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Abstract: The relationships between land cover characteristics in riparian areas and the biological
integrity of rivers and streams are critical in riparian area management decision-making. This study
aims to evaluate such relationships using the Trophic Diatom Index (TDI), Benthic Macroinvertebrate
Index (BMI), Fish Assessment Index (FAI), and random forest regression, which can capture nonlinear
and complex relationships with limited training datasets. Our results indicate that the proportions of
land cover types in riparian areas, including urban, agricultural, and forested areas, have greater
impacts on the biological communities in streams than those offered by land cover spatial patterns.
The proportion of forests in riparian areas has the greatest influence on the biological integrity of
streams. Partial dependence plots indicate that the biological integrity of streams gradually improves
until the proportion of riparian forest areas reach about 60%; it rapidly decreases until riparian urban
areas reach 25%, and declines significantly when the riparian agricultural area ranges from 20% to
40%. Overall, this study highlights the importance of riparian forests in the planning, restoration, and
management of streams, and suggests that partial dependence plots may serve to provide insightful
quantitative criteria for defining specific objectives that managers and decision-makers can use to
improve stream conditions.

Keywords: riparian land cover; spatial pattern; biological indicator; random forest; threshold
analysis; South Korea

1. Introduction

Land development in watershed and riparian areas can significantly alter hydrol-
ogy, hydraulics, pollution loading, and the transport mechanisms of pollutants, which
substantially contribute to poor stream water quality and the degradation of stream ecosys-
tems [1,2]. As extreme weather events, including floods, droughts, and storms, are becom-
ing more frequent and intense, dealing with pollutants from catchment runoff processes
(i.e., stormwater runoff) has become a major challenge for policymakers and environmental
managers in terms of sustaining stream water quality and aquatic ecosystems [3,4]. In
particular, changes in land cover types and spatial patterns are one of the key influencing
factors that alter hydrological systems, leading to changes in stormwater runoff characteris-
tics [5,6]. Therefore, it is critical to implement effective watershed management strategies to
mitigate the adverse impacts of land cover types and their spatial patterns on the biological
communities of streams [7].

Riparian buffers can manage stormwater by mitigating surface runoff processes, such
as decreasing flow velocity and increasing residence time [8,9]. It is critical to mitigate
surface runoff for efficient infiltration, absorption, evaporation, and interception in riparian
buffer zones, which can affect the capacity to control floods, trap sediments, and filter out
pollutants and nutrient loading. In addition, riparian zones provide several ecological
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functions, such as enhancing biodiversity, microclimate regulation, and increasing recre-
ational opportunities [10–12]. However, human activities and intensified land use cause
fragmentation, loss, and degradation of riparian vegetation, which can negatively affect the
biological integrity of streams [13]. The high proportion of anthropogenic land cover types
and the degraded spatial pattern of riparian vegetation are responsible for the poor water
quality and biological conditions in streams [14,15]. Recently, Yirigui et al. [13] reported
that biological conditions in streams deteriorate as the patch size and core area decrease and
edge areas increase in riparian forests. Shen et al. [16] identified that forest edge density has
a positive impact on stream water quality in eastern Canada. However, several studies on
the relationship between watershed spatial patterns and stream conditions have reported
that the effects of land cover patterns on stream water quality and biological conditions
depend on the spatial scale, metrics used, and land cover types [16–18]. Therefore, scientific
research that quantifies the relationships between land cover characteristics of riparian
buffer zones and biological indicators of streams should be performed [19].

Different statistical methods have been used to study the relationships between land
cover characteristics and stream ecosystems, including multiple regression, regression trees,
and redundancy analysis. Such conventional statistical methods assume the normality and
spatial independence of the observed datasets, as well as linearity and non-multicollinearity
between dependent and independent variables [20,21]. In most cases, however, these as-
sumptions are difficult to satisfy in stream monitoring datasets, as land use types, landscape
characteristics, water quality, and the biological communities of stream ecosystems are
not spatially discrete or independent. Therefore, many studies have adopted machine
learning approaches (see, e.g., [22–24]), as they do not require such assumptions [25,26].
Among many machine learning approaches, random forest regression has been shown in
the literature to be effective and easily interpretable (for example, [20,27]). The random
forest approach uses bootstrap aggregation of regression trees and provides better results
than other machine learning techniques [25]. Specifically, the random forest approach can
handle nonlinear and complex relationships and can determine variable importance with
high predictive accuracy [20,26]. For example, Ouedraogo et al. [20] applied the random
forest methodology to predict groundwater nitrate contamination, while Giri et al. [27] also
used the random forest algorithm to evaluate the relationship between land use intensity
and aquatic ecosystems.

