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One challenge in conducting DNA methylation-based epigenome-wide association
study (EWAS) is the appropriate cleaning and quality-checking of data to minimize
biases and experimental artifacts, while simultaneously retaining potential biological
signals. These issues are compounded in studies that include multiple tissue types,
and/or tissues for which reference data are unavailable to assist in adjusting for cell-
type mixture, for example cerebral spinal fluid (CSF). For our study that evaluated
blood and CSF taken from aneurysmal subarachnoid hemorrhage (aSAH) patients, we
developed a protocol to clean and quality-check genome-wide methylation levels and
compared the methylomic profiles of the two tissues to determine whether blood is
a suitable surrogate for CSF. CSF samples were collected from 279 aSAH patients
longitudinally during the first 14 days of hospitalization, and a subset of 88 of these
patients also provided blood samples within the first 2 days. Quality control (QC)
procedures included identification and exclusion of poor performing samples and
low-quality probes, functional normalization, and correction for cell-type heterogeneity
via surrogate variable analysis (SVA). Significant differences in rates of poor sample
performance was observed between blood (1.1% failing QC) and CSF (9.12% failing
QC; p = 0.003). Functional normalization increased the concordance of methylation
values among technical replicates in both CSF and blood. SVA improved the asymptotic
behavior of the test of association in a simulated EWAS under the null hypothesis. To
determine the suitability of blood as a surrogate for CSF, we calculated the correlations
of adjusted methylation values at each CpG between blood and CSF globally and by
genomic regions. Overall, mean within-CpG correlation was low (r < 0.26), suggesting
that blood is not a suitable surrogate for global methylation in CSF. However, differences
in the magnitude of the correlation were observed by genomic region (CpG island, shore,
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shelf, open sea; p < 0.001 for all) and orientation with respect to nearby genes (3′ UTR,
transcription start site, exon, body, 5′ UTR; p < 0.01 for all). In conclusion, the correlation
analysis and QC pipelines indicated that DNA extracted from blood was not, overall, a
suitable surrogate for DNA from CSF in aSAH methylomic studies.

Keywords: epigenome-wide association study, methylation, methylomics, aneurysmal subarachnoid
hemorrhage, epigenetics

INTRODUCTION

The epigenome-wide association study (EWAS) approach has
emerged in recent years as a hypothesis-free method for
investigating the associations between epigenetic marks, such
as DNA methylation, and human phenotypes. Challenges
pertaining to the cleaning and processing of methylomic data
persist, including issues related to sample quality, controlling for
cell type heterogeneity, comparing methylomic profiles across
tissue types, and modeling dynamic changes in methylation
over time (Morris and Beck, 2015). Here, we describe our
quality control (QC) pipeline for processing and quality-checking
genome-wide methylation data obtained from samples of blood
and cerebral spinal fluid (CSF) in a cohort of acute subarachnoid
hemorrhage (aSAH) patients. aSAH is a form of stroke leading
to variation in clinical outcomes such as cerebral vasospasm,
coma, delayed cerebral ischemia (DCI), cognitive decline, and
death (Wermer et al., 2007). Previous work (Endres et al., 2000;
Nelson et al., 2008; Stapels et al., 2010) has suggested that changes
in DNA methylation occur following aSAH. We hypothesize
that these methylomic changes may be clinically relevant.
Therefore, the overreaching goal of this ongoing initiative is to
understand the changes in methylomic profiles occurring after
aSAH to identify biomarkers predictive of prognosis and recovery
outcomes. The purpose of this specific study was to develop
and implement a pipeline for cleaning and quality-checking
methylomic profiles derived from CSF tissue and to determine
the suitability of peripheral blood as a surrogate for CSF.

MATERIALS AND METHODS

Study Design Overview
Our study population is comprised of individuals who have
sustained an aSAH. Patient DNA was obtained from two
biological tissues, CSF (drained as standard of care) and blood.
This study investigated CSF samples collected longitudinally
from 279 patients during the first 14 days of hospitalization, and
blood samples from 88 of these individuals collected within the
first day of hospitalization. Methylomic profiles were obtained
using a genome-wide array, from which methylation levels,
quantified as beta-values (i.e., percent methylation) and M-values
(i.e., a transformation of the beta-values, which exhibit beneficial
properties for statistical analysis), were assessed for over
450,000 cytosine-phosphate-guanine (CpG) sites. QC analyses of
methylation data were performed in the R statistical computing
environment using the following packages: minfi (Aryee et al.,
2014), ENmix (Xu et al., 2016), and sva (Leek et al., 2012).

