortening at 2 weeks post MI in DOX-

MI+ES and DOX-MI+iPS cell treated hearts compared with

DOX-MI and DOX-MI+CC groups (p,0.05; Figure 6A). Finally,

DOX-MI+ES and DOX-MI+iPS transplanted hearts had a

significant improvement in ejection fraction compared with

DOX-MI and DOX-MI+CC groups (DOX-MI+ES:
76.4361.88% and DOX-MI+iPS: 77.7861.39% vs. DOX-MI:

67.4263.30% and DOX-MI+CC: 63.5161.63%; p,0.05;

Figure 6B).

Discussion

Doxorubicin is one of the most conventionally used anthracy-

cline drug currently on the market for the treatment of various

neoplastic diseases. Although its efficacy is widely accepted in the

clinical arena in the aforementioned capacity, DOX has been

shown to have dose-dependent deleterious effects on intrinsic

cardiac architecture and function; these cardiotoxic consequences

to include promotion of cardiac myocyte apoptosis, hypertrophy,

Figure 2. Effects of transplanted ES and iPS cells on Notch-1 expression. Representative photomicrographs are shown on the left with
Notch-1 in red (A, B, C, D and E), a-sarcomeric actin in green (F, G, H, I and J), DAPI in blue (K, L, M, N and O) and merged images (P, Q, R, S and
T). The white arrows (T) indicate the region that was magnified and shown within the boxed region. Scale bar = 20 mm. Top right histogram (U)
shows percentage of Notch-1+ve cells at 2 weeks post-MI. Bottom right panel and histogram (V) show representative Notch-1 blot and associate b-
actin with densitometric analysis. $p,0.05 vs. Sham; *p,0.05 vs. DOX-MI and DOX-MI+CC; n= 6.
doi:10.1371/journal.pone.0101024.g002
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enhanced susceptibility to MI, dilated cardiomyopathy, and

impaired ejection fraction [5–8]. Limited studies have provided

insight into the salutary impact propagated by transplanted stem

cells in the DOX injured myocardium but, to date, no studies have

been undertaken to elicit the effects of cellular therapy in the

DOX-induced post-MI heart [16,18,24,31]. In the present study,

we have generated a DIC post infarction mouse model and

evaluated the response of the injured myocardium to the

transplanted ES and iPS cells as well as identified signaling

molecules, including Notch-1, Hes1, PTEN, and Akt, which play a

pivotal role in the cytoprotective mechanisms conferred by our

transplanted stem cells. To the best of our knowledge, this is the

first investigation into the cytoprotective impact of iPS and ES cells

in the DIC post-MI injured myocardium.

Previously suggested, apoptosis plays a monumental role in

cardiac myocyte cell death in DIC and post-MI hearts contrib-

uting to hypertrophy, fibrosis, diminished cardiac function, and

heart failure [20,32,33]. Consistent with these earlier studies, our

disease mouse model (DOX-MI and DOX-MI+CC) contained
significantly elevated apoptotic nuclei relative to the sham

operated mice as evidenced by TUNEL staining and a caspase-3

activity assay. Our data further suggests that following stem cell

transplantation in the DIC post-MI heart, apoptosis is significantly

attenuated. Our findings are in accordance with previous

independent investigations in which they demonstrated trans-

planted stem cells alleviate DIC and post-MI cardiac myocyte

apoptosis [16,20,24].

Functional characteristics of the Notch pathway in the heart

include differentiation, cardiac myocyte expansion, valve forma-

tion, and cardioprotection during assault [34–36]. Inversely,

ventricular septal anomalies, valve aberrations, and exacerbated

hypertrophy and apoptosis have been reported as a result of Notch

dysregulation [36–38]. Recently, De Angelis et al reported Notch-

1 expression was significantly downregulated in CPCs following

DOX treatment [1]. To this end, we evaluated changes in Notch-1

expression consequent to DIC post-MI induction and stem cell

transplantation. In the control treatment groups (DOX-MI and

DOX-MI+CC), a significant reduction in Notch-1 expression was

observed compared to the sham controls. Conversely, a previous

study reported increased levels of Notch-1 in the border zone of

the infarct region post permanent coronary ligation [29]. We

hypothesize variances in the experimental design including

different animal models and our use of DOX account for the

discrepancies reported in the expression levels of Notch-1 post-MI

[29]. To the best of our knowledge, we are the first to show that

expression of Notch-1 is significantly diminished in DIC post-MI

hearts and suggest its dysregulation plays a role in post DOX-MI

cardioprotection loss. Notably, we report a significant elevation in

Notch-1 expression in both stem cell transplanted groups

compared to the DIC post-MI control hearts. We suggest the

enhanced Notch-1 expression observed within the ES and iPS cell

transplanted DIC post-MI myocardium is consequent to paracrine

mechanisms mediated by the stem cells.