As the relationships between landscape indicators and aquatic ecosystems are non-
linear and complex [28], the response of biological communities to riparian land cover
may have important change points, where the ecosystem status can be abruptly changed
under a small driver [29,30]. Detecting the thresholds of aquatic ecosystems for land cover
characteristics in watershed and riparian areas can provide objective scientific criteria for
managers and policymakers involved in water pollution control and land use planning [27].
Although several studies have reported that relationships between aquatic ecosystems and
land cover indicators are nonlinear and exhibit change points, there have been limited
studies that have investigated the change point of the effects of riparian land cover and
their spatial patterns on aquatic ecosystems [30–32].

This study aims to improve the understanding of the effects of riparian land cover
on the biological integrity of streams using machine learning algorithms to handle the
associated complex and nonlinear datasets. The overall objectives of this study are as
follows: (a) to investigate the relative importance of land cover characteristics in riparian
buffer zones on the biological indicators of streams, and (b) to analyze the critical change
points and visualize the average effects of riparian land cover proportions and their spatial
patterns on biological indicators. The results of this study provide essential insights for
establishing management strategies and restoration plans in riparian buffer zones, in
order to enhance ecological functions and mitigate the negative effects of stormwater
runoff. Additionally, identifying the threshold responses of aquatic ecosystems to riparian
land cover can provide objective quantitative criteria for land use zoning regulations and
restoration programs.



Int. J. Environ. Res. Public Health 2021, 18, 3182 3 of 14

2. Materials and Methods
2.1. Study Area

The Han River is one of four major rivers in South Korea. Its catchment area covers
approximately a quarter of the country’s surface (709 km in length and 25,953 km2 in
area). The Han River is located between 36◦30′ and 38◦55′ N latitudes and between 126◦24′

and 129◦02′ E longitudes. The Han River system covers the middle region of the Korean
Peninsula and flows from east to west (Figure 1). The climate in the basin is hot and humid
during summer, and cold and dry during winter. Average annual (total) precipitation is
1348 mm, and the average annual precipitation during the dry season is 193 mm. As there
are distinctive climate characteristics between seasons, river flows vary greatly with the
seasons [33]. In the study area, the average annual temperatures range between 12.5 and
13.6 ◦C, depending upon the region, while the average monthly temperatures vary from
−2.5 ◦C in January to 25.4 ◦C in August [34].
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Figure 1. Han River basin, sampling sites, and land use/land cover (LULC). Areas in the north are the border areas with no
LULC data.

The Ministry of Environment (MOE) of Korea has hierarchically divided watersheds to
manage the water environment across the entire country, including the national watershed
management regions (NWMRs), base watershed management regions (BWMRs), and
sub-watershed management areas (SWMAs). There are six NWMRs, 29 BWMRs, and 265
SWMAs in the Han River basin. The Han River basin is the largest basin in South Korea,
which includes Seoul, the capital of South Korea, and the land development pressure and
population growth are concentrated, with approximately 53% of the entire population
living in the basin. Accordingly, maintaining the water quality and aquatic ecosystem
functionality in the Han River basin are essential, as it is a primary water source for
human development.
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2.2. Monitoring Program and Biological Indicators

