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ABSTRACT

Atherosclerosis is a chronic inflammatory disease of the arterial intima, characterized by 
accumulation of lipoproteins and accompanying inflammation, leading to the formation of 
plaques that eventually trigger occlusive thrombotic events, such as myocardial infarction 
and ischemic stroke. Although many aspects of plaque development have been elucidated, 
the role of extracellular vesicles (EVs), which are lipid bilayer-delimited vesicles released 
by cells as mediators of intercellular communication, has only recently come into focus of 
atherosclerosis research. EVs comprise several subtypes that may be differentiated by their 
size, mode of biogenesis, or surface marker expression and cargo. The functional effects of 
EVs in atherosclerosis depend on their cellular origin and the specific pathophysiological 
context. EVs have been suggested to play a role in all stages of plaque formation. In this 
review, we highlight the known mechanisms by which EVs modulate atherogenesis and 
outline current limitations and challenges in the field.

Keywords: Extracellular vesicles; Atherosclerosis; Inflammation; Plaque, Atherosclerotic; 
Thrombosis

INTRODUCTION

Ischemic heart disease and stroke, 2 main consequences of atherosclerotic cardiovascular 
disease (ASCVD), are the leading causes of death worldwide.1 Atherosclerosis is a disease 
of the arterial intima, characterized by plaque-forming accumulation of lipoproteins and 
necrotic debris covered by a fibrous cap. Atherosclerotic lesion formation is a slow progress 
that remains asymptomatic for decades. Clinical symptoms appear upon significant blood 
flow reduction due to obstruction or even occlusion of arterial blood vessels, the most well-
known examples being myocardial infarction or cerebral stroke. Constitutive risk factors for 
atherosclerosis are genetics, sex, and age, while the most important modifiable major risk 
factors include hypercholesterolemia, hypertension, tobacco smoking and diabetes mellitus.

Atherosclerotic lesion formation is initiated by endothelial activation, triggered by the 
aforementioned risk factors, and by the subendothelial retention of low-density lipoprotein 
(LDL) as well as other apolipoprotein B-carrying particles.2 Subsequently, LDL-modification 
results in the generation of pro-inflammatory mediators that trigger chemokine secretion 
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and adhesion molecule expression, which entail leukocyte transmigration into the vascular 
intima. The pro-inflammatory milieu further promotes the oxidation of accumulated LDL 
particles, resulting in the generation of oxidized LDL (oxLDL). Likewise, modification of 
cellular lipids and proteins by lipid peroxidation products results in membrane decoration 
with oxidation specific epitopes (OSEs), which are recognized as sterile damage-associated 
molecular patterns (DAMPs) that trigger and propagate the inflammatory process. 
Concurrently, vascular smooth muscle cells (VSMCs) of the vessel media are stimulated to 
proliferate and—at later stages—also migrate into the intimal layer. Resident and recruited 
macrophages, as well as phenotype-switched macrophage-like VSMCs, phagocytose oxLDL 
and turn into foam cells. At this stage, atherosclerosis is morphologically discernable by 
visible fatty streaks in the vessel wall. As foam cells accumulate and undergo apoptosis and 
necrosis, a necrotic core forms. The plaque grows, and remodeling of the arterial wall and 
extracellular matrix (ECM) are accompanied by plaque calcification. Eventual plaque rupture 
or erosion can result in thrombus formation.3,4 Rupture-prone plaques are characterized 
by large lipid cores and increased inflammation, followed by metalloproteinase-mediated 
degradation of the fibrous cap. Once ruptured, they release tissue factor (TF) and 
procoagulant lipids. In plaque erosion, loss of the endothelial monolayer integrity and 
endothelial desquamation expose procoagulant components of the fibrous cap.5,6

Over the past decades, insights on the role of a novel contributor to intercellular 
communication emerged, namely extracellular vesicles (EVs). EVs comprise various lipid 
bilayer-delimited vesicles released by a cell, and levels of EVs in circulation have been 
found to be associated with increased ASCVD risk. Notably, EVs also seem to participate in 
atherogenesis at all stages. Understanding the precise role and mechanisms of actions of 
EVs in ASCVD might therefore equip us with novel means to interfere with atherogenesis 
and prevent its detrimental consequences. The present review aims to summarize the 
current literature on EVs as pathogenic effectors in atherosclerotic lesion initiation, lesion 
progression and plaque vulnerability.

1. EVs
In the “minimal information for studies of extracellular vesicles” (MISEV) position paper 
20237 EVs are defined as “particles that are released from cells, are delimited by a lipid bilayer, 
and cannot replicate on their own (i.e., do not contain a functional nucleus).” Initially 
largely dismissed as cell debris, technical advances gradually enabled us to not only more 
accurately identify various vesicular cell-derived structures, but also determine their diverse 
sources and functions. The nomenclature of EVs in literature is unfortunately inconsistent 
and isolation methods should be meticulously compared even if an employed term appears 
to indicate a specific EV-subset (e.g., exosome – see below).8 Initially, the most popular term 
was “microparticles,” followed by the trend of using the (later on more strictly defined) 
terms “exosomes” and “microvesicles” to denote 2 subtypes of EVs that may be distinguished 
by their mode of biogenesis (Fig. 1). Exosomes are smaller EVs (<150 nm) of endosomal 
origin that are initially stored intracellularly in “multivesicular bodies” (MVB) and released 
upon MVB fusion with the plasma membrane. In contrast, “microvesicles” or “ectosomes” 
directly derive from the plasma membrane by outward budding and subsequent membrane 
constriction and separation at the budding site. Their size usually ranges between 150–1,000 
nm.9 Verifying the release mechanism of EVs is tedious and EV isolation methods are limited 
regarding the purity of the EV subtypes they yield.10,11 Consequently, the MISEV guidelines 
encourage the use of more descriptive terms like “small” and “large” EVs together with 
detailed reports on isolation and characterization methods.12
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In this review, wherever possible, we will indicate whether findings pertain to small 
(exosomes) and large (microvesicles) extracellular vesicles (sEVs/lEVs). If the main category 
of EVs remains unclear, we will stick to the term “EVs.”

Every cell, including plant cells, and even bacteria and mitochondria,13,14 is capable of 
releasing EVs. Initially, EVs were perceived as a mean to dispose of obsolete proteins. 
Nowadays, we know that EVs participate in intercellular communication in an auto-, para- 
and endocrine manner. EVs inherit content and surface markers from their parental cells.8,9 
Their cargo includes lipids, proteins, metabolites and nucleic acids. Furthermore, the 
EV-membrane can also display membrane modifications like OSEs, which are a result of 
lipid peroxidation in conditions of increased oxidative stress, as it can occur during cellular 
activation and cell death.15 Altogether, the specific cargo of EVs depends not only on their 
parental cell, but also on the pathophysiological context.16 At the recipient cell, signal 
transmission can include surface (receptor) binding, vesicle uptake and membrane fusion.9

The context-specific regulation of EV-biogenesis and cargo-selection indicates their potential 
as diagnostic and prognostic biomarkers.16In vivo imaging and quantification of EVs is to 
some extent possible,17,18 but measurements in secreted body fluids (e.g., venous blood, 
saliva, urine, …) are undoubtedly more feasible and robust. In conformity with our general 
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Fig. 1. EV biogenesis and characteristics. 
EVs are classically suggested to either be formed intracellularly, assembled in MVBs and be released as 
“exosomes” or they may form by direct blebbing from the plasma membrane (“microvesicles”). Intersections with 
the endosomal pathway and autophagy exist. EVs inherit cell-derived (modified) membrane lipids and proteins, 
and cytosolic cargo, including nucleic acids and cell organelle components. 
ALIX, ALG-2 interacting protein X; ARRDC1, arrestin domain containing 1; CD, cluster of differentiation; ESCRT, 
endosomal sorting complex required for transport; EV, extracellular vesicle; MHC, major histocompatibility 
complex; MVB, multivesicular bodies; TSG101, tumor susceptibility gene 101 protein; VSP4A/B, vacuolar protein 
sorting 4 homolog A/B.



perception of blood biomarkers, the concept for circulating EVs is that changes in the levels 
of bulk EVs or specific subsets of EVs reflect pathological conditions and diseases.

