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Abstract: Diet-based xanthophylls (zeaxanthin and lutein) are conditionally essential polar carotenoids
preferentially accreted in high concentrations (1 mM) to the central retina, where they have the
capacity to impart unique physiologically significant biophysical biochemical properties implicated
in cell function, rescue, and survival. Macular xanthophylls interact with membrane-bound proteins
and lipids to absorb/attenuate light energy, modulate oxidative stress and redox balance, and
influence signal transduction cascades implicated in the pathophysiology of age-related macular
degeneration. There is exclusive transport, sequestration, and appreciable bioamplification of macular
xanthophylls from the circulating carotenoid pool to the retina and within the retina to regions
required for high-resolution sensory processing. The distribution of diet-based macular xanthophylls
and the lutein metabolite meso-zeaxanthin varies considerably by retinal eccentricity. Zeaxanthin
concentrations are 2.5-fold higher than lutein in the cone-dense central fovea. This is an ~20-fold
increase in the molar ratio relative to eccentric retinal regions with biochemically detectable macular
xanthophylls. In this review, we discuss how the differences in the specific properties of lutein and
zeaxanthin could help explain the preferential accumulation of zeaxanthin in the most vulnerable
region of the macula.
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1. Introduction

Humans cannot synthesize carotenoids de novo and must acquire them through their diet.
The most abundant carotenoids in human serum are three nonpolar carotenoids (α-carotene, β-carotene,
and lycopene) and three polar carotenoids (β-cryptoxanthin, lutein, and zeaxanthin) [1,2]. The low
serum zeaxanthin concentration contrasts with relatively high serum β-cryptoxanthin and serum lutein
concentrations [1,2]. Polar serum carotenoids (xanthophylls) are the major class of carotenoids found
in the brain and account for 70% of the total brain carotenoid content [3–5]. Only two carotenoids,
lutein and zeaxanthin, are selectively accumulated in the retina and constitute 100% of the total retina
carotenoid content [6,7]. Additionally, one of the stereoisomers of zeaxanthin, namely meso-zeaxanthin,
is produced directly in the retina through the transformation of lutein [8]. The conversion of lutein to
meso-zeaxanthin requires the migration of one double bond in the ε-ring of the lutein molecule and,
most likely, this process takes place in the retinal pigment epithelium (RPE)/choroid [9,10]. All-trans
zeaxanthin and meso-zeaxanthin are xanthophylls of the central part of the macula, whereas all-trans
lutein dominates in the peripheral macula [7]. See Figure 1 for their structures.
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Figure 1. Chemical structures of macular xanthophylls present in the retina, including dietary 
xanthophylls (lutein and zeaxanthin) and non-dietary xanthophyll (meso-zeaxanthin). Retinal 
meso-zeaxanthin is a product of the conversion of lutein. This xanthophyll is rarely encountered in 
the human diet. However, meso-zeaxanthin may be absorbed after oral administration and 
transported to the retina [11]. 

Since primates cannot biosynthesize lutein or zeaxanthin [12,13], they have adapted 
mechanisms for efficient uptake [14,15], transport [16,17], retention [18–22], and repair [23]. The 
physiological significance of macular xanthophylls in retinal health and disease is supported by (i) 
their structural chemistry and inextricably linked biophysical properties [24], and (ii) the specific (a) 
accretion from a pool of approximately 40 dietary [25] and 15 circulating carotenoids [26,27], (b) 
laminar and topographic distribution in the retina [28–32], and (c) membrane disposition [33]. We 
have provided overviews on strong inferences linking macular xanthophylls to human retinal health 
through at least five converging lines of evidence [34–36]. In addition to the 1000–10,000-fold 
bioamplification of macular xanthophylls [24,37] and active transport [24] mechanisms involving 
specific binding proteins [14,16,17], there are works linking: (i) macular xanthophylls intake to 
primate retinal cellular and laminar macular xanthophylls status and structure through biochemical 
[7,38–41], ex vivo [23,30,31,37,42,43] and in vivo [13,37,44] analyses, (ii) macular xanthophyll 
supplementation to retinal structure and function in model rodent [45] and primate [12,46] systems 
and in human post-mortem [40] and clinical trials, and (iii) increased macular xanthophylls intake 
[47–51] and status [52–55] to advanced age-related macular degeneration (AMD). Substantial 
inter-individual variation exists in global [42] and local [56–58] topographic macular pigment 
density (MPOD) [21,59–61]. Sharifzadeh et al. describe five major patterns in macular pigment 
distribution within elderly people as measured by resonance Raman spectroscopy [62] and two 
wavelength autofluorescence [63] imaging techniques. In the Sharifzadeh cohorts, very low foveal 
MPOD existed in 10% of those studied, 20% of people showed a slightly enhanced foveal MPOD 
with macular xanthophylls extending to eccentric regions, 30% expressed a “sole, sharp, central 
distribution” of MPOD, 20% manifested a dense foveal MPOD with a ring of pigment surrounding 
this area, and 10% expressed a “uniform, laterally extended distribution” of MPOD. 

For the purpose of this review, we highlight the fact that the distribution of specific macular 
xanthophylls varies with retinal eccentricity. Zeaxanthin and meso-zeaxanthin dominate in the 
fovea with concentrations declining more rapidly than those of lutein as distance from the fovea 
increases [7,39]. A 1° angular subtense in the retina represents ~0.29 mm of retinal extent. The 
zeaxanthin-to-lutein ratio at 0–5° from the fovea is approximately 1.5:1.0. At 5–19°, the value is 
approximately 1.0:1:5. At 19–38° the value is approximately 1.0:2.0 [7,39]. In 2005, Johnson et al. 
identified lutein as a dietary precursor of meso-zeaxanthin [12]. Although meso-zeaxanthin is 
virtually nonexistent in the human food supply and plasma, it is found at concentrations similar to 
zeaxanthin in the foveola (and shows a negligible signal outside of the fovea) [14]. The relatively 

Figure 1. Chemical structures of macular xanthophylls present in the retina, including dietary
xanthophylls (lutein and zeaxanthin) and non-dietary xanthophyll (meso-zeaxanthin). Retinal
meso-zeaxanthin is a product of the conversion of lutein. This xanthophyll is rarely encountered in the
human diet. However, meso-zeaxanthin may be absorbed after oral administration and transported to
the retina [11].