Figure 3. Effects of transplantation of ES and iPS cells in Hes1
in DIC post-MI. (A) Upper panel displays representative photomicro-
graphs of WB bands of Hes1 and b-actin. (B) Bottom histogram shows
densitometric analysis of WB bands with a significant increase in levels
of Hes1 in groups treated with ES and iPS cells. *p,0.05 vs. DOX-MI and
DOX-MI+CC; n = 5.
doi:10.1371/journal.pone.0101024.g003

Figure 4. Effects of transplanted ES and iPS cells on Akt and PTEN expression in DIC post MI. Left histogram (A), reveals a significant
increase in pAkt activity in hearts transplanted with ES and iPS cells. $p,0.001 vs. Sham; *p,0.05 vs. DOX-MI and DOX-MI+CC; n = 4–5. (B) Top middle
panel displays representative photomicrographs of WB bands for pAkt and b-actin and bottom middle histogram shows densitometric analysis of WB
bands with a significant increase in levels of pAkt levels in ES and iPS cell treated hearts. $p,0.05 vs. Sham; *p,0.05 vs. DOX-MI and DOX-MI+CC;
n = 4–5. Upper right panel (C) shows representative WB bands of PTEN and b-actin and bottom right histogram shows densitometry analysis of WB
bands with a significant decrease in levels of PTEN in hearts transplanted with ES and iPS cells. $p,0.05 vs. Sham; *p,0.05 vs. DOX-MI and DOX-MI+
CC; n = 4–6.
doi:10.1371/journal.pone.0101024.g004
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To further elucidate the involvement of Notch-1 in cardiac

repair and protection in the DIC post-MI heart, Hes1, a Notch-1

downstream target gene, was also investigated. Activation of Hes1

is an indirect response to activation of Notch by Delta/Jagged

ligands and leads to downregulation of various targets [29,39].

Our data implicates a dramatic increase in Hes1 expression

following ES and iPS cell transplantation into the DIC post-MI

heart compared to the DOX-MI and DOX-MI+CC groups. The

pathway by which ES and iPS cells, transplanted in the DIC post-

MI heart, promote activation of Notch-1 and its downstream

effectors is largely unknown and will require further investigations.

Recent studies have suggested an interaction between the Notch

pathway and the pro-survival PI3K/Akt pathway [39]. Specifi-

cally, Hes1 was shown to negatively regulate PTEN, an inhibitor

of PI3K/Akt signaling, in thymocytes and T-cell lymphoblastic

leukemia (T-ALL) cells [39,40]. Our data corroborates these

previous findings and suggests an inverse relationship between

activation of pAkt and inhibition of PTEN expression in our study

groups. In the DOX-MI and DOX-MI+CC groups, p-Akt

expression was significantly downregulated and PTEN significant-

ly upregulated comparable to the sham control group. Conversely,

when DIC post-MI hearts were transplanted with ES or iPS cells,

levels of Akt were dramatically elevated and levels of PTEN were

drastically diminished relative to controls (DOX-MI and DOX-

MI+CC). It is feasible to suggest that upregulation of Notch-1 and

subsequent activation of Hes1 lead to abrogation of PTEN

transcription, thus preventing the inhibition of Akt activation.

Fibrosis plays a major role in adverse cardiac remodeling in

DIC and post-MI myocardium. As expected, DIC post-MI hearts

without stem cell transplantation presented elevated quantities of

interstitial and vascular fibrosis. On the contrary, hearts

transplanted with ES or iPS cells showed significant reduction in

the amount of both interstitial and vascular fibrosis. Supporting

evidence of our findings include previously published articles

demonstrating decreased fibrosis post stem cell transplantation in

DIC and infarcted myocardium and Notch regulation of

fibrogenesis [20,24,36]. Furthermore, MMP-9, a well-recognized

mediator of adverse ventricular fibrosis and subsequent remodel-

ing, was evaluated to establish a relationship between ES and iPS

cells and blunted fibrosis in the DIC post-MI myocardium.

Consistent with previous studies, transplantation of ES and iPS

cells significantly abolished MMP-9 activation suggesting mecha-

nisms of fibrosis inhibition within the current study may be similar

to those reported in other MI and DOX studies [41–43].