Studies in mice which were intravenously injected with EVs have shown that EVs are 
rather short-lived (minutes to hours) in the circulation.19,20 Nevertheless, there is limited 
understanding of EV-mobility,21 particularly regarding the speed, quantity and mechanisms 
of EV-exit and -entry from and to blood circulation.22 EVs derived from various tissues (e.g., 
adipose tissue, muscles, lung, liver, …) can be found in blood circulation, but they only 
amount to 0.2% of circulating EVs. More than 90% of plasma EVs derive from hematopoietic 
cells, first and foremost platelets (13%–51%), followed by leukocytes (8%–45%).23,24 About 
5% of the EVs are derived from endothelial cells (ECs).24 Table 1 provides an overview of 
commonly used marker molecules to identify the cellular origin of EVs.25-29

Circulating EVs have been shown to be increased in patients with traditional cardiovascular 
risk factors30,31 like high blood pressure,32,33 dyslipidemia,30,34,35 diabetes,33,36,37 obesity,38 
metabolic syndrome,39 smoking,40,41 unhealthy diet,42 physical inactivity.43 Moreover, 
circulating EV subset levels reflect atherosclerotic changes, such as endothelial 
dysfunction,44 carotid intima-media thickness,44,45 coronary plaque presence and even 
plaque composition.46-49 As plaque composition affects plaque vulnerability, circulating EVs 
might not only indicate disease burden in stable atherosclerosis but also reflect unstable 
atherosclerotic disease and predict acute occlusive events. Several studies emphasize the 
independent prognostic value of EVs for future cardiovascular events.50-53 More detailed 
information on EVs as biomarkers in ASCVD are provided in already existing reviews.20,25,54 
We here focus on their pathophysiological role in atherogenesis (Fig. 2).

Supplementary Table 1 shows mouse studies, which investigate the effect of EV 
administration on atherosclerosis. These studies demonstrate that the origin and activation 
status of the cells from which EVs are derived determines their impact on atherosclerotic 
lesion formation. Notably, if released from unstimulated cells or healthy donors, EVs do not 
seem to impact or even improve atherosclerosis, whereas EVs derived from cells activated by 
proatherogenic triggers promote disease.

EVs IN ATHEROSCLEROTIC LESION INITIATION

EVs shed by various cells participate in the initiation of atherosclerosis by affecting and 
interacting with the endothelium. Thus, they do not only reflect the presence of disease, but 
also actively participate in pathophysiological processes (Fig. 3).
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Table 1. Commonly used markers for the determination of EV-origin
Cell of origin EV marker
Endothelial cell CD31+, CD41−, CD42−, CD62E+, CD144+
Platelet CD31+, CD41+, CD42+, CD61+, CD62p+, CD142+
Monocyte CD11b+, CD14+, CD31+, CD64+
Neutrophil CD15+, CD66b+, MPO+
Lymphocyte CD3+, CD45+
Leukocyte CD45+
Red blood cell CD235a+
CD, cluster of differentiation; EV, extracellular vesicle; MPO, myeloperoxidase; “+”, positive; “-”, negative.



1. �EVs released under the influence of ASCVD risk factors induce endothelial 
dysfunction

In patients with an ASCVD risk factor profile, elevated levels of circulating EVs have a 
functional impact on atherosclerosis initiation by activating ECs, promoting endothelial 
barrier permeability and leukocyte attachment and subsequent transmigration. For 
example, lEVs isolated from high-fat diet (HFD)-fed rats55 as well as cholesterol-induced 
monocyte-derived lEVs56 induce adhesion molecule expression and reactive oxygen species 
(ROS) formation in ECs. Moreover, lEVs isolated from patients with metabolic syndrome 
decrease transendothelial electrical resistance of human aortic ECs and promote monocyte 

236https://doi.org/10.12997/jla.2024.13.3.232

EVs as Mediators in ASCVD

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

Fig. 2. EVs in atherosclerotic lesion progression and atherothrombosis. 
Homeostatic ECs under laminar flow are characterized by endothelial KLF2-expression and atheroprotective EC-derived EVs that carry miR-10a and miR-143/145. 
In contrast, various noxes and EVs derived from activated cells promote monocyte inflammation, adhesion and transmigration. EVs from stimulated cells promote 
M1-like differentiation or foam cell formation of monocytes and macrophages. Only erythrocyte-derived EVs are known to promote Mheme-like differentiation 
of monocytes. T-cell derived EVs and cholesterol-bearing EVs promote cholesterol uptake of macrophages, whereas VAT-derived EVs inhibit ABCA1- and ABCG1-
mediated cholesterol efflux, and PVAT-EVs promote cholesterol efflux. Monocyte/macrophage and endothelial EVs mostly promote VSMC proliferation, migration 
and phenotype switching. Furthermore, EVs participate in macrophage apoptosis induction, in part by sustaining ERK1/2 phosphorylation, which ultimately leads to 
an increase of pro-apoptotic ceramides. Pro-inflammatory agents (oxLDL, IL-33) promote the release of procoagulant PS- and TF-bearing EVs from monocytes. EVs 
from monocytes and ECs promote coagulation via the extrinsic coagulation pathway (FVII, TF), whereas EVs from erythrocytes and platelets activate the intrinsic 
coagulation pathway (FXII). MDA-bearing EVs provide a platform for FX aggregation and activation. OSE-EV catalyzed coagulation can be mitigated by natural IgM 
antibodies. EVs carry metalloproteinases (MMPs, ADAMs) and participate in ECM degradation. They may further promote EC desquamation and neutrophil adhesion 
and NET-expulsion, which contribute to plaque erosion-related atherothrombosis. Lastly, the PS-Annexin V-S100A9 membrane complex of VSMC-derived EVs as well 
as their cytosolic TNAP facilitate calcification nucleation. EGFR promotes, whereas DDR1 prevents the release of calcifying EVs from VSMCs. 
AA, arachidonic acid; ABCA1/ABCG1, ATP-binding cassette transporter A1/G1; ADAM, a disintegrin and metalloproteinase; AnV, Annexin V; DAMP, damage-associated 
molecular pattern; DDR1, discoidin domain receptor 1; EC, endothelial cell; ECM, extracellular matrix; EGFR, epidermal growth factor receptor; ERK, extracellular 
signal-regulated kinase; EV, extracellular vesicle; FVII/FX/FXII, coagulation factor 7, 10, 12; IgM, immunoglobulin M; IL, interleukin; KLF2, Krüppel-like factor 2; 
LDL, low-density lipoprotein; LPC, lysophosphatidylcholine; LPS, lipopolysaccharide; MDA, malondialdehyde; miR, microRNA; MMP, matrix metalloproteinase; 
MPO, myeloperoxidase; NET, neutrophil extracellular trap; OSE, oxidation-specific epitope; oxLDL, oxidized low-density lipoprotein; PAMP, pathogen-associated 
molecular pattern; pERK1/2, phosphorylated extracellular signal-regulated kinase 1/2; PLA2, phospholipase A2; POVPC, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-
3-phosphocholine; PS, phosphatidylserine; PVAT, perivascular adipose tissue; SR, scavenger receptor; TF, tissue factor; TNAP, tissue non-specific alkaline 
phosphatase; TNF, tumor necrosis factor; VAT, visceral adipose tissue; VSMC, vascular smooth muscle cell.



transcytosis in vitro. Both effects are abolished by Rap1 GTPase inhibition,57 a molecule 
involved in signal transduction and cytoskeleton rearrangements.58 Infusion of sEVs isolated 
from abdominal aortic VSMCs of diabetic mice or isolated from murine bone marrow-derived 
macrophages, which were cultured under high-glucose conditions, aggravates atherosclerotic 
plaque formation in apolipoprotein E (ApoE)−/− mice.59,60 Furthermore, high glucose stimulates 
human coronary artery ECs to release lEVs with increased pro-inflammatory ROS and NADPH-
oxidase (NOX) activity,61 as well as pro-apoptotic C16 ceramide content enrichment.62In vitro 
experiments implicate miR-221 and -222 related increase of RhoA activity in the induction of 
adhesion molecule expression in ECs, which were incubated with high-glucose treated VSMC-
derived sEVs.60 Thus, EVs that are released under conditions related to hyperlipidemia and 
diabetes have the capacity to induce endothelial activation.