Since primates cannot biosynthesize lutein or zeaxanthin [12,13], they have adapted mechanisms
for efficient uptake [14,15], transport [16,17], retention [18–22], and repair [23]. The physiological
significance of macular xanthophylls in retinal health and disease is supported by (i) their structural
chemistry and inextricably linked biophysical properties [24], and (ii) the specific (a) accretion from a
pool of approximately 40 dietary [25] and 15 circulating carotenoids [26,27], (b) laminar and topographic
distribution in the retina [28–32], and (c) membrane disposition [33]. We have provided overviews
on strong inferences linking macular xanthophylls to human retinal health through at least five
converging lines of evidence [34–36]. In addition to the 1000–10,000-fold bioamplification of macular
xanthophylls [24,37] and active transport [24] mechanisms involving specific binding proteins [14,16,17],
there are works linking: (i) macular xanthophylls intake to primate retinal cellular and laminar macular
xanthophylls status and structure through biochemical [7,38–41], ex vivo [23,30,31,37,42,43] and
in vivo [13,37,44] analyses, (ii) macular xanthophyll supplementation to retinal structure and function
in model rodent [45] and primate [12,46] systems and in human post-mortem [40] and clinical trials, and
(iii) increased macular xanthophylls intake [47–51] and status [52–55] to advanced age-related macular
degeneration (AMD). Substantial inter-individual variation exists in global [42] and local [56–58]
topographic macular pigment density (MPOD) [21,59–61]. Sharifzadeh et al. describe five major
patterns in macular pigment distribution within elderly people as measured by resonance Raman
spectroscopy [62] and two wavelength autofluorescence [63] imaging techniques. In the Sharifzadeh
cohorts, very low foveal MPOD existed in 10% of those studied, 20% of people showed a slightly
enhanced foveal MPOD with macular xanthophylls extending to eccentric regions, 30% expressed
a “sole, sharp, central distribution” of MPOD, 20% manifested a dense foveal MPOD with a ring
of pigment surrounding this area, and 10% expressed a “uniform, laterally extended distribution”
of MPOD.

For the purpose of this review, we highlight the fact that the distribution of specific macular
xanthophylls varies with retinal eccentricity. Zeaxanthin and meso-zeaxanthin dominate in the fovea
with concentrations declining more rapidly than those of lutein as distance from the fovea increases [7,39].
A 1◦ angular subtense in the retina represents ~0.29 mm of retinal extent. The zeaxanthin-to-lutein ratio
at 0–5◦ from the fovea is approximately 1.5:1.0. At 5–19◦, the value is approximately 1.0:1:5. At 19–38◦

the value is approximately 1.0:2.0 [7,39]. In 2005, Johnson et al. identified lutein as a dietary precursor of
meso-zeaxanthin [12]. Although meso-zeaxanthin is virtually nonexistent in the human food supply and
plasma, it is found at concentrations similar to zeaxanthin in the foveola (and shows a negligible signal
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outside of the fovea) [14]. The relatively lower concentration of lutein within the fovea has been used
to suggest meso-zeaxanthin may be metabolized from oxidized lutein via a cone-photoreceptor-specific
enzyme [7,39,64,65]. Thus, zeaxanthin is the dominant macular xanthophyll in the fovea center, an
area with a high density of cone photoreceptors that is exposed to bright light. Noting that the human
diet is zeaxanthin-poor, and that lutein is converted to meso-zeaxanthin in the retina, the following
question arises: Why are isomers of zeaxanthin, not lutein, selectively accumulated in the central part
of the fovea? The presence of oxygen in xanthophyll molecules explains their selective attendance
in the retina and brain tissues because these two hydroxyl groups are responsible for the specific
location and orientation of macular xanthophylls in the lipid bilayer. There is no difference in the
orientation of macular xanthophylls in the lipid bilayer; both lutein and zeaxanthin adopt a similar
transmembrane orientation [66]. A recent publication from Gruszecki’s group corrected their previous
results, which indicated that zeaxanthin adopts mainly vertical orientation with respect to the plane of
the membrane, whereas two pools, with vertical and parallel orientation, were proposed for lutein [67].
Also, our electron paramagnetic resonance spin-labeling studies have shown similar effects of lutein and
zeaxanthin on the physical properties of the lipid bilayer, supporting the transmembrane orientation
of these two macular pigments [68–70].

Not only is the orientation in the lipid membrane similar for lutein and zeaxanthin molecules
(as discussed previously [66,68–70]), membrane distribution and location also are roughly the same.
Our investigations, which were conducted using membrane models of photoreceptor outer segments
and on lipid bilayers made of raft-forming mixtures, indicate that both macular xanthophylls are
more concentrated in the unsaturated bulk domain (enriched in polyunsaturated lipids) and excluded
from the raft domain (enriched in saturated lipids and cholesterol) [33,71,72]. Also, the macular
xanthophyll–lipid interaction is not different for lutein and zeaxanthin [69,73]. Both increase the order
of phospholipid membranes, decrease alkyl-chain motion in the fluid phase membranes, and increase
the hydrophobicity of the membrane interior. Thus, there is still a need to explain why zeaxanthin is
selectively accumulated in the foveola although its serum concentration is lower than that of lutein.
The present paper aims to call this into question.

2. Zeaxanthin and Human Nutrition

2.1. Dietary Sources of Zeaxanthin

Dietary macular xanthophylls are found naturally in a wide variety of fruits and vegetables [74].
However, scientific papers usually report lutein and zeaxanthin content as one figure, not separately.
Most food sources contain mainly lutein, which means that the human diet is poor in zeaxanthin.
Dietary intake of zeaxanthin is much lower than that of lutein, with a dietary zeaxanthin-to-lutein
molar ratio of 1:12 to 1:5 [75–77]. In human serum, the zeaxanthin-to-lutein molar ratio ranges from 1:7
to 1:4, which is consistent with the relatively high lutein content in fruits and vegetables as compared
with the content of zeaxanthin [4,75,78,79]. Low zeaxanthin content in the daily human diet and in
human serum contrast with the high concentration of this pigment in the fovea (Figure 2) where
zeaxanthin-to-lutein molar ratio is 2.4:1 in the central part [8].
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Corn and egg yolks contain approximately the same content of both macular carotenoids; the 
molar ratio of zeaxanthin-to-lutein is about 1 in both foods. Few foods contain more zeaxanthin than 
lutein. One food with a higher zeaxanthin-to-lutein molar ratio is the orange pepper, with a 
zeaxanthin-to-lutein molar ratio of approximately 10. Another such food is the fruit of the Lycium 
barbarum, commonly known as goji berries or wolfberries. Goji berries are the richest source of 
zeaxanthin (Table 1) and are widely used in traditional Chinese medicine for eye health. Daily 
supplementation with goji berries for 90 days increases serum zeaxanthin and in early AMD 
patients; goji berries can be used to prevent the progression of AMD [80]. Another rich source of 
zeaxanthin is the fruit of Physalis alkekengi, or the Chinese lantern [81,82], wherein zeaxanthin 
comprises more than one-half of the total carotenoid content. The berries of the sea buckthorn also 
have zeaxanthin ester as major compound, with zeaxanthin dipalmitate comprising up to 38% of the 
total carotenoid content and a zeaxanthin-to-lutein molar ratio of about 10 [83,84]. Despite the fact 
that eggs have a low zeaxanthin content compared with zeaxanthin-rich berries, the egg yolk 
provides an excellent dietary source of zeaxanthin because the bioavailability from the yolk matrix is 
much higher than from the leaves of green vegetables. The high bioavailability of a fat-soluble 
nutrient such as zeaxanthin from the egg is due to the rich lipid matrix of the yolk. Egg yolk is a good 
dietary source of both zeaxanthin and lutein, particularly as part of a typical western diet, which is 
poor in vegetables and fruits. It was reported that egg supplementation may increase plasma 
zeaxanthin by 142% [85]. Finally, it should be mentioned here that a high intake of lutein can also 
increase the macular content of meso-zeaxanthin because the lutein can convert to meso-zeaxanthin 
in the central retina. 