After QC, cleaned methylomic profiles were contrasted between
blood and CSF samples to determine the utility of blood as
surrogate for CSF.

Patient Recruitment and Sample
Collection
Participants were considered for this study if they were
admitted to the University of Pittsburgh Medical Center
Neurovascular Intensive Care Unit with an aSAH confirmed by
digital subtracted cerebral angiography and/or head computed
tomography (CT) and a Fisher grade (measure of hemorrhage
burden) > 1. Informed consent was obtained from the
participant or their legal proxy using a protocol approved by the
University of Pittsburgh Institutional Review Board. Exclusion
criteria included a history of debilitating neurologic disease or
subarachnoid hemorrhage due to arteriovenous malformation,
trauma, or mycotic aneurysm.

Daily CSF samples were collected for the first 14 days after
aSAH from an external ventricular drain placed as standard of
care and DNA extracted using the Qiamp Midi kit (Qiagen,
Valencia, CA, United States). Venous blood was collected within
the first day of hospitalization and DNA was extracted using
a simple salting out procedure. All DNA was stored in 1X TE
buffer at 4◦C.

This study included 279 aSAH patients. For the CSF samples,
we targeted days 1, 4, 7, 10, and 13 post-aSAH, and substituted
samples ±1 day when target days were unavailable. Blood
samples collected within the first day of hospitalization after
aSAH were included in this study for 88 of the 279 participants.

Potential Covariate Assessments
The severity of aSAH was assessed at hospital admission by
Fisher grade (Fisher et al., 1980) employing CT scan to assess
hemorrhage burden and by Hunt and Hess scores (Hunt and
Hess, 1968) to assess symptom burden. Demographic and
anthropometric characteristics such as age, sex, race, height, and
weight were collected from medical records (Table 1). Smoking
status was also collected.

DNA Methylation Data Collection and
Plate Design
The Illumina (San Diego, CA, United States) Infinium
HumanMethylation450 BeadChip platform was used to
assess the methylation levels at over 450,000 CpG sites in the
samples. Methylation data collection was performed by the
Center for Inherited Disease Research (CIDR) of Johns Hopkins
University. Each BeadChip, hereafter referred to as a plate,
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TABLE 1 | Characteristics of study participants.

Blood (N = 88) CSF (N = 279)

Demographic

Age (years) 52.4 ± 11.1 52.9 ± 11.0

Gender (female/male) 59/29 (67%) 193/86 (69%)

Race (white/black/others) 76 (86%)/
10 (11%)/
2 (2%)

243 (87%)/
30 (11%)/
6 (2%)

Height (in) 66.1 ± 4.8 66.1 ± 4.3

Weight (kg) 80.6 ± 19.7 78.6 + 20.0

Clinical

Current smoke (yes/no) 50/37 (57%) 155/120 (56%)

Fisher grade (2/3/4) 23 (26%)/
48 (55%)/
17 (19%)

83 (30%)/
138 (49%)/
58 (21%)

Hunt and Hess sore (1/2/3/4/5) 2 (2%)/
26 (30%)/
37 (42%)/
19 (22%)/
4 (5%)

20 (7%)/
84 (30%)/
109 (39%)/
48 (17%)/
18 (6%)

DCI (yes/no) 45/42 (52%) 123/154 (44%)

Values are presented as mean ± SD for continuous variables, category count
followed by percentage of the first category for binary variables, and count
(percentage) for variable with multiple categories. Missing values exist for some
variables, accounting for the discrepancy between count sum and sample size.

consists of eight chips of 12 samples arranged in a layout of
six rows by two columns. This enables 96 samples to be run
on a single plate. To avoid plate effects, all blood samples were
assayed together on a single plate. CSF samples were placed
across 11 plates using several strategies to reduce the impact of
technical artifacts. First, all longitudinal samples from the same
patient were included on the same chip within the same plate
so that longitudinal changes in methylation were not obscured
by chip and plate effects. Second, row and column positioning
of samples from the same patient were carefully assigned to
available positions within a chip so that longitudinal changes in
methylation were not confounded with row and column effects.
Third, cases and controls for DCI were balanced within chips
using a checkerboard pattern so that DCI was not confounded
with row, column, chip, or plate effects (see Supplementary
Figure 1 for the plate map). To gauge technical variation, we
included four control samples of fixed methylation state (0, 30,
70, and 100% methylated) and four technical replicates (i.e.,
repeated assays of the same DNA sample) per plate. Two of the
control samples were placed in the same position across all plates
and two were randomly placed. For the plate of blood samples,
all four technical replicates were randomly positioned duplicates.
In contrast, for the 11 plates of CSF samples, three of the four
technical replicates were randomly chosen duplicate samples,
and one was the same sample replicated across all 11 plates.