Not only metabolic dysbalance, but also chemical stimulation elicits cellular release of EVs 
that induce endothelial dysfunction. Nicotine incites monocytes to release sEVs in vitro and 
in vivo in HFD-fed ApoE−/− mice, and injection of nicotine-induced sEVs promotes plaque 
formation in ApoE−/− mice without influencing the weight or serum cholesterol and triglyceride 
levels of the animals. Importantly, nicotine-induced plaque formation could be mitigated 
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Fig. 3. EV as inducers of endothelial activation and dysfunction. 
EVs released under the influence of ASCVD risk factors (nicotine/tobacco smoke, glucose, hyperlipidemia, …) 
or by otherwise stimulated cells (PAMPs: LPS; DAMPs: OxLDL, mitochondria, OSEs, …) activate endothelial 
cells (ROS increase, NF-κB pathway activation). This induces the release of pro-inflammatory cytokines (IL-6, 
IL-1β, TNF) and the expression of adhesion molecules (ICAM-1), leading to increased endothelial permeability 
and leukocyte transmigration and promoting endothelial cell death (apoptosis, pyroptosis). Various microRNAs 
(miR221/222, miR23a-3p, miR155), phospholipid-related molecules (arachidonic acid, PS, C16), cytokines (TNF, 
RANTES), oxidative stress-associated molecules (MDA/POVPC, ROS, NOX, SOX) and proteins relevant for signal 
transduction (Rap1, c-Src kinase) are involved in these processes. Inhibition of the release of EVs by activated 
cells (e.g., with GW4869) can mitigate EV-mediated pro-inflammatory intercellular communication. Natural IgMs 
neutralize the effect of OSE-bearing (MDA, POVPC) EVs. 
ASCVD, atherosclerotic cardiovascular disease; CD, cluster of differentiation; C16, C16 ceramide; c-Src kinase, 
proto-oncogene tyrosine-protein kinase Src; DAMP, damage-associated molecular pattern; DUSP5, dual 
specificity phosphatase 5; EV, extracellular vesicle; ICAM-1, intercellular adhesion molecule 1; IL, interleukin; LPS, 
lipopolysaccharide; MDA, malondialdehyde; miR, microRNA; NF-κB, nuclear factor kappa-B; NLRP3, NLR family 
pyrin domain containing 3; NOX, NADPH oxidase; OSE, oxidation-specific epitope; OxLDL, oxidized low-density 
lipoprotein; PAMP, pathogen-associated molecular pattern; pERK1/2, phosphorylated extracellular signal-regulated 
kinase 1/2; POVPC, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine; PS, phosphatidylserine; RANTES, 
regulated upon activation, normal T Cell expressed and presumably secreted; Rap1, Ras-associated protein 1; RhoA, 
Ras homolog family member A; ROS, reactive oxygen species; SOX, superoxide radical; TNF, tumor necrosis factor; 
TLR4, Toll-like receptor 4.



by miR-155 inhibition, or prevented by GW4869 via inhibition of EV formation.41 GW4869 is 
one of the most commonly used pharmacological inhibitors of EV release. It inhibits neutral 
sphingomyelinase-2 (nSMase2), a key enzyme in ceramide generation.63 Notably, smokers 
have higher circulating levels of CD14+ sEVs that are enriched in miR-155. In vitro, these sEVs 
increased CCL-2, interleukin (IL)-6, tumor necrosis factor (TNF) secretion and intercellular 
adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression of 
ECs. Interestingly, these effects did not occur if the EVs had been depleted of the monocyte-
derived subset.41 However, as discussed in the following chapters, other studies have shown 
that EVs from various cell types may induce endothelial dysfunction and promote monocyte 
adhesion to endothelium.

2. Atherosclerotic disease related EVs sustain endothelial dysfunction
EVs reflect the status quo of their parental cells. Therefore unsurprisingly, circulating EVs of 
patients with manifest atherosclerotic disease have been suggested to not only reflect, but 
also affect atherosclerotic lesion formation by inducing EC apoptosis and inflammation, as 
suggested by in vitro experiments.64,65 For example, in the study of Zhang et al.,64 circulating 
sEVs isolated from patients with coronary artery disease induced expression of the 
cytokines IL-1β and TNF, as well as expression of ICAM-1, but not of IL-6 and VCAM-1 in ECs. 
Interestingly, in high-cholesterol fed LDL receptor (LDLR)−/− rats, reduction of EV-release 
by intraperitoneal injection of GW4869 could attenuate vascular inflammation, including 
macrophage infiltration, in vivo.66

EVs that affect the vascular endothelium may not only originate from circulating blood 
cells, but also from plaque-associated cells. Large and small EVs are present in human 
atherosclerotic plaques, the majority stemming from immune cells.67-69 Notably, the 
concentration of lEVs in human plaques exceeds the concentration in plasma at least 
200-fold.67 The landmark study of Leroyer et al.67 specified parental cells of human plaque-
associated lEVs as 29% macrophages, 27% erythrocytes, 15% lymphocytes, 13% smooth 
muscle cells, 8% granulocytes, and 8% ECs. Interestingly, platelet-lEVs were not detected.

A comparative study of human circulating and atherosclerotic plaque-derived lEVs showed 
that in vitro only plaque-lEVs transferred ICAM-1 to EC-membranes. Additionally, plaque-lEVs 
did not affect the release of IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1) or the 
expression of VCAM-1 and E-selectin by ECs.70 Perhaps contradictory, blood and plaque sEVs, 
but not plaque lEVs, from high cholesterol fed LDLR−/− rats with carotid-ligation increased 
the surface expression of ICAM-1 as well as VCAM-1 and E-selectin in primary ECs in vitro and 
of the carotid intima in vivo.66 In the study of Rautou et al.,70 human plaque-lEV mediated 
ICAM-1 transfer to ECs was inhibited by EV-pre-incubation with Annexin V, a classical 
binding partner of the membrane component phosphatidylserine (PS), but not by P-selectin 
glycoprotein ligand-1 (PSGL-1) or P-selectin neutralizing antibodies. The authors therefore 
concluded that PS-mediated membrane fusion71,72 is involved in ICAM-1 translocation. 
Accordingly, Peng et al.66 found that integrity of the vesicle-structure is important for rat 
plaque-sEV mediated ICAM-1 increase in ECs. However, they attribute this to EV-mediated 
transfer of miR-23a-3p and propose that miR-23a-3p targets dual specificity phosphatase 5 
(DUSP5) and maintains subsequent ERK1/2 phosphorylation resulting in increased ICAM-
1 expression. Notably, EV-induced carotid intimal inflammation, arterial wall thickening 
and lumen narrowing in standard diet fed LDLR−/− rats could be abrogated by simultaneous 
injection of miR-23a-3p antagomir.66
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Only a few studies evaluate differences of EVs in stable and unstable ASCVD with respect 
to their influence on endothelial dysfunction. Rautou et al.70 showed that EVs derived from 
symptomatic human plaques promoted monocyte adhesion to ECs more strongly than EVs 
derived from asymptomatic plaques. Since plaque-EV subsets, as defined by cellular origin, 
do not differ between symptomatic and asymptomatic plaques,67 the difference in monocyte 
adhesion might stem from a change in EV-cargo. Accordingly, in the study of Wen et al.,73 the 
number of circulating sEVs was lower in patients with unstable atherosclerosis than in those 
with stable disease, but sEVs from patients with unstable atherosclerosis possessed a greater 
potential to stimulate EC proliferation and migration.