Table 1. Dietary sources of zeaxanthin. 
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Red Chinese lantern fruit 84700 
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Sea buckthorn 1930 
Egg yolk (raw) 762 
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Figure 2. Proportion of major xanthophyll carotenoids in commonly consumed foods, circulation, and
retinal areas, showing preferential accumulation of isomers of zeaxanthin in the fovea.

Corn and egg yolks contain approximately the same content of both macular carotenoids; the molar
ratio of zeaxanthin-to-lutein is about 1 in both foods. Few foods contain more zeaxanthin than lutein.
One food with a higher zeaxanthin-to-lutein molar ratio is the orange pepper, with a zeaxanthin-to-lutein
molar ratio of approximately 10. Another such food is the fruit of the Lycium barbarum, commonly
known as goji berries or wolfberries. Goji berries are the richest source of zeaxanthin (Table 1) and are
widely used in traditional Chinese medicine for eye health. Daily supplementation with goji berries
for 90 days increases serum zeaxanthin and in early AMD patients; goji berries can be used to prevent
the progression of AMD [80]. Another rich source of zeaxanthin is the fruit of Physalis alkekengi, or
the Chinese lantern [81,82], wherein zeaxanthin comprises more than one-half of the total carotenoid
content. The berries of the sea buckthorn also have zeaxanthin ester as major compound, with
zeaxanthin dipalmitate comprising up to 38% of the total carotenoid content and a zeaxanthin-to-lutein
molar ratio of about 10 [83,84]. Despite the fact that eggs have a low zeaxanthin content compared with
zeaxanthin-rich berries, the egg yolk provides an excellent dietary source of zeaxanthin because the
bioavailability from the yolk matrix is much higher than from the leaves of green vegetables. The high
bioavailability of a fat-soluble nutrient such as zeaxanthin from the egg is due to the rich lipid matrix
of the yolk. Egg yolk is a good dietary source of both zeaxanthin and lutein, particularly as part of a
typical western diet, which is poor in vegetables and fruits. It was reported that egg supplementation
may increase plasma zeaxanthin by 142% [85]. Finally, it should be mentioned here that a high intake
of lutein can also increase the macular content of meso-zeaxanthin because the lutein can convert to
meso-zeaxanthin in the central retina.

Table 1. Dietary sources of zeaxanthin.

Food Zeaxanthin Content
(µg/100 g)

Goji berry 280,000
Red Chinese lantern fruit 84,700

Orange pepper 5580
Sea buckthorn 1930
Egg yolk (raw) 762

Corn 105
Orange juice 26

Peach 39
Spinach 75

Kale 62
Papaya 6
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2.2. Bioavailability of Zeaxanthin from the food Matrix

Zeaxanthin is a lipophilic molecule, which means that it is generally soluble in fat and insoluble
in water. However, xanthophylls including zeaxanthin have lower lipophilicity compared with the
carotenes present in human serum, and the facility (ease) of its release into an aqueous environment is
probably higher than that of β-carotene and lycopene. Zeaxanthin must be released from the food
matrix, which is an easier process with regard to the location of this pigment in the chromoplast of
fruits rather than in the chloroplast of the leaves of green vegetables. In addition to its intracellular
location, other factors strongly affect the bioavailability of zeaxanthin [86–89]; these include the
(i) physical properties of carotenoids, (ii) food processing conditions, (iii) food sources and matrix in
which zeaxanthin is incorporated, and (iv) co-presence of different compounds in the food, especially
other carotenoids.

In nature, zeaxanthin exists in both free and esterified forms. Free zeaxanthin can be found in egg
yolks [90], corn, and green vegetables, whereas flowers and fruits contain mostly zeaxanthin esters [91].
Most zeaxanthin esters in food exist in the form of zeaxanthin dipalmitate [92]. However, only the
unesterified form has been detected in human serum and the retina, which means that esterified
zeaxanthin must be hydrolyzed before it is incorporated into chylomicrons. It has been shown that the
esterified form of zeaxanthin has higher bioavailability than the nonesterified form [93]. Breithaupt and
colleagues reported [94] that zeaxanthin suspended in yogurt drinks and administered to volunteers
was better absorbed in the esterified form than in the free form. Similarly, increased or comparable
bioavailability of other xanthophylls as either the free or esterified form was reported [91,95–97].

These studies suggest that hydrolysis of the esterified form of zeaxanthin in the intestinal lumen
is a highly efficient process.

Similar to other carotenoids in plants, zeaxanthin exists predominantly in the all-trans
configuration, which is more stable thermodynamically as compared with the cis configuration.
However, light [98] and thermal food processing [99] may increases the content of cis isomers.
Both geometrical isomers of zeaxanthin (cis and trans) were detected not only in food sources but also
in serum and retinal tissues. No research has been published about the bioavailability of the cis isomers
of zeaxanthin. However, it has been indicated that cis isomers of lycopene have higher bioavailability
than all-trans isomers [100]. Cis β-carotenes, on the other hand, exhibit lower absorption efficiency
than all-trans β-carotene [101,102], which may be related to isomerization of cis β-carotenes to all-trans
configuration in the erythrocyte.

Another physical factor affecting the bioavailability of zeaxanthin is its aggregation. In aqueous
systems, zeaxanthin may form two aggregate arrangements: J-zeaxanthin (head-to-tail aggregates
with characteristic red-shifted absorption) and H-zeaxanthin (card-pack aggregates with characteristic
blue-shifted absorption). Hempel et al. reported [103] that the bioavailability of J-aggregates of
zeaxanthin dipalmitate formulation was 23% higher than that of the H-aggregates of zeaxanthin
but that the effect was marginally significant. Generally, the bioavailability of carotenoids is greater
in heat-processed foods than in raw vegetables. The same relationship has been observed for
zeaxanthin [104–106]. However, very high temperatures may lead to the degradation of carotenoid
pigments and reduce zeaxanthin content by about 30%, as has been reported for corn canned at
121 ◦C [107]. The loss of zeaxanthin was also observed in fried and boiled eggs [108].