Sample Quality Functional Normalization
ENmix (Xu et al., 2016) was employed to assess the quality
of samples in our methylation study, separately for blood and
CSF samples. Samples having bisulfite control intensities less
than three standard deviations below the mean of all samples,

and/or for which more than 1% of probes were inadequately
detected (i.e., detection p-values > 0.01 or with fewer than three
beads) were categorized as low-quality samples. These, along with
outliers in total intensity or beta value distribution were removed
from our subsequent analyses (Xu et al., 2016). After the removal
of low-quality and outlier samples, we performed background
correction (Xu et al., 2016) to remove non-specific signals from
the total signal, and performed dye bias correction (Xu et al.,
2017). Sample quality differences by tissue type were tested using
Fisher’s exact test on counts of samples passing or failing all
sample QC filters.

We normalized the methylation data to bring Infinium Type
I and Type II probes into alignment and to reduce noise
and technical variation due to batch effects (i.e., plate, chip,
row, and column effects). Specifically, we performed functional
normalization, an extension of quantile normalization, which
makes use of the control probes on the array to regress out
unwanted variation in the methylation data (Fortin et al.,
2014). Whether functional normalization improved agreement
between technical replicates was tested by comparing the squared
differences in median M-values between technical duplicates
before and after normalization using a one-sided paired t-test.

CpG Site-Level Quality Control
After normalizing the data, we removed CpG sites from
our analysis due to: (1) overlap of methylation probes with
known polymorphic sites (which can cause biased methylation
assessments), (2) probes located on the sex chromosomes (to
rectify the artifacts arising due to unequal distribution of gender
in the data) (Marabita et al., 2013), (3) cross-reactive probes
that bind to alternate genomic sequences, (4) probes exhibiting
multi-modal distributions indicative of poor quality or bias (Xu
et al., 2016) and (5) probes that were inadequately detected (i.e.,
detection p-values > 0.01 or with fewer than three beads) in more
than 1% of samples. Differences in the number of CpGs passing
quality filters was tested using McNemar’s test.

Reference Based Cell Proportions for
Blood
Blood has a mixture of cell types and DNA methylation-based
references have been established for blood cells. Therefore, to
estimate the proportions (cell counts) of each cell type, we
employed Houseman’s reference based method (Houseman et al.,
2012) using the functions available in the minfi R package (Aryee
et al., 2014) in our blood data. The method is based on using DNA
methylation as a surrogate measure for cell type distributions and
outputs the proportion of cell types: CD4 + T cells, CD8 + T
cells, natural killer cells, monocytes, B -cells and granulocytes
in each sample. The proportion of all cell types equals to one
for each sample.

Cell-Type Heterogeneity Correction and
Simulated EWAS Under the Null
Hypothesis
Owing to the lack of reference methylation data for cell types
found in CSF after an aSAH event we employed surrogate
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variable analysis (SVA) to perform reference-free adjustment for
cell-type heterogeneity across the samples in blood and CSF data.
SVA, as implemented in the sva R package (Leek et al., 2012),
simultaneously models the effects of known sources of variation
(covariates) and unknown sources of variation (i.e., surrogate
variables), conditional on a phenotype of interest. Including the
phenotype of interest in this modeling approach is necessary to
prevent the surrogate variables from accounting for variation due
to, for example, differences between cases and controls of disease,
so as not to stymie subsequent analyses aimed at detecting CpG
sites associated with case/control status. For examining the utility
of surrogate variables in adjusting for cell-type heterogeneity
in the absence of any particular phenotype-specific analyses,
we generated a random trait by randomly permuting one of
our observed traits, DCI, to serve as our outcome of interest.
SVA was performed for this simulated trait along with age and
gender as covariates in the context of an EWAS, whereby each
CpG was individually tested for association with the simulated
trait. Given the repeated measures in CSF, we grouped the CSF
samples into five subsets centered on their target days (days
1, 4, 7, 10, and 13) and substituted samples ±1 day when a
sample on the target day was unavailable. The goal of performing
SVA cross-sectionally in CSF subsets is to retain the variation in
methylation related to time. EWAS was also performed for the
simulated trait without adjusting for surrogate variables (with
other covariates being the same) and the distribution of p-values
for SVA-adjusted and unadjusted EWAS scans under the null
hypothesis were qualitatively compared to determine effect of
SVA on genomic inflation. We measured inflation/deflation using
the genomic inflation factor (λ), which is defined as the ratio of
the empirically observed to expected median of the distribution
of the test statistic.