3. EVs from various vascular cells induce endothelial dysfunction
EC EVs
Endothelial dysfunction can be promoted by autocrine signaling of released pro-inflammatory 
EVs. Studies in vitro allow the dissection of several scenarios of auto-/paracrine signaling 
of EC-EVs. EVs from quiescent or shortly starved (2-hour) ECs appear to have a moderate 
pro-inflammatory effect on quiescent ECs, as evidenced by cytokine, adhesion molecule74 
or superoxide75 induction. However, lEVs derived from (apart from 24-hour starvation) 
unstimulated ECs suppressed ICAM-1, but not VCAM-1 expression of TNF-stimulated ECs in 
vitro and reduced endothelial ICAM-1 expression of ApoE−/− mice on high-fat, high-cholesterol 
diet upon injection in vivo. The anti-inflammatory effect was attributed to miR-222 and 
interestingly lEVs derived from high-glucose treated cells were shown to carry lower amounts 
of miR-222 and possess less anti-inflammatory capacity in vitro and in vivo.76 While the effect 
of EVs derived from stimulated ECs on pre-stimulated tissue remains uninvestigated, several 
studies confirm that EVs derived from stimulated ECs induce endothelial dysfunction in 
quiescent ECs in several ways, amongst others,77 by transferring cytokines and adhesion 
molecules,74 by decreasing the phosphorylation of endothelial nitric oxidase synthase in 
recipient cells,78 and by impairing adherens junction integrity via transfer of c-Src kinase.79

Platelet EVs
Platelet derived EVs represent the largest proportion of circulating EVs.23,24 Activation of 
platelets leads to the release of EVs that activate ECs and promote monocyte and neutrophil 
adhesion in vitro.80–84 The transfer of arachidonic acid and subsequent COX-2 induction in ECs 
have been suggested to mediate the in vitro effects of platelet-derived EVs.80,81 Furthermore, 
platelet-derived lEVs were shown to deposit the chemokine RANTES on activated 
endothelium and murine atherosclerotic arteries in vitro.83

Leukocyte EVs
Compared to other vascular cells, leukocytes are especially sensitive to inflammatory triggers 
and naturally efficient mediators of tissue inflammation. Thus, EVs derived from leukocytes, 
especially monocytes, are particularly important with respect to the induction of endothelial 
dysfunction and aggravation of atherosclerosis.41,65,68

Atherosclerotic lesions accumulate LDL, which is subsequently subjected to lipid oxidation, 
resulting in the generation of oxLDL that acts as sterile DAMP.85 OxLDL induces lEV release 
by primary macrophages, a process mediated by the scavenger receptor CD36 and activation 
of caspase 3 and 7.86 In turn, EVs derived from oxLDL-stimulated macrophages activate the 
nuclear factor (NF)-κB pathway and increase pyroptosis and LDH release of EV-treated ECs 
in vitro.87

239https://doi.org/10.12997/jla.2024.13.3.232

EVs as Mediators in ASCVD

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis



OxLDL-induced pro-inflammatory signaling is partly mediated by Toll-like receptor 4 
(TLR4).88,89 A more classical TLR4-ligand is lipopolysaccharide (LPS).88 LPS-activated 
monocytes have been shown to release sEVs that trigger NF-κB responses90 and apoptosis91 
in ECs in vitro, and sEVs isolated from LPS-treated murine mature dendritic cells have been 
shown to increase VCAM-1, ICAM-1 and E-selectin expression of ECs in vitro and in the aorta 
of ApoE−/− mice following infusion in vivo.92 Likewise, neutrophils activated by the chemotactic 
bacterial peptide N-formylmethionyl-leucyl-phenylalanine release lEVs, which induce 
endothelial dysfunction in vitro and enhance atherosclerotic plaque formation upon infusion 
in ApoE−/− mice in vivo. MiR-155-delivery by lEVs was identified as important mediator of 
NF-κB activation in recipient ECs.93 With respect to LPS-treated dendritic cells, membrane-
associated TNF of released sEVs was shown to be involved in the induction of NF-κB in ECs 
in vitro. Nevertheless, neither TNF-silencing in dendritic cells nor incubation of sEVs with 
TNF-neutralizing antibody could fully reduce sEV-induced adhesion molecule expression 
of ECs, suggesting the presence of additional mediators.92 In this context, we showed that 
LPS-treated monocytes release high numbers of naked and lEV-enclosed mitochondria, 
which incite TNF and type I interferon (IFN) responses in ECs in vitro. Depletion of naked 
mitochondria significantly reduced the pro-inflammatory potential of these EVs. Notably, 
the potential of the lEVs to induce TNF responses in ECs was strongly dependent on 
mitochondrial respiratory activity and ROS generation in monocytes. The in vitro findings 
were corroborated by increased levels of EVs that express the circulating mitochondrial 
marker TOM22 in healthy volunteers following low-dose LPS injection. Moreover, like in vitro 
generated EVs from stimulated monocytes, circulating EVs that were isolated after low-dose 
LPS injection in healthy volunteers induced TNF and type I IFN responses in ECs in vitro.94 
Mitochondria have further been shown to have the ability to activate the NLR family pyrin 
domain containing 3 (NLRP3) inflammasome, leading to IL-1β secretion95 and monocyte-
derived lEVs were shown to activate ECs in vitro in an IL-1β dependent manner.96

Apart from DAMPs and pathogen-associated molecular patterns (PAMPs), nutrient changes 
can also provoke monocytes to shed pro-inflammatory EVs. Small EVs derived from starved 
monocytes disrupt EC integrity and induce apoptosis of ECs in vitro.91 Infusion of lEVs derived 
from starved monocytes promoted T-cell infiltration in the vessel wall of ApoE−/− mice, 
and lEV-uptake by ECs in vitro resulted in increased ROS generation as well as CCR2, IL-6, 
MCP-1, and ICAM-1 expression.97 Furthermore, EVs released by monocytes, which were 
incubated with unesterified cholesterol, increased NF-κB-mediated ICAM-1 expression and 
monocyte adhesion in mouse aortic explants and cultured ECs. Interestingly, the addition of 
unesterified cholesterol to human monocytes induces mitochondrial complex II-dependent 
accumulation of superoxide and peroxides in the monocytes as well as their lEVs.56

In conclusion, monocytes and macrophages react to DAMPs, PAMPs and nutrient changes with 
the release of small and large EVs, which induce NF-κB mediated activation of ECs. Mitochondrial 
activity may be critically involved in the generation of these pro-inflammatory EVs.

Oxidation specific epitope-bearing EVs
EVs may derive from different parental tissues, but in specific settings their properties are 
nevertheless alike. Membrane phospholipids are prominent subjects of inflammation-
associated oxidative processes85 and EVs derived from activated cells carry oxidized compounds, 
such as the OSE malondialdehyde (MDA),98 or the oxidized phospholipid 1-palmitoyl-2-(5-
oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC).99 EVs that carry OSEs were shown 
to activate ECs in vitro,94,99 entailing increased monocyte adhesion.99 Importantly, natural 
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immunoglobulin M (IgM) antibodies that target OSEs can prevent EV-mediated proatherogenic 
effects,98-100 and several epidemiological data have shown an inverse association of natural IgM 
levels in plasma with cardiovascular outcomes.101 Thus, OSE-carrying EVs may represent an 
important antigenic target, which allows these natural IgM antibodies to mediate protective 
functions.85

EVs IN ATHEROSCLEROTIC LESION PROGRESSION

1. Activated endothelium releases pro-inflammatory EVs
External atherosclerotic stimuli like tobacco smoke102 and particulate matter103 as well as 
internal stress signals like hypoxia,104 C-reactive protein105 or IL-1β106 were reported to activate 
ECs and stimulate endothelial shedding of EVs in vitro and in vivo. Compared to quiescent 
ECs, which shed miR-10a-containing EVs that can suppress inflammation in vitro and in 
peritonitis-induced C57BL/6 mice in vivo,107 activated ECs shed sEVs, whose miRNAomic 
and proteomic profile is associated with NF-κB-signaling, necroptosis, cytokine-cytokine 
receptor interaction, and cell cycle regulation. Accordingly, these EVs provoke transcriptional 
responses associated with monocyte adhesion, migration, inflammation, proliferation, 
differentiation and apoptosis in recipient monocytes.106 The precise effect on monocyte 
differentiation appears to depend on the exact setting. MiR-155-carrying sEVs released by 
oxLDL-treated ECs may drive untreated monocytes towards anti-inflammatory M2-like 
polarization108 and monocytes pre-stimulated with phorbol 12-myristate-13-acetate (PMA) 
towards pro-inflammatory M1-like polarization.109 The pro-inflammatory environment of 
atherosclerotic plaques might favor the latter effect.