The next critical factor that should be considered as affecting the bioavailability of zeaxanthin is
the food matrix in which the pigment molecules are incorporated. The release zeaxanthin from the
food matrix is an easier process for simple food matrices, such as oil matrices, than it is for complex
plant systems. Indeed, it has been shown that the xanthophylls were highly bioaccessible from fruits,
ranging from 50 to 100%, compared with dark green vegetables, ranging from 19 to 38% [93].
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The last factor affecting the bioavailability of zeaxanthin is the co-presence of different compounds
in the food matrix. Several studies reported that the co-presence of the other carotenoids may affect
the bioavailability of zeaxanthin. A daily oral dose (10 mg) of lutein provided a fourfold increase
in lutein serum concentration as well as an increase in the amount of zeaxanthin [109]. In several
studies, a competitive interaction was observed between lutein and β-carotene [110–112]. Similarly,
a competitive interaction exists between β-carotene and zeaxanthin [110]. In a study of zeaxanthin
bioavailability in chicks, the chicks’ diet was supplemented with high β-carotene; this led to decreased
concentrations of both lutein and zeaxanthin in the plasma and most tissues, including the retina [110].
This competitive inhibition of certain carotenes and macular xanthophylls should be considered during
supplementation with a carotenoid mixture.

The release of zeaxanthin from the food matrix starts in the stomach by the action of gastric acids
and digestive enzymes. Next, molecules of zeaxanthin solubilized in lipid emulsion particles are
transported from the stomach to the duodenum. Studies on the behavior of zeaxanthin in biological
emulsion have shown that this dipolar molecule resides on the surface of oil droplets, together with
proteins and phospholipids [113]. Conversely, a nonpolar carotenoid such as β-carotene is buried
in the core of lipid droplets [113]. In the duodenum, the lipid emulsion particles with zeaxanthin
are further stabilized by the addition of bile salts and phospholipids [114]. The bile acid reduces the
size of the emulsified lipid droplets. The localization of zeaxanthin on the phospholipid surface of
the emulsion influences the next step, which is the transfer of these molecules from the emulsified
lipid drops to mixed micelles. It is widely accepted that xanthophylls are more easily micellarized
then nonpolar carotenoids. Also involved in this transfer are both carotenoid polarity and bile
lipid concentration and physiological variation in pH [115]. Bile salt micelles containing zeaxanthin
must then be transported to enterocytes. Micelles are passed through the unstirred water layer and
xanthophylls uptake is likely facilitated by scavenger and/or other lipid transporters of the apical
membrane of enterocytes [116,117]. Once absorbed into the enterocytes, zeaxanthin is packed into
lipoprotein particles (chylomicrons), which are released by exocytosis to the lymphatic system. Next,
the zeaxanthin-chylomicron fraction enters the liver where it is stored or secreted back into the
bloodstream to be transported to different tissues. Previous studies on the carotenoid–lipoprotein
complexes have shown that nonpolar carotenoids are transported predominantly by LDLs (low density
lipoproteins), whereas polar carotenoids were found equally in HDLs (high density lipoproteins) and
LDLs. However, Thomas and Harrison [118] demonstrated that zeaxanthin is transported mostly by
HDL lipoproteins. The literature suggests that the segregation of polar and nonpolar carotenoids
already occurs on the level of carotenoid transport. Moreover, Connor et al. [119] demonstrated that
HDL deficiency in the mutant chicken was associated with deficiency of lutein in the retina. In chicks
fed a high-lutein diet, the content of lutein greatly increased in the plasma, liver, and heart, but
increased only a little in the retina [119].

3. Zeaxanthin in the Human Retina

3.1. Mechanisms of Selective Transport

The uptake and transport of macular pigment to the retina is considered selective because of
the approximately 600 carotenoids identified in nature, 50 in the human diet, and 20 in human
serum; only two forms of dietary xanthophylls, lutein and zeaxanthin, are present in the retina.
Meso-zeaxanthin is the third major macular xanthophyll (reviewed in [86]). This selective delivery
mechanism probably is the active transport process. As mentioned previously, both lutein and
zeaxanthin are associated mostly with HDL in human serum. Recent in vitro studies have shown that
zeaxanthin is more efficiently delivered to the human RPE cell model (differentiated ARPE-19) via
HDLs whereas lutein is delivered via LDLs [118]. The circulating HDLs and LDLs must pass through
the choroid and Bruch’s membrane before reaching the RPE, while in the neural retina, they must
cross the capillary endothelial cells to enter Müller cells [120]. The major receptors for LDLs are the
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LDL receptors (LDLRs), whereas HDL is recognized by scavenger receptor class B type 1 (SR-BI) [121].
SR-BI is a cell surface glycoprotein with a high affinity to HDL and is involved in zeaxanthin uptake in
RPE. [120]. LDLR receptors recognize apolipoprotein B and are responsible for the uptake of LDLs
and cholesterol, and probably also lutein–LDL complexes [118], by the retina [122]. We have provided
detailed commentary on the links between lipoproteins, scavenger receptor molecular genetics and
retinal xanthophyll status in the context of AMD pathophysiology [34,36]. Shyam et al. demonstrated
that while all three scavenger class B receptors (SRB: SR-B1, SR-B2, and CD36) present in the macula
are capable of binding and transporting all three macular xanthophylls, the uniform expression
profiles of these proteins in human macula and eccentric retinal regions suggests that selective
xanthophyll-binding proteins (including StARD3 and GSTP1, KD ~ 0.6 µM) are most likely to drive the
process of selective accumulation of xanthophylls into the macula [123]. These authors used surface
plasmon resonance analyses to demonstrate that all three scavenger class B receptors (SRB: SR-B1,
SR-B2, and CD36) present in the macula bind macular xanthophylls with affinities characteristic of
transport proteins (KD ~ 1–2 µM). Macular xanthophylls were delivered in LDL and HDL complexes
at physiologic concentrations to characterize distinct aspects of uptake for lutein, zeaxanthin and
meso-zeaxanthin using a SRB receptor class over-expressing model cell system (HEK-293T) that does
not endogenously express these proteins. LDL-bound lutein uptake was enhanced and mediated
by SR-B1 and CD36 receptors. Zeaxanthin and meso-zeaxanthin delivered by HDL was taken up in
appreciable amounts by cells overexpressing any of the three SRB proteins. SR-B2 over-expressing
cells transported zeaxanthin at concentrations 10-fold to those for lutein. However, non-transfected
(SRB-free) control cells took up higher amounts of zeaxanthin and meso-zeaxanthin than lutein, raising
the possibility that selective accretion of zeaxanthins by these cells that may be SRB independent.