Comparisons of Blood and CSF
Methylation Profiles
We compared the methylation profiles of individuals with blood
samples collected within the first day after hospitalization and
CSF samples collected at days 1, 4, 7, 10, and 13. We used 65,
64, 65, 61, and 47 subjects to compare the methylation profiles of
blood and CSF at days 1, 4, 7, 10, and 13, respectively to facilitate
individual level comparison. For this comparison, following the
approach of Ma et al. (2014), we excluded CpG sites where all
of the individual beta values were above 90% or below 10%
across both blood and CSF, as methylation at these sites had
little variation across samples and therefore would show high
correlation due to this uninteresting reason. The M-values at
each qualifying CpG site were adjusted for age, sex and the
surrogate variables (generated so as to not retain variation due
to any particular confounder, as one might typically do when
analyzing a trait of interest), and were then used to calculate
correlation coefficients between the blood and CSF profile across
samples. In addition to these within-CpG correlations, we also
calculated within-individual blood-CSF correlation coefficients
across the methylome for each of the 70 patients who had data
for both tissue types, using the same adjusted M-values as above.
To mitigate the potential batch effect resulting from our design

that blood and CSF samples were assayed on separate plates, we
chose to compare blood and CSF by calculating their correlation
which is invariant to systematic shifts in mean and scale, rather
than by directly comparing their absolute M-values.

RESULTS

Sample-Level Quality Control
A total of 1,012 methylation profiles (including 44 technical
replicates) were measured from CSF samples collected
longitudinally from 279 aSAH patients. Additionally, 92
methylation profiles (including 4 technical replicates) were
measured on blood samples in a subset of 88 of these patients; the
majority of these blood samples (77) were sampled between zero
and 2 days post-hospitalization (Supplementary Table 1). QC
analyses and filtering procedures were performed separately for
CSF and blood samples. Based on low average bisulfite intensity
and/or high proportion of poorly detected probes, we identified
89 (of 1012; 8.8%) poorly performing CSF samples (Figure 1).
Additionally, we identified 3 (0.3%) more CSF outliers based on
low total intensity. In contrast, no blood samples (0 of 92; 0%)
failed these criteria. Figure 2 displays the beta-value distributions
of all samples collected, based on which one blood and one
additional CSF samples were identified as outliers. In total, poor
sample performance was more common for CSF (93 of 1,012,
9.1%) than for blood (1 of 92, 1.1%), and these differences in
quality of methylomic profiling by tissue type were statistically
significant (Fisher’s exact test p = 0.003). Supplementary Table 1
gives counts of all samples collected and samples retained after
QC, for each collection time day.

After removing low-quality samples, we performed functional
normalization to reduce probe type (Infinium Type I vs. Type
II) and batch (i.e., plate, chip, row, and column) effects. The
reduction in chip, row, and column effects can be visualized
in the distribution of M-values, before and after functional
normalization, for samples profiled together on a plate (Figure 3).
Row effects are apparent for some chips as increasing means
across adjacent samples. For example, before normalization the
third chip from the left in Figure 3A shows strong row effects
indicated by means forming an upwardly sloped trend across the
first to fifth samples (which correspond to ascending rows in the
first column), followed by another upwardly sloped trend across
the sixth to eleventh samples (which correspond to ascending
rows in the second column). Functional normalization increased
concordance in median methylation between 34 technical
replicate CSF samples (p = 0.015) (Figure 4). For the 4 technical
replicate blood samples, the same trend of increased concordance
after functional normalization was observed; however, this trend
was not statistically significant (p = 0.153).