However, future studies are needed to identify augmented fibrotic

pathways within the ES and iPS cell transplanted DIC post-MI

heart.

Figure 5. Effects of transplanted ES and iPS cells on cardiac fibrosis. Representative photomicrographs of interstitial fibrosis (A–E), with
fibrotic tissue in blue and healthy cardiac tissue in pink and vascular fibrosis (F–J). Bottom left histogram (K) shows a significant decrease in interstitial
fibrosis (mm2) at 2 weeks post-MI in ES and iPS cell treated groups. $p,0.05 vs. Sham; *p,0.05 vs. DOX-MI and DOX-MI+CC; n = 5–7. Bottom middle
histogram (L) shows quantitative analysis of vascular fibrosis over total vascular area with a significant decrease in vascular fibrosis percentage in
DOX-MI+ES and DOX-MI+iPS groups when compared with DOX-MI and DOX-MI+CC. $p,0.05 vs. Sham; *p,0.05 vs. DOX-MI and DOX-MI+CC; n = 4–6.
Bottom right histogram (M) shows quantitative analysis of MMP-9 expression for all treatment groups. $p,0.01 vs. Sham; *p,0.01 vs. DOX-MI and
DOX-MI+CC; n = 4–6.
doi:10.1371/journal.pone.0101024.g005
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Finally, we needed to determine the effects of transplanted ES

and iPS cells on overall cardiac function in the DIC post-MI

myocardium. DIC and post-MI myocardium contribute to

anomalous left ventricular stiffness and systolic dysfunction

[4,20,24]. Within the current study, we demonstrate poor cardiac

function in DOX-MI and DOX-MI+CC mice. However, DIC

post-MI mice receiving stem cell transplantation exhibited

significantly improved fractional shortening and ejection fraction

compared to their non-stem-cell-transplanted DIC post-MI

counterparts. We acknowledge that mechanisms leading to

improved cardiac function are complex and multifaceted. We do

however suggest that the reduction in apoptosis and fibrosis is

directly related to the improvement in ventricular function

observed within the present study. Conceivably, it is possible to

note that cardiac function modulation may be attributable to the

cardioprotective effects of the Notch pathway activation (Figure 6,

C).

Stem cell transplantation, most notably ES cells, coincides with

concerns of teratoma formation. In the current study, we report no

evidence of teratoma formation in hearts transplanted with iPS or

ES cells (data not shown). Our findings are in agreement with

various published investigations indicating no teratoma formation

following transplantation of less than 300,000 stem cells [20,26].

Furthermore, our DIC post-MI model exhibited no indication of

immune rejection following stem cell transplantation as reported

previously by us and others [24,44].

In conclusion, the major findings of the present study include

the following for the first time: In the DIC post-MI heart,

following ES and iPS cell transplantation, (1) apoptosis was

significantly inhibited, (2) Notch-1 and Hes-1 expression were

significantly increased, (3) fibrosis and MMP-9 expression were

significantly diminished, (4) Akt activation was significantly

enhanced and PTEN levels were abolished, and (5) cardiac

dysfunction was mitigated. We would like to point out that our

findings suggest transplanted iPS and ES cells have similar

cytoprotective potential within the DIC post-MI myocardium.

Furthermore, our findings are novel and, for the first time, provide

evidence indicating the Notch pathway plays a role in DIC post-

MI cardioprotection. However, future studies are warranted, using

specific inhibitors of the Notch and Akt pathways, to understand

the exact mechanisms by which ES and iPS cells protect the DIC

post-MI myocardium from apoptosis and fibrosis.
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Figure 6. Effects of transplanted ES and iPS cells on cardiac function. Left top (A) histogram show that average left ventricular fractional
shortening percentage (FS) significantly improved 2 weeks post-MI in the ES and iPS cell treated groups when compared with DOX-MI and DOX-MI+
CC. $p,0.001 vs. Sham; *p,0.05 vs. DOX-MI and DOX-MI+CC. Left bottom (B) histogram show that average left ventricular ejection fraction
percentage (EF) significantly improved 2 weeks post-MI in the ES and iPS cell treated groups compared with DOX-MI and DOX-MI+CC groups. $p,
0.001 vs. Sham; *p,0.05 vs. DOX-MI and DOX-MI+CC; n = 4–8 animals. Right diagram (C) is a representation of the predicted pathway by which stem
cells contribute to cardioprotection and improved left ventricular function in the DIC post-MI heart.
doi:10.1371/journal.pone.0101024.g006
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