It is not clear whether macular xanthophylls are incorporated directly into the lipid-bilayer
portion of retina membranes or are bound by membrane-associated xanthophyll-binding proteins.
Three of the xanthophyll-binding proteins (xanthophyll transporters) have already been identified
and characterized by Bernstein’s group. These are lutein-specific steroidogenic acute regulatory
domain protein (StARD3) [124,125], zeaxanthin-specific glutathione S-transferases pi 1 (GSTP1) [17],
and members of the tubulin family [126], which demonstrate weaker binding properties than StARD3
and GSTP1. The question is whether these proteins are only selective transporters responsible for
the specific and different distribution of lutein and zeaxanthin in the retina or whether they can store
macular xanthophylls in membranes.

The zeaxanthin molecule is completely symmetrical compared with the asymmetrical lutein
(Figure 1). Structurally, the main difference between lutein and zeaxanthin is the position of the double
bond in the terminal ionone ring. The two rings of lutein, namely β-ring and ε-ring, are not equivalent,
whereas the zeaxanthin molecule has two identical β-rings. Recently, Makuch et al. [127] showed
that the intercalation of lutein into the lipid bilayer is also asymmetrical. Lutein with one β-ring
and one ε-ring intercalates into the bilayer preferentially with its β-ring, as shown schematically in
Figure 3. The asymmetric intercalation of lutein into the phospholipid bilayer coincidence with its
asymmetrical docking into the active side of the enzyme that catalyzes the conversion of lutein into
meso-zeaxanthin [9,10] and into the asymmetric cavity of the lutein binding protein [125]. In this
asymmetrical docking, the β-ring stays outside the cavity. This asymmetrical intercalation of lutein
with the lipid bilayer and xanthophyll-binding proteins may be the key to understanding differences
in spatial distribution and transferring two xanthophylls to the retina.
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Figure 3. Schematic drawing showing the preferential lutein β-ring-intercalation into the lipid
membrane based on molecular dynamics study of Makuch et al. (for more details, see Ref. [127]).
Two macular xanthophylls are shown: symmetrical zeaxanthin with two β-rings and asymmetrical
lutein with one β-ring and one ε-ring.

3.2. Spatial Distribution

The center of the fovea [8,128] contains the highest zeaxanthin, and the zeaxanthin concentration
declines to negligible levels outside 7◦ of the foveal eccentricity [37]. The zeaxanthin-to-lutein molar
ratio changes as the eccentricity moves away from the fovea (Figure 4). At distances exceeding
5.5 mm of perifovea, the zeaxanthin-to-lutein molar ratio is between 0.5 and 0.3, whereas the ratio is
reversed to 2.4 in the center of fovea [7]. The resented values include zeaxanthin and the isomer of
zeaxanthin, meso-zeaxanthin.
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Figure 4. Vertical section of a monkey fovea showing the distribution of macular xanthophylls (yellow
color). (Adapted with permission from Snodderly, D.M., 1995. Am J. Clin. Nutr. 62, 1448S-1461S [23].)
The zeaxanthin-to lutein ratio at 0–5◦ is 1.5:1.0; at 5–19◦, 1.0:1.5; and at 19–38◦, 1.0:2.0 (a 1◦ angular
subtense in the retina represents 0.29 mm of retinal extent) [7,39].

Why meso-zeaxanthin is produced in the retina from lutein and so efficiently replaces lutein in
the central part of the fovea is still an unexplained phenomenon. To a certain degree, the high presence
of meso-zeaxanthin in the foveal region of primates can be explained by the primates’ common diet,
which is low in zeaxanthin and rich in lutein (precursor of meso-zeaxanthin). This points out the need
for the presence of this particular macular xanthophyll in the central macula. The concentration peak
of meso-zeaxanthin in the central fovea correlates with the peak of the cones; one can speculate that
meso-zeaxanthin is associated with cones. When plotted as a function of eccentricity, the zeaxanthin
(including meso-zeaxanthin)-to-lutein ratio follows the same pattern as the cone-to-rod ratio; as such,
it has been proposed that these two xanthophylls are associated with different types of photoreceptors,
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i.e., rods versus cones [7]. Another observation indicates that this hypothesis is insufficient and both
lutein and zeaxanthin were isolated from retinal pigment epithelium and rod outer segments [31].
Thus, the association of the xanthophylls with the certain photoreceptor types is not straightforward.

The spatial distribution profile of macular pigment is measured by several physical techniques.
Methods for macular pigment imaging include autofluorescence imaging, fundus reflection methods,
resonance Raman spectroscopy, and fluorescence lifetime imaging ophthalmoscopy. Using the fundus
reflectometry technique, MPOD can be determined by analysis of the reflectance of light from the
foveal and perifoveal regions and the spectral contribution of the absorbance of xanthophyll molecules.
The autofluorescence method measures the intensity of the autofluorescence of lipofuscin in the presence
of excitation with two wavelengths, one fully and the other minimally absorbed by xanthophylls.
The Raman spectroscopy method uses excitation of the carotenoids in their absorption band, which
occur in the blue/green wavelength region, and detects signals from the stretch vibration of the carbon
double bonds in part of the polyene chain of the carotenoid molecule. The above-motioned fluorescence
lifetime imaging ophthalmoscopy method measures the lifetimes of retinal fluorophores, including
the short lifetime of macular xanthophylls [129,130]. The in vivo assessment of the MPOD can also
be obtained by psychophysical methods, such as heterochromatic flicker photometry and minimal
motion photometry. Both subjective psychophysical tests and objective optical imaging methods
show that the concentration of macular xanthophylls peaks toward the center of the fovea. HPLC
(high-performance liquid chromatography) ex vivo studies of primate and human retinas confirm
the spatial density distribution of macular pigment [131]. More recent evidence suggests that the
anatomical characteristics and spatial distribution of Müller cells at the fovea and parafovea are
associated with the distribution of macular pigment. The human retina contains three types of glial
cells: microglia, astrocytes, and Müller cells. The fovea does not contain astrocytes and microglia;
its structure contains only Müller cells. The fovea contains two different pools of Müller cells: Müller
cells cones and z-shaped Müller cells of the foveal walls. Macular telangiectasia type 2 (MacTel 2) is
an idiopathic bilateral retinal condition associated with vision loss and the redistribution of macular
xanthophylls. MacTel 2 commonly presents in middle age and is characterized by degenration of the
neural retina along with vascular changes altering structures in the outer nuclear layer|ellipsoid zone.
End stages yield pseudolamellar macular holes. Hyperplasia and movement of RPE cells to inner retinal
layers may occur in late stages. Hypertension and diabetes mellitus are associated with the condition.
However, one of the earliest manifestations of MacTel type 2 is different than normal redistribution of
macular xanthophylls, with the loss of macular xanthophylls in the center of the fovea. Gass et al. [132]
proposed that Müller cell abnormalities play a crucial role in the retinal degeneration of MacTel type 2
and that Müller cells loss in MacTel type 2 may explain the observed lack of macular pigment in the
foveola visible in the MPOD images. The correlation between areas of macular xanthophyll absence
and areas of Müller cell depletion was observed also by Powner et al. [133,134].