CpG Probe-Level Quality Control
Individual probes were filtered out of analyses for reasons
pertaining to probe design such as overlap with any single
nucleotide polymorphisms (SNPs) and with cross-reactivity
with off-target genomic positions (using the minfi R package,
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FIGURE 1 | Identification of low-quality samples (red) based on high proportion of poorly detected probes (x-axis) and/or low average bisulfite intensity (y-axis) from
(A) 92 blood samples and (B) 1,012 CSF samples, both including technical replicates. The horizontal lines represent the threshold 3 SD below the mean across
samples for bisulfite intensity, and the vertical lines represent the threshold of 1% of probes for which detection was poor (based on detection p-value and number of
beads).

FIGURE 2 | Distribution of beta-values across (A) all blood and (B) all CSF samples shows that a subset of poorly performing samples (red) deviate from the typical
distribution. After removal of poor performing samples, distributions in (C) blood and (D) CSF are more consistent.
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FIGURE 3 | Functional normalization reduces batch effects. Boxplots show the distribution of M-values per sample across the plate of (A) blood samples before,
and (B) after, functional normalization. For each sample, the median M-value is indicated by the black horizontal line and the interquartile range (25th to 75%
percentile) is indicated by the colored box. The whiskers (dashed lines) extend to the most extreme data point within 1.5 times the interquartile range beyond the
box, and outlier points beyond this limit are shown individually as circles. Samples are colored coded by chip, and samples are ordered within each chip as follows:
first column ascending by row number followed by second column ascending by row number. Before normalization, chip effects are apparent as differences in
median and interquartile range between color groups. (C) CSF samples before, and (D) after, functional normalization on an example plate. Comparing the blow-ups
to the right of each plot show variation in median M-values across samples is reduced after functional normalization.

Aryee et al., 2014). Additionally, CpG probes on the sex-
chromosomes were excluded. Based on QC analyses, CpG probes
with multimodal beta-value distributions, low detection quality
across samples, and high technical variation across replicate
samples were also filtered out of analyses. CpG probe-level
filtering criteria are summarized in Table 2. For each QC filtering
step, and overall, fewer CpGs were filtered out in blood than in
CSF (p < 2.2 × 10−16 for all), indicating that CSF samples may
yield somewhat lower-quality methylation data, as is also evident
in Figure 1.

B-cell Leukemia Outlier
Estimated blood cell type proportions using the reference-based
method followed expectations for all blood samples with one
exception, which showed high B-cell composition in analysis.
Further clinical investigation confirmed the presence of chronic
lymphocytic leukemia (CLL) in the individual, which is known
to cause increased proliferation of B cells in blood, bone marrow
and other lymphoid tissues (Greenberg and Probst, 2013; Ciccone
et al., 2014; Ghia and Hallek, 2014; Zhang and Kipps, 2014;
Hallek, 2015). Samples from this participant were excluded from
further analyses.

Adjustment for Cell Type Heterogeneity
Because methylomic profiles differ widely by cell type, modeling
cell type heterogeneity across samples is crucial for valid
cross-sample analyses of methylation data. However, external

cell type-specific reference data was not available for post-
aSAH CSF for use in reference-based adjustment. Therefore,
we performed reference-free adjustment using SVA to remove
unknown sources of variation including cell type heterogeneity.
We further excluded technical replicates from all samples that
passed QC, leaving 70 blood samples and 154, 246, 217, 152,
and 95 CSF samples for days 1, 4, 7, 10, and 13, respectively.
Ten surrogate variables (SVs) were generated for the set of blood
samples, and 13 SVs were generated for day 1 CSF samples.
Fifteen, 15, 14 and 10 surrogate variables were generated for
CSF samples for days 4, 7, 10, and 13 respectively. To determine
the benefit of SV-adjustment, we interrogated its effect on CpG
site association tests under the null model of no association by
simulating a dummy binary phenotype similar to the distribution
of DCI and performing EWAS, with and without including SVs
as covariates. The behavior of the test statistic better followed
the null distribution after SV-adjustment, as shown in quantile-
quantile plots (Figure 5). Specifically, genomic inflation factor
(λ) improved from 1.11 to 0.98 in the set of blood samples,
and improved from 0.73 to 0.99 in the set of CSF samples
within 2 days after hemorrhage (Figure 5) and likewise in
other CSF subsets (Supplementary Figures 2, 3). Genomic
deflation may be caused by sources of variation including cell
type heterogeneity that cause correlation across CpG sites within
a sample, equating to a reduction in the effective number
of independent tests. These results show that in the absence
of reference data, SVA aids in controlling the adverse impact of
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FIGURE 4 | Functional normalization increases concordance of technical replicates. Boxplots showing distribution of M-values for duplicate (A,B) blood and (C,D)
CSF samples (A,C) before, and (B,D) after, functional normalization. Pairs of duplicates are adjacent to each other and differentiated by color. For each sample, the
median M-value is indicated by the black horizontal line and the interquartile range (25th to 75th percentile) is indicated by the colored box. The whiskers (dashed
lines) extend to the most extreme data point within 1.5 times the interquartile range beyond the box, and outlier points beyond this limit are shown individually as
circles.