The functional impact of EC-EVs on monocyte activation is furthermore influenced by 
shear-stress and cell morphology. Expression of the transcription factor Krüppel-like factor 
2 (KLF2) is a characteristic of ECs under atheroprotective laminar flow,110,111 and KLF2-
transduced EC-EVs suppress monocyte activation in vitro and reduce atherosclerosis of HFD-
fed ApoE−/− mice upon infusion in vivo.109 Loss of this anti-inflammatory mechanism might 
contribute to atherogenesis under turbulent flow conditions.110 Additionally, under laminar 
flow conditions, ECs maintain an elongated morphology, which is lost at atherosclerosis-
prone vessel sites with turbulent blood flow.110,112 Compared to EC-EVs derived from elongated 
endothelium, EC-EVs derived from cobblestone-shaped endothelium lack anti-inflammatory 
properties (e.g., miR-10a) that dampen monocyte activation.107,113

It is important to bear in mind, that in each of the abovementioned settings EC-EVs were 
generated in vitro. Adding to the general questionability of in vivo validity of in vitro findings, 
the polarized nature of the endothelium further complicates the matter of evaluating the 
properties of released EVs. Recently, it has been shown that, depending on their budding-
site (apical or basolateral), EC-sEVs differ in their miRNA- and protein-cargo. Proteins of 
sEVs from the apical side are associated with metabolic pathways, whereas proteins from the 
basolateral side are associated with ECM interactions, cholesterol metabolism and transport, 
and protein degradation.106 Thus, functional differences of these EV populations in vivo or in 
vitro require further attention in future studies.

2. EVs activate monocytes and facilitate foam cell formation
Monocyte recruitment and foam cell accumulation are hallmarks of the growing atherosclerotic 
plaque. Newly transmigrated monocytes are faced with a lipid-rich and pro-inflammatory 
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milieu, which promotes their differentiation into macrophages with different functional states, 
the large diversity of which has been revealed by recent single-cell analyses.114,115 Simplified, the 
atherosclerotic plaque is dominated by foam-cell macrophages and pro-inflammatory M1-like 
macrophages, but also contains anti-inflammatory M2-like or Mheme-like macrophages.116

In general, EVs derived from vascular or plaque-resident cells, including platelets,98 
macrophages,117,118 VSMCs,119 and T-cells,120 as well as circulating sEVs from patients with 
acute myocardial infarction,121 were reported to activate monocytes and induce macrophage 
foam cell formation in vitro and aggravate atherosclerosis in ApoE−/− mice in vivo.121 Apart 
from suggested roles of miR-223117 and miR-146a,118 cholesterol-flux related mechanisms are 
inevitably central to the involvement of EVs in foam cell formation. Cholesterol accumulation 
in macrophages is either promoted by increased uptake of cholesterol or its decreased efflux 
via ATP binding cassette subfamily A member 1 (ABCA1) and subfamily G member 1 and 
(ABCG1). EVs can have an impact on both. With respect to cholesterol uptake, EVs were 
shown to either enhance extracellular oxLDL-uptake by macrophages,121,122 for example by 
upregulating scavenger receptor expression,121 or serve as vehicle of cholesterol delivery.88,120 
When compared to their parental cells, EVs may be enriched in cholesterol content, and their 
ability to induce foam cell formation in vitro has been shown to correlate with the amount of 
cholesterol they carry.88

Even though the majority of circulating EVs appear to be pro-inflammatory, one particular 
subtype, namely erythrocyte-derived EVs, have been reported to have the ability to promote 
monocyte conversion to an anti-inflammatory Mheme-like116,123 phenotype. Erythrocyte-
derived EVs were shown to upregulate the expression of the cholesterol-efflux transporter 
ABCG1 as well as the anti-inflammatory enzyme heme-oxygenase-1, resulting in a decreased 
expression of the pro-inflammatory macrophage surface marker CD86 and concomitant 
suppression of TNF-secretion. Furthermore, erythrocyte-EVs attenuated oxLDL-induced 
macrophage foam cell formation in vitro and reduced atherosclerosis in ApoE−/− mice upon 
injection.124 Even though the actual in vivo relevance of the small subset of erythrocyte-EVs 
could be negligible, their anti-inflammatory properties might be of therapeutic value.

Moreover, the study of Crewe et al.125 highlights that even “EV-minorities” like adipocyte-
derived EVs have the potential to effectively participate in interorgan-communication via the 
route of circulation. In mice that overexpress mitochondrial ferritin in adipocytes, which 
is associated with mitochondrial dysfunction in hypertrophic adipocytes in the context of 
obesity, adipocyte-derived sEVs that carry mitochondrial components were shown to enter 
the circulation and transfer their cargo to cardiomyocytes. Of note, time was an important 
factor in this process, since mitochondrial component transfer was only detectable after 11 
weeks of observation, but not after 3 weeks. Thus, in chronic conditions like atherosclerosis, 
the potential importance of proportionally small subsets of EVs should not be dismissed.

Adipocyte-derived EVs were reported to represent the largest category of the small proportion 
of tissue-derived EVs in circulation.23 It is likely that EVs from adipose tissue also signal to cells 
in plaques. It has been shown that sEVs derived from TNF-treated adipocytes increase VCAM-1 
expression of ECs and subsequent leukocyte attachment in vitro.126In vivo, administration of 
visceral adipose tissue (VAT)-derived sEVs from HFD-fed wildtype mice to hyperlipidemic 
ApoE−/− mice increased plaque burden and leukocyte infiltration in atherosclerotic lesions 
without changing the weight or plasma-lipid profile of the animals. In vitro, adipocyte derived 
sEVs have been shown to get engulfed by macrophages, but only EVs from visceral as opposed 
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to subcutaneous adipose tissue (SAT) facilitated macrophage foam cell generation through 
ABCA1, ABCG1 mediated cholesterol-efflux decrease as a consequence of downregulated 
expression of liver X receptor. Moreover, only VAT-sEVs from HFD-fed wildtype mice, as 
opposed to SAT-sEVs from HFD-fed or VAT-sEVs from chow diet-fed mice, induced TNF and 
IL-6 in macrophages and promoted a M1-like phenotype.127 Further adding to the importance 
of the type of adipose tissue, perivascular adipose tissue (PVAT)-derived sEVs isolated from 
wildtype mice on standard diet, but not SAT-sEVs, increase ABCA1 and ABCG1 mediated 
cholesterol efflux and therefore reduce oxLDL-induced macrophage foam cell formation in 
vitro.128 A follow-up study suggests the involvement of miR-382-5p-mediated induction of 
peroxisome proliferator-activated receptor gamma (PPARγ),129 a well-known promoter of 
cholesterol efflux and suppressor of inflammation in macrophages.130 In summary, atherogenic 
diet-fed mouse derived VAT-sEVs promote and PVAT-sEVs inhibit macrophage foam cell 
formation, emphasizing the importance of interorgan-communication in atherosclerosis.

3. EVs promote VSMC migration and phenotype switching
During the formation of an atherosclerotic plaque, VSMCs switch from their classical 
contractile phenotype to a synthetic state. Synthetic VSMCs show an increase in proliferation 
and migration. Further differentiation into osteogenic, mesenchymal, fibroblast-like, 
adipocyte-like, or macrophage-like VSMCs is possible and phenotype-switched VSMCs make 
up for about 30% of cells in atherosclerotic plaques.131-133

Several studies report that sEVs derived from oxLDL-stimulated monocytes or macrophages134-139 
promote the proliferative and migratory ability of VSMCs in vitro and in vivo.136 The same 
has been shown for sEVs released by nicotine-induced macrophages,140 macrophage foam 
cells,141 plasma-derived sEVs from atherosclerotic patients,141 lEVs from patients with 
metabolic syndrome and from HFD-fed but not standard diet-fed ApoE−/− mice,57 and EVs 
from TNF-stimulated VSMCs.77 The various microRNAs identified to be enriched in these 
EVs and transferred to VSMCs, including their proposed targets, are summarized in Table 2. 
Liu et al.138 further described that sEVs derived from oxLDL-stimulated monocytes reduced 
apoptosis of VSMCs in vitro, which they attributed to miR-106a-3p and its binding to caspase 
9. In contrast, sEVs released by LPS stimulated monocytes were reported to deliver caspase 1 
to VSMCs, resulting in induction of VSMC death.142