3.3. Retinal Layers Distribution

In contrast with the spatial distribution of xanthophylls within the retina, information about the
exact subcellular location of yellow pigments in different retinal layers is limited. An initial study
of the distribution of xanthophylls in the human retina reported a similar relationship between the
zeaxanthin-to-lutein molar ratio and cone-to-rod ratio with eccentricity [39], suggesting the association
of specific xanthophyll with specific photoreceptors. However, Snodderly et al. [131] did not agree
with the hypothesis that zeaxanthin is preferentially associated with cones and lutein with rods. First,
Snodderly et al. showed that, in contrast with humans, the distribution of xanthophylls had a reveres
pattern in squirrels and macaque monkeys, with more lutein than zeaxanthin throughout the central
fovea. Second, Snodderly et al. indicated that lutein is present in the foveola (central part of the fovea)
where only cones exist. Finally, it was shown that both macular xanthophylls were detected in rod
outer segment membranes of the human retina [31,43]. Additionally, some carotenoids were isolated
from the RPE [32]. However, the predominant localization of xanthophylls is the outer plexiform layer
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(Henle’s fiber layer) in the fovea and the inner plexiform layer in the parafovea [39,131]. A different
approach of checking the retinal layer distribution of macular xanthophylls was demonstrated by
Bernstein’s group, which reported the distribution of carotenoids in the retina layer through analysis of
the distribution of retinal xanthophyll-binding proteins [14,17,32]. Two xanthophyll-binding proteins
were found in the human retina: the zeaxanthin-binding protein GSTP1 and the lutein-binding protein
StARD [14,17,32]. Immunocytochemistry with an antibody to GSTP1 showed the strongest labeling
of the outer plexiform layer (Henle’s fiber layer) [17]. Immunolocalization with antibodies directed
against StARD showed selective labeling of monkey photoreceptor inner segments [16]. Gass [132]
first suggested that the Müller cell cones can form a reservoir of zeaxanthin. Macular Müller cells
as the principle cellular reservoir of macular xanthophylls have received less attention over the last
two decades because knowledge regarding foveal glial cells was not complete. In the fovea, Müller
cells run parallel to Henle’s fibers [135] and diagonal to incoming light; this may give a misconception
as to where exactly macular xanthophylls are located in the fovea (i.e., in Müller cells or Henle’s
fibers). Initially, the predominant xanthophyll pigment was thought to be located in the Henle’s fiber
layer [7,131,136], but Müller cells may also be the main site of xanthophyll location [132].

4. Antioxidant Properties of Zeaxanthin

4.1. Physical Antioxidant Actions

Zeaxanthin may quench singlet oxygen by a physical mechanism in which zeaxanthin can
participate in multiple quenching cycles without degradation. During that physical process, the excess
energy from singlet oxygen is transformed to carotenoid and into its excited triplet state. Next,
the carotenoid-excited triplet state is deactivated through thermal decay. Retaining an intact structure
in that physical process ensures that the zeaxanthin molecule can be reused, thus increasing the
efficiency of the quenching process. The efficiency of physical quenching of singlet oxygen by
carotenoids was reported to be greater than that of vitamin E [137] and is directly related to the
conjugation chain length of the pigment molecule. In organic solvents, zeaxanthin (with 11 conjugated
double bounds) has a higher singlet oxygen quenching rate constant than lutein (with 10 conjugated
double bonds) [138]. Similarly, in model membranous systems, zeaxanthin exhibits a better ability to
quench singlet oxygen than lutein [139]. It has been shown that oxidation initiated by the all-trans
retinal derived retinal photosensitizer A2-PE (composed of two molecules of all-trans retinal and
phosphatidylethanolamine) was suppressed more effectively in the presence of zeaxanthin (which is
a better singlet oxygen quencher) than in the presence of lutein [140]. A2-PE is one of many retinal
photosensitizers that creates harmful oxygen species when exposed to blue light.

In plants, the excited triplet state of chlorophyll (photosensitizer) is efficiently quenched by the
carotenoid molecule, leading to heat dissipation and preventing the formation of singlet oxygen.
It should be mentioned that the quenching of the excited triplet state of photosensitizers by xanthophylls
requires a close distance approach of these two molecules. Triplet chlorophylls in the light-harvesting
complexes are promptly quenched by lutein [141] and zeaxanthin [142] and bind to specific sites within
light-harvesting antenna complexes. Thus, carotenoids can exert their physical antioxidant action
not only by direct singlet oxygen quenching but also by transferring energy from the triplet states of
sensitizers. It is accepted that some endogenous photosensitizers producing reactive oxygen species
are present in the retina. In the physiological condition, all-trans retinal is converted to 11-cis retinal,
causing rhodopsin activation. After that, all-trans retinal is released from photoactivated rhodopsin
and recycled. However, many retinal degeneration processes may be induced by disrupting all-trans
retinal clearance [143–145]. If the clearance process is not effective, all-trans retinal will accumulate
in the rod outer segment, and light and the presence of oxygen will generate toxic oxygen species.
Despite the fact that xanthophylls are capable of quenching excited triplet states of photosensitizers,
physical antioxidant actions have not been experimentally confirmed for retinal xanthophylls and
retinal endogenous photosensitizers.
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Because of the presence of potent photosensitizers in the retina, much oxidation damage can be
caused by short-wavelength light. Photosensitizers that can be activated by blue light produce singlet
oxygen, which may be a risk factor for harmful oxidation, leading to AMD [146]. Both lutein and
zeaxanthin absorb blue light, and this has led to the hypothesis that macular xanthophylls may protect
the retina by filtering blue light [136,138] and prevent the formation of singlet oxygen. The prereceptoral
location of macular pigment is ideal for this function. It has been reported that macular xanthophyll
supplementation protected the fovea from blue-light-induced damage [46]. The anatomical distribution
of zeaxanthin decreases with increasing eccentricity from the fovea. Thus, zeaxanthin acts as screening
pigment for the underlying densely packed receptors. The optical absorption spectra of lutein and
zeaxanthin are very similar. In the organic solvent, the absorption maximum of zeaxanthin and
meso-zeaxanthin is 450 nm and the maximum of lutein is shifted only 5 nm to the shorter wavelength.