cell-type heterogeneity and other sources of unwanted variation
on tests of epigenetic association.

Correlation Was Low When Comparing
DNA Methylation of Post-aSAH Blood
and CSF
Following our long-term goal of understanding the methylomic
changes occurring across tissues after aSAH, we explored the
suitability of peripheral blood collected within the first day of
hospitalization as a surrogate for the normally less accessible
longitudinally collected CSF based on the within-CpG correlation
of adjusted M-values between the two tissue types obtained

TABLE 2 | CpG probe-level filters.

Blood* CSF*

Sequential filtering step Filtered Retained Filtered Retained

None 485,512 485,512

Probe sequence overlapping SNP 17,541 467,971 17,541 467,971

Off-target cross-reactivity 36,489 431,482 36,489 431,482

Sex chromosome 10,191 421,291 10,191 421,291

Multimodal beta-value distribution 2,072 419,219 6,142 415,149

Low-quality detection 972 418,247 1,300 413,849

*McNemar p-value (< 2.26 × 1016) across all five filtering steps combined.

from aSAH patients. Specifically, we compared the methylation
profile of blood collected within 48h of hospitalization versus
CSF samples collected at days 1, 4, 7, 10, and 13 post rupture,
respectively. Table 3 summarizes the numbers of CpGs used and
the correlation coefficients for each day. In general, the mean
within-CpG correlation (0.23–0.26) was too low to use blood as a
surrogate for post-aSAH CSF in a global manner.

Differences were observed in the magnitude of the correlation
by genomic position (CpG island, shore, shelf, and open sea;
p < 0.001 for all), with islands and shores showing greater positive
correlation than shelves and seas (Figure 6 and Supplementary
Figures 4–7). Similarly, the magnitude of the correlation differed
by the orientation of CpG with respect to the nearest gene [(3′
UTR, TSS, Exon, Body, 5′UTR), p < 0.01], with CpG sites near
the transcription start site or first exon showing greater inter-
tissue correlation than CpG sites in the upstream, downstream
or in the body of genes. The CpGs sites upstream or in the
body of genes, in turn, showed greater correlation than CpG sites
downstream of the gene.

In addition to the within-CpG correlations, we also examined
how correlated the blood and CSF methylation profiles
were within each individual patient. The mean within-
individual correlation coefficients for five time points of CSF
collection range from 0.946 to 0.960, with little variability
among individuals (Supplementary Figure 8), indicating an
overall strong between-tissue correlation within individuals.
As time post aneurysmal rupture progresses, the correlation
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FIGURE 5 | Quantile-quantile plots showing the benefit of SVA for tests of epigenetic association. The distribution of observed p-values obtained for a random
simulated phenotype (y-axis) are plotted against the expected distribution of p-values under the null model of no association in (A,B) blood samples, and (C,D) CSF
samples at day 1. The genomic inflation factor, λ, is at top left on each plot. (A) Simulated EWAS without SV-adjustment showed inflation with a λ = 1.11. (B) After
SV-adjustment the EWAS closely follows the null distribution as indicated by points closely following the diagonal. (C) Simulated EWAS exhibits genomic deflation
with a λ = 0.73. (D) After SV-adjustment, the EWAS closely follows the null distribution (i.e., points closely following the diagonal).

between blood (collected at a single early timepoint) and CSF
(collected longitudinally) first increases, and then decreases after
reaching its peak at day 7, which likely reflects the changing
pathophysiological response to the rupture event over time.

DISCUSSION

Our protocol demonstrated the value of several QC procedures
in obtaining clean and useful methylation data for subsequent
scientific analyses. In particular, in addition to quality filters
at the sample and CpG probe level, we showed that functional
normalization was helpful in reducing batch effects for both

TABLE 3 | Correlation analysis of blood (within first day of hospitalization) and CSF
at different times.