Under the National Aquatic Ecological Monitoring Program (NAEMP), the Korean
MOE monitors rivers and streams using different indicators to evaluate habitat condition,
biological community integrity (e.g., the floral community), and other biochemical condi-
tions across the entire nation twice a year. Aquatic organisms, as key indicators of overall
basin integrity, can be used to assess the long-term effects of anthropogenic disturbances
on streams and overcome the limitations of applying chemical parameters [35]; therefore,
the NAEMP monitors the biological status of freshwater ecosystems using three specific
groups of aquatic organisms: diatoms, benthic macroinvertebrates, and fish. In the Han
River basin, the dominant species in each group were Achnanthes convergens, Baetis fuscatus,
and Zacco platypus, respectively. The NAEMP has adopted the following three indicators to
evaluate the status of streams (Table 1): the Trophic Diatom Index (TDI) by Kelly and Whit-
ton for diatom communities [36]; the Benthic Macroinvertebrate Index (BMI), developed by
the NAEMP for benthic macroinvertebrate communities, and the Fish Assessment Index
(FAI), originally proposed by Karr and developed by the NAEMP for fish assemblages [37].
In the present study, these biological indicators were adopted to quantify the impact of
riparian land cover and spatial patterns on the status of stream biological communities
as indicators of fluvial ecosystem integrity. The biological indicators range from 0 (very
poor) to 100 (very good), this scale serving to gauge the relative biological status in streams.
More detailed information on these indicators can be found in [35]. For this study, we
used biological indicator datasets collected from 2016 to 2018 at 907 monitoring sites. Of
these 907 sites, data from only 770 were used in our analyses. The remaining 137 sites were
omitted due to gaps in stream monitoring data and an excess of variables and outliers in
the land use/land cover (LULC) records.

Table 1. Equations for computing biological indicators, from the Korean Ministry of Environment (MOE) [38].

Biological Indicators Equations

Trophic Diatom Index
(TDI)

TDI = 100 − {(WMS × 25) − 25}
WMS: weighted mean sensitivity

WMS = ∑ Aj·Sj·
Vj

∑ Aj ·Vj

where,
j = species

Aj = abundance (proportion) of species j in the sample (%)
Sj = pollution sensitivity (1 ≤ S ≤ 5) of species j

Vj = indicator value (1 ≤ V ≤ 3)

Benthic Macroinvertebrate Index
(BMI)

BMI =

{
4−

n
∑

j = 1
Sj HjGj/

n
∑

j = 1
HjGj

}
× 25

where,
j = number assigned to species

n = number of species
Sj = unit saprobic value of species j

Hj = frequency of species j
Gj = indicators weight value of species j

Fish Assessment Index
(FAI)

FAI = sum of 8 metrics.
Metric 1 (M1): number of Korean native species
Metric 2 (M2): number of rifle benthic species

Metric 3 (M3): number of sensitive species
Metric 4 (M4): percentage of tolerant species

Metric 5 (M5): percentage of omnivores
Metric 6 (M6): percentage of insectivores

Metric 7 (M7): the amount of collection native species
Metric 8 (M8): percentage of fish abnormalities
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2.3. Land Cover Characteristics of Riparian Buffer Zones

We selected the proportions of land cover type (% land cover) and their spatial patterns
to measure the land cover characteristics of the riparian area. To acquire % land cover
and spatial patterns in riparian buffer zones, we used a land use/land cover (LULC)
dataset obtained from the Korean MOE. The LULC map of the riparian buffer zones was
converted into raster data (10 × 10 m), and the land cover pattern metrics were calculated
using the FRAGSTATS (version 4.2, The University of Massachusetts, Amherst, MA, USA)
software [39]. The original LULC map was classified into seven major categories and
23 subcategories: (a) urban areas including residential, industrial, commercial, and roads;
(b) agricultural areas including paddy fields, farms and orchards; (c) forest areas; (d) grassy
areas; (e) wetlands; (f) barren soil; and (g) water. We reclassified the original LULC map into
the following three categories: (a) urban areas; (b) agricultural areas; and (c) forested and
grassy areas. The proportions of each land cover category in the watershed are calculated
for urban areas (12.0%), agricultural areas (16.6%), forest areas (51.5%), grassy areas (10.9%),
wetlands (1.8%), barren soils (3.9%), and water (3.3%).

As the proposed buffer width varied considerably in previous studies [15,16,19],
specifying the scale of riparian buffer zones was challenging. The Korean MOE has
designated buffer zones of 1 km width to preserve riparian areas and preserve water
quality; therefore, we adopted this riparian criterion to define the buffer width of each
stream. Each 1 km buffer zone was created and overlaid on the LULC raster data (10 m
resolution). Then, all LULC raster data within the buffer zones were clipped and stored as
separate grid files to compute the land cover pattern metrics.