With respect to EC-derived EVs, sEVs released by IL-1β -stimulated ECs carry miRNAs 
and proteins that activate pro-inflammatory and atherogenic pathways in monocytes and 
VSMCs in vitro.106 Furthermore, sEVs released by LPS- or oxLDL-treated ECs promote VSMC 
proliferation, migration143,144 and phenotype switching in vitro.143 In contrast, EVs released 
by untreated144 or starved and apoptotic ECs145 still promote VSMC dedifferentiation,146 but 
reduce VSMC proliferation and migration. Injection of lEVs released by starved ECs in wildtype 
mice reduces neointima formation after wire-inflicted carotid artery injury. MiR-126-3p was 
identified as the predominant microRNA in these protective EC-EVs, and in a cohort of 176 
patients with coronary artery disease, patients with higher levels of miR-126 were less likely 
to require percutaneous coronary intervention.145 Finally, miR-143 and 145-enriched lEVs 
released by ECs under shear-stress or lEVs released by ECs overexpressing KLF2 were found 
to support maintenance of a contractile phenotype of VSMCs in vitro.147

In conclusion, EVs derived from activated cells contribute to VSMC proliferation, migration 
and phenotype switching, promoting their ability to contribute to fibrous cap formation and 
populate the plaque core as phenotype-switched cells.
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4. EVs and necrotic core formation
A dysbalance of cell death and efferocytosis leads to accumulation of dead cell material in the 
plaque, morphologically defined as the necrotic core, which is a hallmark of unstable, rupture-
prone plaques. As indicated above, the inflammatory milieu provokes the release of yet again 
pro-inflammatory and often pro-apoptotic EVs. Distler et al.148 explored this concept and 
showed that EVs derived from T-cells, which have been exposed to various apoptotic stimuli, 
are phagocytosed by murine macrophages and trigger apoptosis in vitro. Huber et al.149 showed 
similar effects in human macrophages and identified acid sphingomyelinase activation and 
subsequent generation of pro-apoptotic ceramides as essential steps in EV-induced apoptosis. 
More specifically, the authors propose that EVs promote ERK1/2 phosphorylation, and 
subsequent phospholipase A2 activation entails arachidonic acid generation, which in turn 
activates acid sphingomyelinase. Simulating plaque conditions, sEVs from TNF-treated ECs 
were shown to induce macrophage apoptosis in vitro,150 and sEVs from endotoxin-stimulated 
monocytes were shown to induce VSMC death in vitro.142 Thus, EVs have the capacity to 
contribute to plaque destabilization by promoting necrotic core formation.
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Table 2. Overview of studies on EV-effects on VSMCs
Parental cell type Treatment EV type EV cargo VSMC target VSMC effect Reference
PBMC LPS sEV Caspase-1 Viability↓ Sarkar et al. (2009)142

THP-1 oxLDL sEV LIPCAR CDK2↑, PCNA↑ Proliferation↑ Hu et al. (2021)139

THP-1 monocyte oxLDL sEV miR-106a-3p Caspase 9↓ Proliferation↑, viability↑ Liu et al. (2020)138

THP-1 monocyte oxLDL sEV circ_100696 miR-503-5p↓ Proliferation↑, migration↑ Liu et al. (2023)137

→PAPPA↑
RAW  264.7 oxLDL sEV miR-19b-3p JAZF1↓ Proliferation↑, migration↑ Wang et al. (2022)136

THP-1 macrophage oxLDL sEV miR-186-5p SHIP2↓ Viability↑, invasion↑ Ren et al. (2022)135

→PI3K/AKT/mTOR pathway↑
RAW 264.7 
macrophage

oxLDL sEV miR-503-5p smad7, smurf1/smurf2↓ Proliferation↑, migration↑ Wang et al. (2021)134

TGF-β1↑
RAW 264.7 
macrophage

Nicotine sEV miR-21-3p PTEN↓ Proliferation↑, migration↑ Zhu et al. (2019)140

J774a.1 foam cell oxLDL s+lEV pErk, pAkt↑ Adhesion↑, migration↑ Niu et al. (2016)141

actin cytoskeleton and focal 
adhesion pathway

Athero patient blood* sEV CD45 ↑ Adhesion↑, migration↑ Niu et al. (2016)141

MetS patient blood lEVs Rap1 ERK5/p38 pathway↑ Proliferation↑, migration↑, 
inflammation↑

Perdomo et al. (2020)57

VSMC TNF lEV MAPK, PCNA↑ Proliferation↑ Paudel und Kim (2020)77

HAEC IL-1β sEV miRNAome 
proteome

Inflammation↑ Raju et al. (2024)106

HUVEC oxLDL sEV LINC01005 miR-128-3p↓, KLF4↑ Proliferation↑, migration↑, 
phenotype switching↑

Zhang et al. (2020)143

HUVEC LPS sEV Proliferation↑ Xiang et al. (2021)144

None sEV Proliferation↓, migration↓, 
lipid accumulation↓

EC Starved, apoptotic lEV miR-126-3p LRP6↓ Proliferation↓, migration↓ Jansen et al. (2017)145

HUVEC sEV miR-26a Dedifferentiation↑ Lin et al. (2016)146

HUVEC Shear-stress, KLF2 → 
miR-143/145↑

lEV miR-143/145 Dedifferentiation↓ Hergenreider et al. 
(2012)147

circ, circualar; CD, cluster of differentiation; CDK2, cyclin-dependent kinase2; EC, endothelial cell; ERK, extracellular signal-regulated kinase; EV, extracellular 
vesicle; HAEC, human aortic EC; HUVEC, human umbilical vein EC; JAZF1, juxtaposed with another zinc finger protein 1; J774a.1, murine macrophage cell 
line; KLF, Krüppel-like factor; lEV, large extracellular vesicle; LINC, long intergenic non-coding RNA; LIPCAR, long intergenic noncoding RNA predicting cardiac 
remodeling; LPS, lipopolysaccharide; LRP, LDL receptor-related protein; MAPK, mitogen-activated protein kinase; MetS, metabolic syndrome; miR, microRNA; 
mTOR, mammalian target of rapamycin; OxLDL, oxidized low-density lipoprotein; PAPPA, pregnancy-associated plasma protein-A; PBMC, peripheral blood 
mononuclear cell; PCNA, proliferating cell nuclear antigen; pErk, phosphorylated ERK; PI3K, phosphoinositide 3-kinases; PTEN, phosphatase and tensin homolog; 
Rap1, Ras-associated protein 1; RAW264.7, murine macrophage cell line; sEV, small extracellular vesicle; SHIP2, Src homology 2 domain-containing inositol 
phosphate phosphatase 2; smad, small mothers against decapentaplegic, smurf, smad ubiquitination regulatory factor; TGF-β1, transforming growth factor-
beta1; THP-1, human leukemia monocytic cell line; TNF, tumor necrosis factor; VSMC, vascular smooth muscle cell; “↑”, increase; “↓”, decrease; “→”, leads to.
*Patient with atherosclerotic cardiovascular disease.



EVs AND PLAQUE VULNERABILITY

1. EVs in plaque calcification
After initial plaque formation and VSMC proliferation and migration, calcium can start to 
deposit especially in the fibrous cap covering the plaque. The role of calcification with respect to 
plaque vulnerability is still under discussion and reviewed elsewhere.151 Briefly, it is commonly 
distinguished between micro- and macrocalcification in the fibrous cap of the plaque. The 
current mainstream belief is that initial microcalcification in the fibrous cap of the plaque 
enhances its chance to rupture, whereas later-developing macrocalcifications stabilize the cap.