4.2. Chemical Antioxidant Actions

The chemical quenching of singlet oxygen by carotenoids involves a chemical reaction between
oxygen and xanthophyll molecules and, in contrast with physical quenching, xanthophylls are
consumed and destroyed in this chemical process. The chemical deactivation of singlet oxygen by
carotenoids has been reported as a minor reaction as compared with physical quenching [147–151].
However, several singlet oxygen xanthophyll oxidation products were detected in retina tissue,
indicating that this reaction takes place not only in vitro [32,152]. Potentially, each double bond in the
carbon chain of carotenoids can be oxidized by singlet oxygen, leading to the formation of different
aldehydes. In the case of xanthophylls, a low level of aldehydic oxidation product formation was
observed [153]. Endoperoxides were identified as the primary oxidation products of the chemical
quenching of singlet oxygen by zeaxanthin [151,153]. Moreover, Ramel et al. [153] showed that the
rate of formation of zeaxanthin endoperoxide in the organic solvent was slower than the formation
of β-carotene and lutein endoperoxides. Similarly, during the chemical quenching of singlet oxygen
by zeaxanthin, aldehydic oxidation products were formed later than in the case of singlet oxygen
quenching by lutein and β-carotene [153]. From these studies, one can conclude that zeaxanthin is less
susceptible to oxidation by singlet oxygen than lutein and β-carotene. It should be mentioned that
chemical quenching causes bleaching of carotenoids and leads to the loss of physical quenching abilities.

Another sacrificing mechanism that occurs during protection of the retina is radical scavenging
by lipid-soluble molecules of zeaxanthin. However, this action also causes zeaxanthin to lose its intact
structure. It has been shown that zeaxanthin scavenged the hydroxyl radical more effectively than
lutein [154], and the different distributions of lutein and zeaxanthin suggest that scavenging hydroxyl
radicals is more important in the central fovea. Both retinal rods and cones of the outer segment disc
membranes are very rich in long, polyunsaturated fatty acids [155,156], particularly docosahexaenoic
acid, which is susceptible to oxidation. The selective localization of macular xanthophylls in domains
rich in polyunsaturated phospholipids [33,71,72], and therefore susceptible to free-radical- and
singlet-oxygen-induced damage, is ideal for this chemical antioxidant action. The phospholipids
containing very-long-chain polyunsaturated fatty acids present in the disk membranes of rod outer
segments likely play a unique and important role in the retina because they are necessary for cell
survival and their loss leads to cell death [157,158]. Additionally, epidemiological studies of long-chain
polyunsaturated phospholipid intake suggest a protective role against the incidence of advanced
AMD [159,160]. Our investigations, made on a lipid model of photoreceptor outer segment membranes,
indicate that xanthophylls were about 14 times more concentrated in the unsaturated bulk domain
(enriched in polyunsaturated lipids) and excluded from the domain enriched in saturated lipids and
cholesterol [71]. A similar distribution also was found in membranes made of a raft-forming mixture [72]
where macular xanthophylls lutein and zeaxanthin were about eight times more concentrated in the
bulk, unsaturated domain than in the saturated raft domain (Figure 5).
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5. Zeaxanthin Supplementation

5.1. Zeaxanthin Supplements and AREDS Formulation

AMD is a chronic, complex degenerative disease that affects the macular region and may result
in a loss of central vision. Oxidative stress is implicated in the pathogenesis and pathophysiology of
AMD. The Age-Related Eye Disease Study 2 (AREDS2) [161] was a phase III randomized controlled
trial designed to evaluate efficacy and safety of formulation containing dietary retinal xanthophylls
and long-chain polyunsaturated fatty acids for the prevention progression to advanced AMD in people
at moderate to high risk for the condition. This work built on the findings from the Age-Related Eye
Disease Study (AREDS) [162,163]. In AREDS, participants were randomly selected to receive daily
oral tablets in a factorial design for one of four treatments containing: (i) vitamins with antioxidant
properties alone (500 mg vitamin C, 400 international units vitamin E, 15 mg β-carotene), (ii) zinc alone
(80 mg zinc as zinc oxide along with 2 mg copper as copper oxide to prevent pernicious anemia), (iii) a
combination of vitamins with antioxidant properties and zinc, or (iv) placebo. In this study, participants
randomized to vitamins with antioxidant properties + zinc were 25% less likely than participants on
placebo to progress to advanced AMD [156,157]. Analysis of AREDS dietary data showed that people
reporting higher levels of dietary lutein and zeaxanthin [35] and omega-3 fatty acids [35,159,164,165]
were also less likely to develop sight-threatening AMD [153,160]. A primary goal of the AREDS2 study
was to determine if the addition of macular xanthophylls and/or omega-3 long-chain polyunsaturated
fatty acids (LCPUFAs) to the original AREDS formulation would further reduce the risk of progression
to advanced AMD and cataract in people at moderate to high risk for these events. The commercial
AREDS2 formulation contains zinc plus vitamins from the AREDS formulation including macular
xanthophylls (500 mg vitamin C, 400 international units vitamin E, 80 mg zinc as zinc oxide, 2 mg
copper as cupric oxide, 10 mg lutein, 2 mg zeaxanthin) [161,166,167]. The choice to replace β-carotene
in the original AREDS formulation with zeaxanthin and lutein was based on: (i) changes in availability
of supplement-grade zeaxanthin and lutein (major endogenous retinal carotenoids) in quantities that
would support the needs of the study; and, (ii) the demonstration in phase III trials that smokers taking
supplements withβ-carotene were more likely than their peers to develop lung cancer [168]. In addition
to electively taking the AREDS supplements, participants in AREDS2 study were randomly assigned to
receive one of four treatments: (i) 10 mg lutein + 2 mg zeaxanthin/d; (ii) omega-3 LCPUFAs, specifically
docosahexaenoic acid (DHA, 350 mg/day) and eicosapentaenoic acid (650 mg/day); (iii) both lutein and
zeaxanthin with LCPUFA; or (iv) control (no xanthophylls and no omega-3 LCPUFAs). The AREDS2
product was commercialized and is now recommended for individuals with intermediate to advanced
AMD, based on the AREDS2 results (see Table 2). In AREDS2, comparisons of participants randomized
to the xanthophyll-containing formulation to their peers not randomized to the xanthophyll formulation
showed reduced likelihood of progression to advanced AMD. Analysis of participants reporting low
dietary intake of lutein and zeaxanthin showed stronger associations; this draws attention to the fact
that xanthophyll supplementation is very important in a low xanthophyll diet. AREDS formulation did
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not further reduce risk of progression to advanced AMD. A follow-up work on the AREDS2 applying
post-hoc exploratory comparisons of lutein/zeaxathin interventions to those with β-carotene indicated
that people in the macular xanthophyll arm were approximately 20% less likely than people in the
β-carotene arm to develop late AMD or neovascular AMD. Results did not attain significance for this
xanthophyll v. β-carotene comparison on the central geographic atrophy endpoint. Results persisted
when analytic cohorts were restricted to people with moderate AMD at enrollment [169].