Multiple metrics should be considered to describe the different spatial characteristics
of landscapes [40,41]. We selected 12 metrics at the class level, including the large patch
index (LPI), percentage of landscape (PLAND), patch density (PD), and edge density (ED)
of the individual land cover types (urban, agricultural, and forest areas; see Table 2). The
spatial pattern metrics selected for this study were those most often used in previous
studies as land cover patterns to explain stream conditions (see, e.g., [6,16,17]).

Table 2. Landscape metrics used to quantify land cover spatial patterns in this study.

Metrics Description

Large patch index (LPI) The area of the largest patch divided by the total land cover area.
Percentage of landscape (PLAND) The sum of the areas of all patches divided by the total land cover area.
Patch density (PD) The number of patches divided by the total land cover area.
Edge density (ED) The sum of the lengths of the patches divided by the total land cover area.

Four metrics for urban, agricultural, and forest land cover (patches) were calculated individually.

2.4. Statistical Approach

As indicated in the previous introduction, machine learning algorithms, such as ar-
tificial neural networks (ANNs), support vector machines (SVMs), and random forests
are preferred, as they go beyond traditional statistical methods, owing to their ability to
handle non-parametric datasets and nonlinear relationships [22,24,42]. In this study, we
adopted the random forest algorithm, which is one of the most powerful machine learning
methods, to explore the nonlinear and complex interactions among the land cover charac-
teristics of riparian buffer zones and the biological communities of streams [25]. Random
forest algorithms reduce prediction error rates and result in more accurate estimates by
creating multiple trees [17,20,26]. As a random forest analysis assesses the effects of all
explanatory variables and ranks the importance of these variables, it is possible to detect
complicated interactions among variables. Although it is difficult to interpret the overall
effect of variables, random forest algorithms have been successfully applied in various
research fields [17,26]. Researchers have utilized random forest algorithms to apply partial
dependence plots to interpret and visualize the effect of each explanatory variable on the
response variable [27,43]. Partial dependence plots are a useful tool for interpreting the
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results obtained from a random forest analysis and identifying patterns of the response vari-
able based on each explanatory variable, including abrupt change points [27,44]. To date,
however, few studies have applied the random forest algorithm and partial dependence
plots to identify changes in the biological status of streams caused by changes in riparian
land cover and their spatial patterns (including references of previous similar works).

We developed three random forest models for each biological indicator using 12 ex-
planatory variables, including proportions of land cover (urban, agricultural, and forest
areas) and land cover spatial patterns (LPI, PLAND, PD, ED for urban, agricultural, and
forest patches). We employed the “randomForest” package for the statistical language
R [45]. We set the number of trees (ntree) to 500 and the number of variables at each node
of the tree (mtry) to the default value [27]. The value of mean decrease in accuracy (%
IncMSE) was calculated to detect the importance of a variable; the greater the value of %
IncMSE, the more important the value of the variable. We categorized 70% and 30% of the
data as the training and testing datasets, respectively, to evaluate the performance of the
models. The root mean square error (RMSE) and mean absolute error (MAE) were also
used to assess the performance and measure the accuracy of the variables [46]. The lower
the RMSE and MAE, the better the prediction ability of the model. Partial dependence
plots were constructed using the “pdp’” package within R to explore the effects of all the
variables in the model.

3. Results
3.1. Descriptive Statistics

The general results of the biological indicators, percentage of land cover types, and
their spatial patterns are displayed in Table 3. The TDI, BMI, and FAI of the 770 monitoring
sites exhibited mean values of 60.8, 66.8, and 63.0 (out of a maximum of 100). The TDI
and FAI were categorized as “fair,” while the BMI was categorized as “good” (i.e., good
quality biological communities) at most monitoring sites, based on the classifications of
biological indicators in NAEMP. On the riparian buffer scale, the mean values of urban
and agricultural land cover were 11.7% and 19.3%, respectively. Forest areas covered the
highest percentage among the land cover types. The mean LPI and PLAND indices for
forest areas were higher than those in urban areas and agricultural areas, while the mean
PD and ED indices for forest areas were lower than those in urban and agricultural areas.
In terms of the degree of fragmentation in the landscape, higher LPI and PLAND values
and smaller PD and ED values indicated less fragmentation.