EVs at the center of calcification nucleation
The process of calcification per se is understood to occur in a pro-calcific environment, 
which might ensue in the course of inflammation and cell death. “Matrix vesicles” have 
long been suggested to be the source of nucleation for calcium-phosphate crystals and 
hydroxyapatite formation.152 The term “matrix vesicles” emerged independently but 
evidently describes yet another subset of EVs, nowadays also referred to as “calcifying EVs.” 
Calcifying EVs are reported to be in the size range of 30–500 nm153-155 and are released from 
membranous protrusions.155,156 Initially, they were described to derive from chondrocytes,157 
but in the atherosclerotic plaque they are believed to derive from osteogenic VSMCs154 or 
macrophages.155In vitro, osteogenic VSMCs release an increased number of EVs158-160 and 
proteomic analysis revealed that VSMC-derived sEVs share components with osteoblast-
derived EVs, in particular calcium-binding proteins (Annexins) and ECM proteins.158

In the extracellular space, calcifying EVs bind to negatively charged surfaces like collagen 
fibrils and proteoglycans of the ECM. Direct interaction of VSMC-sEVs and type I collagen 
in vitro is suggested to involve interactions with integrins.161 The vesicle membrane and 
lumen serve as a platform, where pro-calcifying factors can be focally accumulated 
in high concentrations.152,155,157 At the vesicle membrane, Annexins may form pores 
that allow calcium influx or they participate in PS-Ca2+ complexes as starting points 
of calcification.152,157 Compared to apoptotic bodies and VSMC lysates, VSMC-EVs are 
selectively enriched in Annexin II, V and VI, of which, Annexin VI was confirmed to be of 
particular importance for vascular calcification.154 In macrophage-derived calcifying EVs, 
S100A9 content was found to correlate with their degree of calcification, and the authors 
concluded that a PS-Annexin V-S100A9 membrane complex facilitates hydroxyapatite 
nucleation.155 In the vesicle lumen, tissue non-specific alkaline phosphatase (TNAP) 
converts the mineralization inhibitor inorganic pyrophosphate to pro-mineralizing free 
inorganic phosphate.152,157 Sortilin was shown to regulate the loading of TNAP into EVs, and 
sort-1 deficiency reduces arterial calcification but not bone mineralization of LDLR−/− mice 
on high-fat, high-cholesterol diet.162 The release of sortilin-enriched calcifying EVs from 
mouse immortalized aortic VSMCs (MOVAS) can be promoted by Nε-Carboxymethyl-Lysine, 
a key active component of advanced glycation products in serum.163 In contrast, VSMCs can 
take up fetuin-A, a circulating plasma glycoprotein, and the presence of fetuin-A in VSMC-
derived vesicles prevents calcification in vitro.164

Of course, vesicle-mediated calcification can also be regulated on the level of EV-biogenesis. 
Epidermal growth factor receptor (EGFR) influences caveolin-1 trafficking and promotes the 
biogenesis of calcifying EVs from VSMCs in vitro and in aortas of mice with chronic kidney 
disease in vivo,165 whereas DDR1 prevents the release of calcifying EVs from VSMCs in vitro and 
in aortas of LDLR−/− mice in vivo.166
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Calcifying EVs and plaque vulnerability
Regarding the role of calcifying EVs in plaque vulnerability, carotid tissue specimens from 
symptomatic atherosclerotic patients revealed a higher number of vesicles in vulnerable (cap 
thickness <100 µM) than stable fibrous caps. Additionally, vulnerable fibrous caps contained 
more vesicles with signs of calcification.153 In 3D-collagen hydrogels, the sEVs of human 
VSMCs calcified in a way that reminds of microcalcifications.167 In a similar 3D-model of an 
atherosclerotic fibrous cap, Hutcheson et al.168 observed that VSMC-derived calcifying EVs 
aggregate between collagen fibers and initially calcify in the pattern of microcalcification, but 
ultimately form macrocalcifications.

The importance of pro-calcifying stimuli including EVs
Importantly, even though EVs are present in the ECM of vessels from young and healthy 
individuals, in the physiological state, they do not necessarily possess calcifying potential.154 
However, calcification or calcifying potential might be tipped off by several factors, including 
a rise in extracellular and intracellular calcium or phosphate concentrations152,158,159,169 or 
TNF-158 and nicotine-stimulation of the parental cell.160 Furthermore, lipoprotein (a) induces 
sEV release of human VSMCs and promotes calcification, possibly by supplying oxidized 
phospholipids,167 which induce pro-calcifying oxidant stress.170

Thus, one may speculate that OSE-carrying EVs contribute to VSMC calcification. 
Similarly, other pro-inflammatory EVs may also contribute to VSMC calcification. Indeed, 
atherosclerosis-associated EVs such as macrophage-derived lEVs released under high-glucose 
conditions,171 EVs derived from VSMCs of rats with chronic kidney disease,172,173 sEVs from 
LPS-stimulated macrophages,174 and lastly lEVs from ECs stimulated with TNF,175 have all been 
shown to promote osteogenic VSMC-switching in vitro and in vivo171 and induce associated 
calcium-dependent NOX activity and ROS generation.159,160,172,173 MiR-32 might play a role 
in this process.171,176 Importantly, EVs that promote VSMC switching towards an osteogenic 
phenotype are sometimes also termed “calcifying EVs.”

2. EVs in extracellular matrix degradation
A common mediator of both plaque rupture and erosion are metalloproteinases, which 
are able to break down the ECM components of the fibrous cap or the endothelial basal 
membrane and thus critically regulate plaque stability.

Metalloproteinases are represented by three groups, the “a disintegrin and 
metalloproteinase” (ADAMs), ADAMs with thrombosponding motif (ADAMTs) and 
matrix metalloproteinases (MMPs). The role of metalloproteinases in ASCVD is reviewed 
elsewehere.6,177 Of note, even though some targets of metalloproteinases have been specified 
(e.g., MMP 1, 13 – fibrillary collagens I, II, III; MMP 2, 9 – denatured collagen, collagen IV 
and laminin), MMPs usually degrade multiple matrix components with variable efficiency. 
Furthermore, MMPs may activate other MMPs, the most prominent example being MMP-14, 
which cleaves pro-MMP2.6

Clinically, various studies highlight a relationship between metalloproteinases and 
atherothrombotic events. Rizza et al.178 showed that consideration of circulating ADAM17 
substrate-levels improves the prediction accuracy of the Framingham Recurring-
Coronary-Heart-Disease-Score, and ADAMs or MMPs were shown to regulate endothelial 
permeability179 and correlate with180,181 or influence182 plaque instability. It is possible that, 
although not investigated, EV-bound metalloproteinases are implicated in these associations.

246https://doi.org/10.12997/jla.2024.13.3.232

EVs as Mediators in ASCVD

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis



First of all, immune cell-derived EVs have been shown to incite the release of 
metalloproteinases by VSMCs and fibroblasts, in vitro. For instance, macrophage-derived 
sEVs elevate MMP-2 expression in VSMCs,183 and EVs derived from apoptotic and activated 
T-cells and monocytes induce the synthesis of MMP-1, MMP-3, MMP-9, and MMP-13 in 
various fibroblasts.148

Secondly, the secretion and function of metalloproteinases has been described to be 
regulated by the endosomal pathway184-186 as well as tetraspanins187 and PS,188 revealing 
an intersection of MMP-trafficking with EV-release mechanisms. Indeed, circulating EVs 
isolated from wildtype mice have been shown to carry surface-bound MMP-10189 and further 
studies suggest the presence of MMP-1, MMP-2, MMP-7, MMP-13, MMP-14, MMP-15, MMP-
16190 or MMP-2, MMP-9, and MMP-14191 on the surface of fibronectin-degrading EC-EVs, 
whereas the concurrent presence of tissue inhibitor of metalloproteinases-1 (TIMP-1) and 
TIMP-2 is controversial. In vitro generated leukocyte-derived EVs were reported to carry 
MMP-9 and -14,192,193 ADAM10, ADAM15 and ADAM17,194-196 and proteinase-3 and elastase.192,197 
Importantly, Canault et al.198 reported the presence of ADAM17 on human plaque EVs as 
opposed to EVs from healthy human internal mammary arteries. Mechanistically, some 
studies suggest the involvement of p38 mitogen-activated protein kinases (MAPK) and c-Jun 
N-terminal kinase (JNK) pathway in the EV-related release of metalloproteinases.183,189,193

While Lozito and Tuan190 reported that cytokine-enriched (IL-1β, TNF) and hypoxic 
conditions did not affect MMP localization to EVs, several other studies describe increased 
EV-associated metalloproteinase release by various cell types in response to specific 
stimuli,154,189,192-197 for instance, LPS- or thrombin-stimulated ECs,189 calcium-stimulated 
VSMCs,154 or tobacco-stimulated leukocytes.193,195

3. EVs in atherothrombosis
Ultimately, plaque progression can culminate in atherothrombotic events. This is either 
triggered by plaque rupture, and subsequent exposure of thrombogenic plaque content 
(e.g., tissue factor), or plaque erosion, where the subendothelial matrix and neutrophil 
extracellular traps (NETs) provide a hotspot for coagulation factor activation.199 Apart from 
plaque-derived coagulation activators, a thrombogenic state also needs to be considered.