Table 2. AERDS formulations.

AREDS1

Vitamin C 500 mg

Vitamin E 400 IU

β-carotene 15 mg

Zinc 80 mg

Copper 2 mg

AREDS2

Vitamin C 500 mg

Vitamin E 400 IU

Zinc 25 mg

Copper 2 mg

Zeaxanthin 2 mg

Lutein 10 mg

In the AREDS2 formulation, the dominant carotenoid is lutein. Similarly, most of the vision
supplements commercially available primarily contain high amounts of lutein and low amounts of
or no zeaxanthin. This decision was made based on the distribution of zeaxanthin and lutein in
foods. For supplement production, zeaxanthin can be obtained from microbial sources [170–172] or
by synthesis [173–175]. Most commercially available lutein/zeaxanthin products are extracted from
marigold flowers [176,177]. Because most AREDS2-like supplements on the market are made by
extracting plant oleoresins from the marigold, most contain high lutein content and low zeaxanthin
content. Commercially available marigold supplements contain lutein and zeaxanthin in the molar
ratio of 5:1 to 20:1 [178,179]. Keeping in mind that the ratio of zeaxanthin-to-lutein in the fovea is
approximately 1.5:1 (at 0–5◦), one should consider whether increasing the content of zeaxanthin in
supplements for eye health will more effectively reduce the risk of AMD than lutein-rich supplements.

5.2. Effects of Zeaxanthin Supplementation on MPOD

The content of macular xanthophylls in the retina cannot be measured directly. However,
the amount of retina carotenoids is related to MPOD. MPOD is the highest in the central fovea
and decreases rapidly with increasing eccentricity [7]. It has been shown that supplementation
with xanthophylls increases MPOD [20,37,180–182], and it is widely accepted that low MPOD
might be a risk factor for AMD progression [48,51,183–185]. The effects of macular xanthophyll
supplementation on MPOD were primarily studied using only lutein supplementation [186,187]
or high-dose lutein and low-dose zeaxanthin supplements (with a zeaxanthin-to-lutein molar ratio
ranging from 1:33 to 1:5) [20,177–180]. Conversely, the effect of high-dose zeaxanthin supplementation
on MPOD is less studied. High-dose supplementation was studied by Bone et al. In this study, a high
zeaxanthin dose (30 mg/day) was less absorbed than an equal lutein dose. In another study [188],
a lutein dose (20 mg/day) increased MPOD more effectively than a lower dose (10 mg/day) in the short
term (48 weeks) but had the same effect in the long term (two years). Both low and high lutein doses
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were more effective in increasing MPOD than combined supplementation with lutein (10 mg/day) and
zeaxanthin (10 mg/day).

In MacTel type 2, macular xanthophylls have characteristic distribution with the depletion of
xanthophylls from the central part of the fovea and their accumulation in the fovea surrounding ring.
Unfortunately, in patients diagnosed with MacTel type 2, the lutein/zeaxanthin supplementation did
not increase the xanthophyll content in the central fovea, the area where the macular xanthophylls
were previously absent [22,189].

6. Conclusions

The biophysical and biochemical properties of macular xanthophylls support inferences on
their physiologic significance. Membranes of photoreceptors containing polyunsaturated fatty acids
susceptible to photo-oxidation exist in the retina at high oxygen tension and under chronic light exposure.
Several vitamins with antioxidant properties and other antioxidants are implicated as protective
agents in the retina, and these include vitamin E [190–192], vitamin C [49,190], selenium [193,194],
glutathione [195], some enzymes [196–199], and two diet-based xanthophylls (lutein and zeaxanthin).
However, we must consider the adaptive significance of the specific cellular and laminar spatial
distribution of these two xanthophylls. It should be noted that both macular xanthophylls and vitamin E
exhibit nonuniform spatial distribution within the macula [23]. Some explanation of the unique position
of zeaxanthin in the protection of the retina comes from studies conducted on the thylakoid membranes
of higher plants. Similar to photoreceptor membranes, these membranes are rich in polyunsaturated
fatty acids, exist at high oxygen tension, and are exposed to intensive light. Zeaxanthin-deficient
plants exhibit strongly reduced tolerance to oxidative damage, while zeaxanthin-overexpressing plants
exhibit a strongly increased tolerance to oxidative stress [200–202]. Thus, during evolution, zeaxanthin
conferred an advantage in effectively protecting thylakoid membranes.

Several factors explain how zeaxanthin (and meso-zeaxanthin) can be concentrated to a greater
extent than lutein within the fovea. First, the presence of two functional ionone hydroxyl groups at
the ends of this molecule determines its transmembrane orientation, which enhances the stability
of zeaxanthin in the lipid bilayer membranes [68,70,203]. Second, the high antioxidant capacity of
zeaxanthin is enhanced by the fact that it is less susceptible than lutein to consumption and destruction
during chemical singlet oxygen quenching [153]. Third, zeaxanthin possess a higher capacity of singlet
oxygen physical quenching than lutein [138,140]. All of these ensure that zeaxanthin efficiently protects
against the oxidative stress that may lead to retinal damage.

As mentioned in Section 2.1, the human diet contains 5 to 12 times more lutein than zeaxanthin;
lutein is found in higher quantities in human serum, which is likely due to the xanthophyll composition
in foods. These proportions are reversed in the central part of the fovea where the concentration
of zeaxanthin is about two times greater than the concentration of lutein—each xanthophyll has a
retina-resident active transporter—and we have provided published reviews on genetic variation
and macular xanthophyll transport and metabolism. At the moment, there is an unmet need to
address the question formulated in the title of this review: “Why is zeaxanthin the most concentrated
xanthophyll in the central fovea?” Although we have provided insights on differences in the selective
transport of lutein and zeaxanthin from food to the retina and identified differences on the level of
xanthophyll-binding proteins (which can ensure the specific and different distribution of lutein and
zeaxanthin in the retina), the exact mechanisms driving the preferential accretion of zeaxanthin in the
foveola remain unidentified.

Based upon our review of the evidence, it is our opinion that, although some physical and
chemical properties of lutein and zeaxanthin are similar, the distinct properties of zeaxanthin offer
an advantage for modulating processes implicit in the pathogenesis of AMD. These differences are
not vast, but they are significant. Major differences include greater chemical stability [153], more
effective physical quenching of singlet oxygen [138,140], and easier incorporation to lipid bilayer
membranes [127]. We believe these differences emerged during evolution, and that zeaxanthin offered
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an adaptive advantage to protect the central, most vulnerable part of the retina. We conclude with the
observation that the natural history of AMD will often lead to a sparing of the zeaxanthin-rich foveola
as the last functional retinal region remaining prior to the loss of central vision.
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