3.2. Random Forest Models for Biological Indicators

Random forest models were developed for each biological indicator, and their per-
formances were compared. The RMSE values for TDI, BMI, and FAI were 23.47, 17.07,
and 20.73, respectively, while the MAE values were 19.06, 13.08, and 15.99, respectively
(Figure 2). The results indicate that the random forest model exhibited a better performance
with the Benthic Macroinvertebrate Index (BMI) than with the Trophic Diatom Index (TDI)
and the Fish Assessment Index (FAI).

Table 3. Descriptive statistics of biological indicators, percentage of land cover types, and the spatial
patterns in the riparian buffer zones.

Classification Variables Mean S.D. Min Max

Biological
indicators

TDI (0–100) 60.8 26.7 0.0 99.0
BMI (0–100) 66.8 23.3 0.0 96.0
FAI (0–100) 63.0 26.1 0.0 100.0

Proportions of
land cover

Urban area (%) 11.7 14.7 0.0 89.0
Agricultural area (%) 19.3 16.2 0.0 84.0

Forest area (%) 50.0 25.8 0.0 96.0
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Table 3. Cont.

Classification Variables Mean S.D. Min Max

Land cover
spatial patterns

Urban_LPI 12.3 18.7 0.0 92.0
Urban_PLAND 21.6 24.9 0.0 92.0

Urban_PD 52.4 36.9 0.0 224.0
Urban_ED 125.9 76.2 6.0 486.0

Agricultural_LPI 8.2 13.4 0.0 95.0
Agricultural_PLAND 23.3 21.3 0.0 95.0

Agricultural_PD 22.8 21.3 0.0 155.0
Agricultural_ED 112.4 65.2 1.0 395.0

Forest_LPI 15.4 18.6 0.0 96.0
Forest_PLAND 34.0 27.4 0.0 96.0

Forest_PD 18.8 28.3 0.0 168.0
Forest_ED 86.7 56.5 0.0 415.0

n = 770; S.D., standard deviation; Min, minimum; Max, maximum; TDI, Trophic Diatom Index; BMI, Benthic
Macroinvertebrate Index; FAI, Fish Assessment Index; LPI, large patch index; PLAND, percentage of landscape;
PD, patch density; ED, edge density.
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Index (TDI); (b) Benthic Macroinvertebrate Index (BMI); and (c) Fish Assessment Index (FAI). MAE, mean absolute error;
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The random forest algorithm ranked the relative importance of land cover charac-
teristics in the riparian buffer zone for the TDI, BMI, and FAI (Figure 3). Higher values
of percentage increase in the mean squared error (MSE) indicate higher importance. The
results indicate that forest area in riparian buffer zones was the most important predictor
for all biological indicators, whereas the following important factors varied across the bio-
logical indicators. The proportions of land cover in a riparian zone have a greater influence
on aquatic ecosystems than spatial patterns in a riparian zone. The top five predictors of
TDI were forest area (%), urban area (%), agricultural area (%), ED of agricultural area, and
PLAND of agricultural area. The top five predictors of BMI were forest area (%), urban area
(%), ED of agricultural area, agricultural area (%), and PD of agricultural area. These results
indicate that TDI and BMI have common predictors and rankings. Additionally, the relative



Int. J. Environ. Res. Public Health 2021, 18, 3182 8 of 14

importance of % forest land cover in a riparian zone for TDI and BMI was significantly
higher than that of any other variable. However, in terms of FAI, the proportions of all
three riparian land cover types were ranked higher than other predictors.
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3.3. The Partial Dependence Plots Analysis

We show PD plots for the proportions of forest, urban, and agricultural areas, which
are identified as common important predictors of the biological indicators in the random
forest models (Figure 4). The PD plots for biological indicators with proportions of riparian
land cover types demonstrated similar patterns. According to the PD plots for the riparian
forest area, when the forest area of a riparian zone was more than 60%, the effect on stream
biological communities was not significantly changed. The biological values gradually
increased until the proportion of forest area was approximately 60% of the riparian zone.
The plot suggests that the greater the forest area in a riparian zone, the better the integrity
of the biological communities of the stream. Conversely, the biological status of a stream
gradually decreased until the percentage of urban area was 25% of the riparian zone. If
the proportion of urban areas in a riparian zone exceeds 25%, the biological communities
of streams remain in poor condition. The biological indicator values decrease until the
agricultural area in a riparian zone reaches 60%. In particular, when the percentage
of agricultural area is in the range of 20% to 40%, the biological status of the stream
decreases abruptly.
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4. Discussion
4.1. Influences of Riparian Land Cover Proportions and Patterns on the Biological Integrity
of Streams