An elevated number of circulating EVs in patients with acute coronary syndrome already 
hints at a role of EVs in the atherothrombotic event.53 Moreover, their implication in 
immunothrombosis is emphasized by the specific elevation of platelet- and monocyte-
derived EVs and EV-aggregates in patients with coronary artery disease, who required 
percutaneous coronary intervention.200 The elevation of circulating EV numbers could simply 
be the consequence of a systemic reaction to the acute occlusive event. However, evidence 
of elevated procoagulant201 and malondialdehyde-bearing (MDA+)98 EVs specifically at the 
culprit lesion-site implicate EVs as mediators in the atherothrombotic process.

EVs in coagulation
Physiological hemostasis requires a balance of pro- and anti-coagulant factors. Endothelial- 
and leukocyte-derived EVs can serve as a platform for fibrinolytic plasmin generation.202,203 
Furthermore, platelet-derived sEVs were reported to inhibit platelet adhesion to collagen 
and platelet aggregation in vitro and occlusive thrombosis in damaged murine carotid 
arteries upon injection in vivo.204 Nevertheless, even in healthy individuals, EVs mainly have 
procoagulatory potential.205,206 They enhance platelet deposition on human atherosclerotic 
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arteries, thrombus formation,205 and accelerate fibrin polymerization, leading to higher 
plaque density and impeding fibrinolysis.206 The negative surface of exposed PS on the 
EV-surface per se serves as a platform for coagulation activation. Furthermore, procoagulant 
lysophosphatidylcholine (LPC) is enriched in EV-membranes.207 Moreover, a subset of 
circulating EVs carries OSEs,98 which, depending on individual levels of neutralizing natural 
IgM associated with them, promote coagulation to varying extent.100 Additionally, 10% 
of circulating lEVs express TF.208 It has been shown that platelet-associated TF and lEV-
associated TF contribute additively to overall blood-TF activity.209 TF-transfected EVs show 
increased adherence to collagen-IV and fibronectin as well as enhanced TF-activity due to its 
greater concentration on the EV-surface.210 Interestingly, neutrophil adhesion molecules and 
secretion products further amplify TF-activity,209 implicating TF-bearing EVs in the process of 
NET-mediated thrombosis during plaque erosion.

In general, all blood EV subsets are primarily considered procoagulant, but they differ in 
their procoagulatory potential and TF expression. When stimulated,211 monocytes generate 
the most procoagulant EVs, followed by ECs, granulocytes and then platelets.212 Of note, the 
platelet-lEV surface is proposed to have 50–100-fold higher procoagulant activity than the 
activated platelet membrane surface.213

Extrinsic/intrinsic coagulation pathway activation by EVs
EV-associated TF activity follows the same order as overall procoagulant activity of EV-subsets. 
It is highest in monocyte EVs and lower in EC-EVs. Platelet, granulocyte and erythrocyte EVs 
show no TF activity.212,214-216 Complementary to their lack of extrinsic pathway activation, platelet-
derived and red blood cell-derived EVs were shown to induce thrombin generation via factor 
XII of the intrinsic coagulation pathway215,217,218 and blocking the extrinsic pathway by FVII-
inhibition did not influence this.215 EV-associated PS was shown to contribute to the activation 
of the intrinsic coagulation pathway.211,217,218 In contrast, monocyte-derived EVs did not induce 
FXII-dependent thrombin generation,217,218 neither did purified phospholipids with similar 
PS-activity as the EVs. However, FVII-inhibition hampered the procoagulatory potential of 
monocyte-derived EVs,215 most likely by impeding TF-induced thrombin generation.219,220 FVIIa 
also mediates procoagulant TF+-EV release by ECs in vitro221 and in vivo in wild type mice.222,223

Interestingly, the OSE-targeting natural IgM antibody LR04 inhibits EV-mediated 
propagation of coagulation irrespective of the extrinsic and intrinsic coagulation pathway by 
preventing factor Xa assembly on MDA+ EVs.100

Factors mediating the procoagulatory potential EVs
PS-bearing EV-release and TF-expression both have been suggested to relate to cholesterol 
availability and subsequent PS and TF localization to lipid rafts.220,224,225 Monocyte-derived 
EVs have much higher concentration of TF and PSGL-1 than their parental cells, but no 
enrichment of CD45. TF and PSGL-1, but not CD45, accumulate in lipid rafts and depletion 
of membrane cholesterol hinders their release.220 The cytoskeletal protein filamin-A could be 
essential for TF localization to lipid rafts.224,226

Another regulatory mechanism of cellular and hence lEV-associated TF and PS surface-
expression is proposed to relate to intergrin-arf6 mediated TF and PS internalization, which 
is inhibited by ATP.227 Likewise, various pro-inflammatory stimuli like IL-33, TNF, oxLDL and 
also EVs released by stimulated cells promote the release of procoagulant, TF-enriched EVs 
from vascular or plaque related cells.86,228-231 Interestingly, TF can also be transferred between 
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different cell types via EVs and enhance the procoagulant state of the recipient cell, albeit this 
phenomenon is usually reported for EVs derived from activated cells.91,220,232-234

Altogether, the data suggest that EV-associated promotion of coagulation occurs especially 
in a pro-inflammatory setting, as it would be the case in the plaque. Indeed, when compared 
to arterial wall lEVs235 or plasma lEVs,67 plaque derived lEVs prove to have much higher 
thrombogenicity. Curiously, there was no significant difference in TF-expression between EVs 
isolated from plasma or plaque material, or between EVs extracted from asymptomatic and 
symptomatic plaques. Furthermore, there was no difference in thrombin-generating activity 
of EVs from asymptomatic and symptomatic plaques.67

EVs in plaque erosion
In the context of plaque erosion, EVs released by activated cells enhance TF exposure and 
thrombogenicity of ECs.91,234 Large EVs released by stimulated ECs promote neutrophil 
adhesion and their release of NETs.79 Furthermore, myeloperoxidase-bearing neutrophil-
derived EVs can cause endothelial injury in vitro,236 and EVs from activated monocytes, platelets 
and ECs can further contribute to EC apoptosis and pyroptosis87,91,237,238 or ward it off.239 Once 
EC integrity has been lost, the subendothelial matrix provides a new platform for thrombus 
formation. Platelet-lEVs may bind to fibrinogen, fibronectin and collagen-coated surfaces, 
but not to monolayers of neither unstimulated nor stimulated ECs.240 Collagen,80,81 as well as 
thrombin,80,241 activate platelets and lead to their shedding of platelet aggregation-promoting 
EVs, further propagating the pro-thrombotic process.

CONCLUSION

EVs participate in intercellular signaling at all stages of ASCVD. They relay parental cell and 
environmental information by exposing and transferring membrane-associated components 
(e.g., integrins, modified phospholipids, tissue factor), and by sharing their cytosolic cargo 
(e.g., cytokines, miRNAs). Furthermore, they serve as a catalyzing platform for extracellular 
processes like calcification, coagulation and fibrinolysis. Although most evidence illustrates 
EVs as amplifiers of ASCVD, atheroprotective functions have been demonstrated in selective 
experimental settings, in particular, regarding EVs from ECs. Current insights are mostly 
derived from in vitro experiments, while existing in vivo studies rely on artificial EV-isolation 
and injection of concentrated amounts of EVs and may obscure or skew relevant biological 
effects. In this context, the diversity of current isolation methods, and the consequent 
heterogeneity in purity and subtype composition of EV isolates, still pose obstacles in 
uncovering the exact pathophysiological role of EVs in ASCVD. Although comprehensive 
and extensive EV-research is being facilitated by emerging “-omics” technologies and 
advances in single-EV analysis, the crucial task of distinguishing biologically relevant 
effects from experimentally introduced alterations should not be dismissed. Compliance 
with the standardized MISEV guidelines and detailed reporting of experimental methods 
is paramount to overcoming these potential challenges. In specific settings, however, if 
analyses of EVs (e.g., derived from tissue or body fluids) reproducibly convey diagnostic or 
prognostic information, artificial effects from isolation procedures may be less important. 
Potential EV-related biomarkers of ASCVD have already evolved, but need to be validated in 
large multicentric clinical trials to demonstrate their methodological reproducibility and 
clinical benefit. Lastly, natural and bioengineered EVs have emerged as potential therapies, 
for instance, by conferring protective effects of their cells of origin (e.g., stem or progenitor 
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cells), or serving as vehicles for drug delivery. Clearly, research on EVs in ASCVD is rapidly 
evolving and bears many challenges, but with the promise of great rewards within reach.
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