Days of CSF samples Day 1 Days 4 Days 7 Days 10 Days 13

No. of subjects 65 64 65 61 47

CpG sites 266,009 257,979 255,624 256,758 255,459

Mean correlation value 0.233 0.263 0.262 0.253 0.242

Median correlation value 0.174 0.199 0.197 0.190 0.187

blood and CSF. Likewise, SVA was useful for adjusting for
unknown sources of variation, including cell type heterogeneity,
as evidenced by improved genomic inflation factor for a
simulated EWAS scan under the null hypothesis. This
observation is particularly important for studies of tissue
types, such as CSF, that are underrepresented in the methylomics
literature, and for which external cell type reference data are
not yet available. We also provided evidence that, overall, CSF
samples yielded lower-quality methylomic data than did blood
samples. This observation may reflect the low cell content
(Svenningsson et al., 1995; de Graaf et al., 2011a,b) in CSF
compared to blood. Altogether, these lessons can inform the
design of future analyses seeking to investigate the methylomic
profiles in post-aSAH CSF samples. The efficiency of a reference-
based method in capturing the outlier with high proportion of
B-cells is promising.

Epigenetic profiles are known to be different across tissues and
cell types, though, the degree to which has not yet been assessed
for blood and CSF using a whole methylome approach. We
explored the question of whether methylomic profiles from blood
samples could serve as surrogates for less accessible CSF. The
generally low within-CpG correlations observed were consistent
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FIGURE 6 | Within-CpG correlation between blood and CSF at day 1 for CpG sites across (A) genomic regions, and (B) relative to genes. Bean plots depict the
median correlation coefficient (horizontal line), mean (diamond), interquartile range (i.e., 25th to 75th percentile, box), and density (width of the bean). (TSS,
Transcription start site; UTR, Untranslated region).

with an expectation based on tissue differences, indicating that
blood cannot serve as a useful surrogate for CSF for most
scientific or clinical purposes. When broken down by genomic
annotations, regulatory regions such as CpG islands and locations
near transcriptional start sites of genes showed significant
positive correlations. To understand the methylomic changes
that occur post-aSAH, we believe that CSF would be a most
relevant source, representing the central nervous system (CNS)
environment and its proximity to the hemorrhagic location.
We note that the overall low within-CpG correlation is not at
odds with the observed strong within-individual correlation. The
within-CpG correlation is more pertinent to downstream analysis
where the methylation level at individual CpGs are compared
between groups (for example, cases and controls). One possible
limitation of our correlation analysis is that blood and CSF
samples were measured on different plates. However, correlation
coefficients have the property of being invariant with linear
changes and therefore our results are not likely to be confounded
by the blood-CSF plate batch effect.

This study benefited from several strengths including the a
plate design aimed at reducing confounding of experimental
effects with technical artifacts within each tissue, thorough and
rigorous application of data QC procedures, pairing of blood
and CSF samples from the same patients, and assessment of
methylomic profiles in a novel tissue type (post-aSAH CSF)
that captures the CNS environment post-aSAH. Despite these
strengths, limitations of the current study include limited
statistical power to resolve the intra subject differences among the
samples that may ultimately pose challenges in using this dataset
for future EWAS studies. Additionally, the cell composition of
CSF may vary over time after hemorrhage, which would also
affect the methylation levels. Thus, longitudinal analyses of post-
aSAH samples are challenging as cell-type heterogeneity may be
confounded with days post-injury. Overcoming these challenges
will be necessary to accomplish goals such as identifying genes

whose changes in methylation after injury are predictive of
recovery outcomes.

In conclusion, this study is one of the first attempts to
investigate DNA methylation at the genome scale in a sample of
aSAH patients, as well as one of the first to measure methylation
in CSF. Our analysis protocol showed that methylomic profiles
can be obtained from CSF for use in EWAS analysis and that
QC steps can improve the analysis by eliminating low-quality
data points and reducing biases and experimental artifacts.
Likewise, we show that blood, while readily accessible, is not a
sufficient surrogate for the methylomic status of CSF. Our study
lays the groundwork for more comprehensive analyses in the
future, where efforts to understand methylation profiles in aSAH
patients, and changes that occur post-injury, may ultimately lead
to the discovery of biomarkers of clinical utility in predicting
patient recovery.
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