Many previous studies have researched the influence of land cover characteristics on
biological communities in streams [47–49]. Riparian land cover proportions and patterns
have generally been employed to assess the impacts of riparian land cover on the biological
conditions in the stream [13,19]. The proportions of land cover have usually been identified
as a better predictor of biological integrity in streams than land cover patterns, as presented
in our study [50,51]. The results of this study indicate that the top five most influential
land cover characteristics of a riparian zone on the three considered biological indicators
included the proportion of urban, agricultural, and forest areas, although the importance
values and rankings were slightly different. The results suggest that the percentage of
certain land cover types in a riparian zone can better account for the variability in the
biological status of streams than land cover patterns, such as LPI, PLAND, ED, and PD.
The findings of this study illustrate that it may be more effective to improve biological
conditions in streams by regulating the proportions of riparian land cover in our study area.
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The results of this study suggest that the predictive capabilities of macroinvertebrate
and fish models were better than those of diatoms in assessing the impacts of riparian
land cover on the biological integrity of streams in the Han River basin. Diatoms are more
sensitive to local perturbations than to watershed and riparian-scale land cover changes,
likely due to their lower mobility, although they are sensitive to nutrients and organic
pollution [48,52]. Conversely, macroinvertebrate and fish assemblages are more sensitive
to watershed and riparian land cover, and can therefore be efficient indicators for assessing
the influence of pollution originating from the surrounding area [52,53]. The results of
this study suggest that more than one biological organism should be considered when
assessing the impact of environmental variables, as suggested in previous literature [52,53].

The influence of land cover characteristics on stream-based biological communities
differs depending on the aquatic organisms under consideration [53–55]. Each biologi-
cal assemblage responds differently to riparian land cover types, as they exhibit diverse
behavioral traits, life histories, and sensitivities to stressors [52]. As indicated by the
variable importance plot in our study, the strength of riparian land cover as an indicator
of overall fish assemblage integrity was higher than that of diatoms and macroinverte-
brates. However, these results varied across the spatial scales, study areas, and biological
metrics variously used in the existing literature [53–55]. For example, Flinders et al. [54]
showed that fish indices can be the better predictor of land cover than macroinvertebrates.
Walters et al. [53], on the other hand, found that macroinvertebrates were the better pre-
dictor of land cover. Our findings are consistent with those of previous studies in that
we identify fish indices as being useful in assessing riparian land cover as fish are more
mobile than most other riverine organisms, and therefore exhibit sensitivities to change on
a broader geographical scale [54,55]. Conversely, macroinvertebrate community structure
was more sensitive to local-scale stressors such as nutrient concentration, sedimentation,
and substrate coarseness [47,54].

Among the proportions of riparian land cover, riparian forest areas had the greatest
effect on the three considered biological communities, followed by riparian urban areas
and agricultural areas. These results are consistent with those of many studies that have
shown that riparian forests play an important role in sustaining biological integrity in
streams [13,15,19]. Carlisle et al. [44] concluded that riparian forests are a more important
predictor of biological integrity in streams than riparian urban and agricultural areas.
Riparian vegetation has been shown to have various benefits for stream conditions, such as
intercepting rainfall, slowing surface runoff speed, capturing pollutants and sediments,
and providing habitats for aquatic organisms [56–58]. In particular, riparian forest cover
has been shown to play an important role in mediating the negative impacts of land cover
on streams [59]. Even if the watershed is dominated by agricultural areas, riparian forests
can effectively mitigate the negative impacts of agricultural land cover [60]. In an applied
management context, it is important to protect the riparian forest from fragmentation and
changes to other land cover types.

Urban and agricultural areas in the watershed and riparian zone negatively influence
the quality of aquatic organism habitats, affecting their structure and composition [61].
Urban and agricultural runoff mainly contributed to increasing nutrient concentrations
and sediment inputs, reducing stream substrate coarseness, and driving a shift within the
local biological community from sensitive species to more pollution-tolerant species [47,48].
Riparian forests play critical roles in maintaining the biological integrity of streams as they
primarily determine instream habitat quality and pollutant inputs [47,49], as described in
the paragraph above. Moreover, several studies reported that even in headwater streams,
where most of the watershed land cover consists of vegetation, riparian deforestation or im-
pairment has a strong impact on the instream habitat quality of biological communities. We
therefore conclude that riparian conditions are the most important factors in maintaining
the biological integrity of streams [62,63].
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4.2. Threshold Effects of Land Cover Characteristics on the Biological Integrity of Streams

Many previous studies have shown that the responses of stream conditions to land
cover characteristics are nonlinear and that abrupt change points exist, which are called
thresholds [16,28–30,64]. Human actions such as causing changes in land cover exhibit
thresholds that suddenly change the stable state of ecosystems, while ecosystems require
an enormous amount of time and effort to recover. Therefore, it is important to predict
such thresholds and identify a precise approach. In this study, we found that there are
some important thresholds, where the effects of land cover on stream biological status
abruptly change, based on the partial dependence plots from the random forest models.
The proportion of forested area should be more than 60% to assist in setting targets for
environmental conservation. The results suggest that if more than 60% of green space in a
riparian zone is covered by forests, the biological conditions in streams can be maintained
at good quality. Clément et al. [17] have shown that securing forest cover of more than 50%
can mediate the negative effects of agricultural areas on Canadian streams. In the present
study, biological conditions in streams continued to decrease until the percentage of urban
area in the riparian area was approximately 25%. Similarly, King et al. [65] concluded
that significant changes in benthic macroinvertebrates occurred at a threshold of 20–30%
developed area. These results suggest that when developing a watershed, it is critical to
limit the proportion of urban area to within 25%, in order to minimize the impact on the
biological status of streams, especially in riparian zones. The partial dependence plots also
showed that the values of biological indicators abruptly decreased when the agricultural
area in a riparian zone was between 20% and 40%. Utz et al. [31] concluded that the
threshold of agricultural land cover is higher than that of urban cover, which appears to
be less damaging to aquatic macroinvertebrates. In summary, retaining more than 60% of
the vegetated area in a riparian buffer, and not exceeding 25% of urban area and 20% of
agricultural area are important criteria for maintaining the biological conditions in streams.
Identifying abrupt changes in stream biological status caused by changes in land cover can
assist managers and policymakers in establishing ecosystem conservation or restoration
goals based on objective scientific criteria. In particular, our results can be applied to
the planning and design of riparian buffer zones. However, more threshold analyses on
the relationships between riparian land cover characteristics and stream biological status
should be conducted, as there are some limitations; for example, the threshold effect may
vary across the region, spatial scale, and stream condition indicators.

5. Conclusions

Our results demonstrate that the proportions of riparian land cover types offer a
more powerful factor of stream-based biological community integrity than riparian land
cover patterns. Conversely, when evaluating the impacts of land use, models informed by
macroinvertebrate and fish have been shown to have greater predictive power than the
diatom-informed model. Studies have also shown that fish could be considered the most
efficient indicator when evaluating riparian land cover impacts. Our results clearly indicate
that riparian forests play a significant role in determining the biological integrity of streams.
We observe thresholds in the relationships between riparian land cover characteristics and
stream-based biological indicators. Specifically, thresholds in riparian urban areas were
lower than those in riparian agricultural areas, and more riparian forests had a positive
influence on the biological indicators. Our results suggest that the proportions of riparian
land cover should be considered as a quantitative criterion for riparian zone management
and restoration. In particular, threshold analysis provides a quantitative standard for
riparian land cover planning. Our results also imply that an ideal approach could involve
restoring riparian forest to mitigate the impacts of urban and agricultural land use and
protect the biological integrity of stream ecosystems. The results of this study provide
essential insights which may help inform decision-making processes where riparian land
cover planning, management, and restoration is concerned.
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